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In this paper, we present a successful implementation of a subtraction-noise projection method into a

simple, simulated data analysis pipeline of a gravitational-wave search. We investigate the problem to

reveal a weak stochastic background signal which is covered by a strong foreground of compact-binary

coalescences. The foreground, which is estimated by matched filters, has to be subtracted from the data.

Even an optimal analysis of foreground signals will leave subtraction noise due to estimation errors of

template parameters which may corrupt the measurement of the background signal. The subtraction noise

can be removed by a noise projection. We apply our analysis pipeline to the proposed future-generation

space-borne Big Bang Observer mission which seeks for a stochastic background of primordial

gravitational waves in the frequency range �0:1 Hz—1 Hz covered by a foreground of black-hole and

neutron-star binaries. Our analysis is based on a simulation code which provides a dynamical model of a

time-delay interferometer network. It generates the data as time series and incorporates the analysis

pipeline together with the noise projection. Our results confirm previous ad hoc predictions which say that

the Big Bang Observer will be sensitive to backgrounds with fractional energy densities below � ¼
10�16.

DOI: 10.1103/PhysRevD.77.123010 PACS numbers: 95.85.Sz, 02.50.Sk, 04.80.Nn

I. INTRODUCTION

Currently, the first generation of large-scale laser inter-
ferometers is being operated to make a direct detection of a
gravitational wave (GW) [1–3]. The primary targets of
these detectors are compact-binary coalescences (CBCs),
pulsars, and supernovae. However, the predicted event rate
is so small that a detection of GWs by these instruments is
highly unlikely. Their scienctific goals are to push techno-
logical developments towards a next generation of detec-
tors and to place upper limits on GW amplitudes, thereby
deriving, at least to some degree, restrictions on astrophys-
ical processes. These limits either refer to deterministic
sources like pulsars and binaries [4,5] or to stochastic
backgrounds of GWs which may have an astrophysical or
cosmological origin [6]. Although limits on stochastic
backgrounds already become (weakly) scientifically rele-
vant, the current upper limit of the background energy is
about 10 orders of magnitude above a likely value for the
cosmological background, assuming standard inflationary
models. At this stage, confidence in a detection event
would be significantly increased by combining the data
of many different detectors [7]. This technique has become
a standard tool in GW data analysis, and it is the only
method to coherently detect stochastic signals. Within ten
years, the first generation of ground-based detectors will be
joined or replaced by advanced LIGO—a second-
generation ground-based detector—and LISA, which will
be the first space-borne laser-interferometric GW detector
[8,9]. In contrast to first-generation detectors and advanced
LIGO, LISA has to cope with a totally different data
analysis problem. LISA will be sensitive to many sources

which combine to form a GW signal foreground [10,11].
This foreground is formed by millions of galactic white-
dwarf (WD) binaries and cannot be resolved completely.
The unresolved, residual foreground acts as Gaussian con-
fusion noise which impairs the detection and analysis of
other signals. Any future detector will have to take the
source-confusion problem into account and find a way to
solve or circumvent it.
Even if a signal foreground can be resolved, the esti-

mated signal waveforms will deviate somewhat from the
true signals due to instrumental or confusion noise. If the
estimated waveforms are subtracted from the data, then a
residual signal spectrum, the subtraction noise, remains.
Recently, a method was proposed to remove the residual
foreground under certain conditions [12]. This method is
based on a geometrical interpretation of signal analysis. It
allows one to access a weak target like a stochastic GW
background, irrespective of the fact that the residual fore-
ground—in that case, resulting from inaccurate fitting of
waveforms from binary neutron stars (NS) and black holes
(BH)—may be much stronger. The conditions which have
to be fulfilled are that (1) an accurate model exists for the
waveform of individual foreground signals, (2) the overlap
between foreground and background signals is negligible
or irrelevant, (3) there are not too many foreground sources
compared to the amount of data being collected (this will
be specified in Sec. VI), and (4) the data are taken with a
network consisting of at least 2 detectors. If the second
condition is not fulfilled, then the removal of subtraction
noise may deteriorate the waveforms of background sig-
nals in the data. The noise-removal algorithm, which is
geometrically defined as a noise projection, comes with
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many numerical challenges which could not be addressed
in [12]. The purpose of this paper is to present a detailed
discussion of the noise projection and to show how it can
be implemented into a data analysis pipeline of a simulated
future-generation detector network.

The network model of our simulation is based on a
design draft for a future mission, the Big Bang Observer
(BBO) [13]. Its primary target is to measure the stochastic
GW background with cosmological origin (CGWB),
which was generated shortly after the big bang, presum-
ably during the inflationary phase [14–16]. For nonexotic
(likely) models of the CGWB, the detector should be
designed with peak sensitivity at the lowest possible fre-
quencies, since sensitivity towards stochastic backgrounds
increases with decreasing signal frequency. This back-
ground will be overlaid at all frequencies by a foreground
of CBCs which needs to be subtracted. At this point, one
has to take into account the confusion-noise problem. The
galactic WD/WD foreground poses an intractable barrier
even for future detectors. Consequently, its spectrum,
which reaches out to 0.25 Hz [17], sets a lower boundary
on the BBO’s detection band. Lower frequencies beyond
the WD/WD barrier are excluded by a foreground of
merging supermassive black holes, and too little data
would be collected at these frequencies. Above 0.25 Hz,
a remaining foreground of 105–106 NS and BH binaries
has to be subtracted from the data. For the BBO, the NS/NS
mergers are the weakest foreground signals, and they are
the most difficult to analyze and to subtract. Estimates for
the number of merging NS/NS are highly uncertain.
Extrapolating predictions of the galactic merger rate to
the whole observable universe, one obtains values around
105 for the NS/NS mergers per year [18–20]. As was
explicitly shown in [12], the BBO is sensitive to virtually
all NS and BH CBCs in the entire observable universe. Not
surprisingly, detection and analysis of CBCs build the
secondary target of the BBO.

At an early stage of creating the simulation, it became
clear that it would not be possible to demonstrate the
projection method on a realistic foreground with 105 or
more events even if the search for the signals was excluded
from the pipeline. Therefore, we chose to test the algorithm
on a much smaller foreground consisting of 100 injected

NS/NS systems. And even then it was necessary to shorten
the observation time from the mission lifetime of 3 yrs
down to 105 s. In the end, our results have to be extrapo-
lated to the full observation time of 108 s in order to derive
a prediction of the BBO’s sensitivity towards the CGWB.
Our paper is organized as follows. In Sec. II, we describe

in detail the fully dynamical model of the detector network
which underlies the simulation. In Sec. III, we give an
overview of the simulation pipeline and highlight that the
network design of the BBO is tightly linked to the demands
of the data analysis pipeline. A brief description of the
signal model which determines the CBCwaveforms and an
introduction to the Fisher matrix, which is one of the basic
quantities of the projection method, are given in Sec. IV. In
Sec. V, we present a general framework for how to simulate
a stochastic signal in a network of space-borne detectors.
The geometrical interpretation of statistics is outlined in
Sec. VI, including a description of the subtraction-noise
projection. The optimal cross-correlation scheme for the
BBO is explained and investigated in Sec. VII. Results are
given in Sec. VIII together with an extrapolation of the
BBO’s sensitivity to an observation time which is equal to
the BBO’s lifetime.

II. THE NETWORK MODEL

The BBO consists of four independent detectors which
orbit the sun at 1 AU. Each detector is formed by three
spacecrafts in a nearly equilateral triangular configuration
(Fig. 1). The nominal distance between spacecrafts is
50 000 km, which entails them following slightly eccentric
orbits with e� 9:65� 10�5. Each detector performs a
cartwheel motion on the orbital path, completing one
rotation in one year. All triangles are tilted against the
orbital plane by 60�. In addition, the relative distances
between spacecrafts change by small amounts (0.01%–
0.02%) during one year—the so-called breathing mo-
tion—and therefore the detectors cannot be treated as rigid
objects. The motion of each detector can be described in a
power series of the orbital eccentricity e [21]. Expanding
the exact orbital equations (which can be found in [22]) up
to second order, the position vectors read
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where the first-order correction of the orbital path corresponds to the detector’s cartwheel motion and the second-order
correction describes the small relative motion of the spacecrafts. The angle �iðtÞ ¼ 2�forbtþ �ið0Þ with forb ¼ 1=yr
determines the location of the detectors i ¼ 1; . . . ; 4 on the orbit of the Earth and �ij ¼ 2ðj� 1Þ�=3þ �i fixes the
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position of spacecrafts j ¼ 1, 2, 3 in each detector i. The
constants �i govern the relative cartwheel phases of the
detectors. In the following we will identify a spacecraft ij
by a single index j assuming that all formulas are inde-
pendently valid for each detector. The initial detector
positions are ~�ð0Þ ¼ ð0; 0; 2�=3; 4�=3Þ, and the internal
configuration for each detector is given by ~� ¼ ð0; �; 0; 0Þ.
A � difference of the first two components of ~� puts the
first two collocated detectors in a Star-of-David configu-
ration. Otherwise, components can be chosen arbitrarily. A
BBO spacecraft will certainly have a different design than
a LISA spacecraft. However, it should be clear that the
optimal sensitivity, which is quantum-noise limited at high
frequencies and acceleration-noise limited at low frequen-
cies, does not depend on the topologies of the optical
benches. Therefore, we assume a LISA-type optical-bench
design of the BBO spacecrafts and make use of well-
known LISA results to evaluate the BBO’s instrumental
noise and GW response. For LISA, a minimum number of
four photocurrents per spacecraft has to be included in a
detector simulation. Two of them measure frequency fluc-
tuations yl of the light coming from a neighboring space-
craft via the detector arm l, and the other two measure
intraspacecraft signals which are denoted by zl where the
photodiode (which records) zl is found on the same optical
bench as the diode yl (there are two optical benches, one
for each link to a neighboring spacecraft). The interspace-
craft signals yl are sensitive to GWs. The link index l
assumes positive and negative values to discriminate be-
tween the two light-traveling directions n̂l of the detector
arm (see Fig. 2). Now, the noise spectrum of each photo-
current will be dominated by laser-frequency fluctuations
and optical-bench noise [23]. The situation is different for
ground-based detectors where laser noise interferes de-
structively at a beam splitter towards the output port and
suspension systems and isolation schemes attenuate the
equivalent of optical-bench noise. The solution is to estab-
lish destructive interference electronically by appropriately
adding and subtracting photocurrents in each detector.
Some photocurrents have to be added to others with certain
time delays,

Ddyl � yl;dðtÞ � ylðt� LdðtÞ=cÞ;
Dd2Dd1yl � yl;d1d2ðtÞ

� ylðt� Ld2ðtÞ=c� Ld1ðt� Ld2ðtÞ=cÞ=cÞ; (2)

where LdðtÞ is the length of the optical path of link dwhich
was travelled by light being detected at time t, and c is the
speed of light. That is why the electronic interference
scheme is known as time-delay interferometry (TDI). We
mention that one has to take into account that the light
propagation directions n̂lðtÞ;�n̂�lðtÞ differ predominantly
due to the detector’s cartwheel motion. Also, the relative
spacecraft velocities _Ld lead to minor corrections of the
TDI combinations predominantly through relations of the
form

Ld1ðtþ Ld2ðtÞ=cÞ � Ld1ðtÞ þ _Ld1ðtÞ � Ld2ðtÞ=c (3)

with typical relative speeds _Ld � 10e2AUforb �
5� 10�4 m=s (a smaller contribution comes from a term
which is proportional to e2AU2f2orb=c; see Appendix A in
[24] for details). The assumption for Eq. (3) is that the
distance between spacecrafts does not change much during
the light-traveling time L=c. Henceforth, to make our
descriptions more readable, we will not make explicit
reference to the optical-bench noise. It should be automati-
cally included into the argument whenever we mention
laser-frequency noise. Algebraically, it is always possible
to treat optical-bench noise effectively as additional laser
noise.
Previous investigations led to the introduction of three

generations of TDI combinations which cancel laser-
frequency noise based on various assumptions [24,25].
The first-generation combinations are defined to cancel
laser noise of a detector which does not have cartwheel
or relative spacecraft motion. If they were used to analyze
realistic data, then residual laser noise would contribute to
the total instrumental noise. The same is true for the
modified first-generation variables which are based on
the assumption that the detector is a rigid object which
may perform cartwheel motion. However, residual laser
noise will be much weaker in this case, since it is exclu-
sively caused by the relative motion of spacecrafts, which
is a second-order effect in terms of the orbital eccentricity
e. Finally, the second-generation combinations take rela-
tive motions of the spacecrafts into account and cancel

3

2

1
n̂2 n̂− 2

n̂− 3

n̂3

n̂1

n̂− 1

FIG. 2. Triangular BBO detector configuration.

1 AU

FIG. 1. The BBO network of LISA-type detectors.
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noise contributions which depend linearly on _Ld=c / e2.
We claim that choosing second-generation instead of
modified first-generation TDI variables has a much weaker
influence in the case of the BBO than for LISA. The reason
is that the relative motion of BBO spacecrafts compared to
LISA spacecrafts is a factor 104 smaller. Investigating
residual laser noise spectra in modified first-generation
and second-generation combinations of BBO will show
which generation has to be implemented. However, at least
for the purpose of this paper, we just need to introduce the
TDI combinations in their modified first-generation form.

In order to obtain a concise expression of the TDI
combinations, we define new Doppler variables where a
certain combination of intraspacecraft links z is added to
interspacecraft links y,

y0l � yl þ 1
2ðz�l;l � zlÞ: (4)

In terms of these quantities, the laser-noise-free TDI com-
bination X1 can be cast into the form [26]

X1ðtÞ � ½y0�3;32�2 þ y03;2�2 þ y02;�2 þ y0�2�
� ½y02;�2�33 þ y0�2;�33 þ y0�3;3 þ y03�: (5)

Time delays commute in first-generation variables, and
therefore, semicolons in Eq. (2) have been substituted by
commas. TDI X1 mimics an unequal-arm Michelson inter-
ferometer centered at spacecraft 1. Cyclic permutation of
all indices leads to the definitions of X2 and X3 which
represent interferometers centered at spacecrafts 2 and 3.
Each of the two sets of square brackets in Eq. (5) comprise

terms which represent a complete round trip of light in
clockwise and counterclockwise directions. These two
beams are then subtracted from each other to form the
unequal-armMichelson, which can be represented geomet-
rically as shown in Fig. 3. The instrumental noise of the
three channels Xi is correlated. It is more convenient to use
channels with uncorrelated instrumental noise, especially
if information from all channels is combined to provide
optimal sensitivity with respect to GWs. These channels
are known by the names A,E, T and can be defined in terms
of the basis vectors Xi,

A ¼ X3 � X1ffiffiffi
2

p ; E ¼ X1 � 2X2 þ X3ffiffiffi
6

p ;

T ¼ X1 þ X2 þ X3ffiffiffi
3

p :

(6)

Each of these variables can be seen as one detector, and so,
in principle, each LISA-type detector has to be treated as a
network which consists of three independent detectors. It
turns out that these channels have quite different sensitiv-
ities to GWs and, also, correlation measurements between
them do not yield the same profit as one may naively
expect from a detector network. We will come back to
this in a later section.

III. OVERVIEW OF THE SIMULATION

The simulation is organized according to the pipeline
shown in Fig. 4. The first step is to generate a time series
for the various Doppler streams (12 per detector, 48 in
total). These data contain the instrumental noise and con-
tributions from 100 CBCs. It is fairly simple to derive time-
domain models of the test-mass noise (Stm / 1=f2 in units
of Doppler shift) and the shot noise (Sshot / f2) [28]. For
the GW signal, we use a time-domain post-Newtonian (pN)
approximation [Eq. (8)]. The data will depend on space-
craft motion and are generated consistently throughout the

1

2 3

FIG. 3. Graphical representation of the unequal-arm
Michelson TDI combination X1 [27]. This combination of photo
currents mimics the subtraction of two counter-propagating
beams.

TS FM Data Stream Noise

MCMC Cheat

BF Parameter

Templates

BF FM Residual Data

Projected Data

Cross Corr.

FIG. 4 (color online). FM: Fisher Matrix. TS: True signal. BF:
Best-fit.
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network by evaluating the GW phase at retarded time
[Eq. (11)]. In contrast, the CGWB has to be generated
directly in the frequency domain [Eq. (21)]. Assuming a
Gaussian model, the frequency-domain representation of
the CGWB is completely determined by a function called
the overlap-reduction function, which essentially charac-
terizes correlations between different output channels of
the detector network (see Sec. VB).

The second step is to search the data for the CBCs. For
that purpose, one has to exploit features of the network in a
distinct order. The CBCs are analyzed by coherently com-
bining the data of all 12 independent channels. The detec-
tor arrangement significantly improves parameter
estimation of signals which cannot be integrated over
long enough times. Any poorly fitted broadband signal
could have a devastating effect on the mission goal: it
may be that the respective residual noise, even after apply-
ing the noise projection method, is stronger than the
CGWB spectrum. Initially, we implemented a Markov-
chain Monte-Carlo (MCMC) algorithm, which searched
for the maximum of the posterior distribution determined
by our signal models and simulated data [29,30]. However,
our computational resources were not sufficient to perform
a realistic search. Therefore, we decided to calculate the
best-fit parameter values. This is a trick (the ‘‘Cheat’’ box
in Fig. 4) to avoid the CBC analysis. The idea is to
calculate the noise vector on the template manifold, which
points from the true signal to the best fit. Vectors are
defined in tangent spaces, so the best fit has to lie in close
proximity to the true signal (high signal-to-noise ratio).
Further details can be found in Secs. IVB and VIB. The
best-fit waveforms are subtracted from the data, which then
consist of instrumental noise, the CGWB, and the subtrac-
tion noise.

The third step is to carry out the projection method to
remove the subtraction noise. The projection operator is
defined in Sec. VI C. This step is required for the following
reason. A final correlation measurement of data streams of
the two collocated detectors is supposed to lift the CGWB,
which is correlated to some degree in different channels
above any other contribution to the data. Now, this only
works if correlations between channels of the instrumental
noise and the subtraction noise can be neglected. This is
true for the instrumental noise, but it is not for the sub-
traction noise which is highly correlated. Remember, the
subtraction noise corresponds to the difference of the true
signal and the estimated signal, which is a single quantity
for the whole network (modulo detector transfer
functions).

Finally, as described in Sec. VII, we use cross-
correlation results to obtain a signal-to-noise ratio (SNR)
for the CGWB with a given energy density. Knowing how
the SNR scales with observation time, we derive a predic-
tion for the BBO’s sensitivity towards the CGWB based on
its full mission lifetime.

IV. THE FISHER MATRIX IN ATDI FRAMEWORK

A. The signal model and its derivatives

For decades, people have been developing a geometrical
interpretation of data analysis. These models usually con-
sist of a distribution carried by a certain model manifold
[31–33]. If one considers Gaussian distributions, the metric
of the statistical manifold is given by the Fisher-
information matrix ���. To calculate it, one needs a noise

model and a signal model. The model T m, which deter-
mines the signal inside a TDI combination T , depends on
parameters ��. Concerning the noise model, one assumes
complete knowledge of its (double-sided) spectral density
Sn. In practice, the model for the noise spectral density
itself would depend on a few parameters which would have
to be estimated before searching the data for certain
signals.
In general, the Fisher matrix ��� is associated with a

TDI variable T and it is defined as a scalar product of
derivatives of the signal model T m with respect to the

model parameters ~�. Defining @�T m � @T m=@��, the
Fisher matrix assumes the form

��� ¼ h@�T mj@�T mi

� 2
Z 1

0
df

Reð@� ~T mðfÞ@� ~T m	ðfÞÞ
SnðfÞ : (7)

The model which determines a single CBC signal inside
our simulation depends on 5 extrinsic parameters (�0 ¼
luminosity distance r of the source to the detector, �1 ¼
declination �, �2 ¼ right ascension �, �3 ¼
polarization angle  , �4 ¼ inclination angle � of the bi-
nary orbit with respect to the line of sight) and 4 intrinsic
parameters (�5 ¼ orbital phase �c, �6 ¼
coalescence time tc, �7 ¼ total mass M ¼ M1 þM2 of
the binary system, �8 ¼ reduced mass 	 ¼ M1M2=
ðM1 þM2Þ). In other words, we neglect the spin of the
two binaries and assume zero eccentricity of their orbit. If
two signals have to be parametrized, then �9 would be the
distance parameter of the second signal, etc. A simulation
is completely based on signal models (there are no true
data). Still, we have to distinguish between the model for
the simulated signal T h, which adds to the noise T n to
form the total dataT s, and the modelT m, which is used to
analyze the data. In general, one may choose different
models to generate and analyze data. Once generated,
T h is not considered as a function that depends on pa-
rameters, but as a set of fixed numbers. Here, we use the
same model to generate and analyze data, and therefore the
next paragraph gives a description of both.
Since Eq. (5) tells us that a TDI variable is a linear

combination of the Doppler signals yl, derivatives of a
TDI variable with respect to certain model parameters
can be expressed as a sum of derivatives of our signal
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model yml for a single Doppler signal. Therefore, it suffices

to calculate and present the derivatives @�y
m
l . The Doppler

signal yml is a projection of the GW tensor onto the light-

traveling direction n̂l. In transverse-traceless coordinates,
the matrix representation of the GW tensor contains the
two GW polarizations hþ, h� which are functions of the
distance r and all intrinsic parameters:

hþðtÞ ¼ c

2r

�
5
ðMcÞ5
tc � t

�
1=4 � ð1þ cos2ð�ÞÞ � cosð�ðtÞ þ�cÞ;

h�ðtÞ ¼ c

2r

�
5
ðMcÞ5
tc � t

�
1=4 � 2 cosð�Þ � sinð�ðtÞ þ�cÞ: (8)

We implement the restricted waveform, which neglects all
harmonics higher than twice the orbital frequency and

whose amplitude is determined by the chirp mass Mc �
GM2=5	3=5=c3. The evolution of the GW phase is given by
a 3.5 post-Newtonian expansion

�ðtÞ ¼ � 2




X7
k¼0

pk�
ð5�kÞ=8 (9)

with � � ð
c3ðtc � tÞÞ=ð5GMÞ and expansion coefficients
[34]

p0 ¼ 1; p1 ¼ 0; p2 ¼ 3715

8064
þ 55

96

; p3 ¼ � 3

4
�; p4 ¼ 9 275 495

14 450 688
þ 284 875

258 048

þ 1855

2048

2;

p5 ¼
�
� 38 645

172 032
� 15

2048



�
� log

�
�ðtÞ
�ð0Þ

�
;

p6 ¼ 831 032 450 749 357

57 682 522 275 840
� 53

40
�2 � 107

56
Cþ 107

448
log

�
�ðtÞ
256

�
þ

�
� 126 510 089 885

4 161 798 144
þ 2255

2048
�2

�

þ 154 565

1 835 008

2

� 1 179 625

1 769 472

3p7

¼
�
188 516 689

173 408 256
þ 140 495

114 688

� 122 659

516 096

2

�
�; (10)

which are most suitably expressed in terms of the symmet-
ric mass ratio 
 � 	=M, and C ¼ 0:577 215 66 . . . is
Euler’s constant. In total, the GW phase depends on the
mass parametersM,	 and the chirp time tc. At some point
we had to choose a convenient mass parametrization.
Obviously, it would have been possible to use 
 instead
of 	, and indeed in many situations this could be a good
choice. However, for comparable-mass binaries like
neutron-star binary systems (which are the only kind of
signals we included in our simulation), the mass ratio
 has
the odd property of being close to its maximum value

max ¼ 0:25, which holds for equal-mass binaries.
Consequently, in our case, probability distributions for 

will not be Gaussian and the distribution of other parame-
ters may also exhibit non-Gaussian features through pa-
rameter correlations. So, without further investigations, we
decided to use the reduced mass 	 as a second mass
parameter. As we will show later, the distributions for M
and 	 are highly correlated even for strong signals, which
complicates the calculation of the inverse of the Fisher
matrix. It would be interesting to investigate whether a
different mass parametrization behaves better in this
respect.

Now, projecting the GW tensor, we arrive at the follow-
ing form for the Doppler signal [21]:

yml ðtÞ ¼
1

2ð1� ~kð�;�Þ � ~nlðtÞÞ
� ~n>l ðtÞ

�
� X
I¼þ;�

eIð�;�;  Þ � hIðts � ~kð�;�Þ � ~rsðtsÞ=cÞ

� X
I¼þ;�

eIð�;�;  Þ � hIðt� ~kð�;�Þ � ~rrðtÞ=cÞ
�

� ~nlðtÞ: (11)

The Doppler signal yml is the GW induced frequency

change of light which is sent at ts ¼ t� LlðtÞ=c from a
spacecraft at position ~rsðtsÞ and received at time t by its
neighbor at position ~rrðtÞ. ‘‘ >’’ denotes a transposition.
The two polarization matrices eþ, e� are derived from
their simple form in the GW propagation frame by a
rotationDð�;�;  Þ into the solar barycentric frame whose
coordinates are used to describe the spacecraft positions.
The rotation matrix is shown explicitly in the Appendix of

[24]. The propagation direction of the GW is given by ~k ¼
�ðcosð�Þ cosð�Þ; cosð�Þ sinð�Þ; sinð�ÞÞ. To calculate the
Fisher matrix, we generate a time series of derivatives
@�T m with T 2 fA; E; Tg and subsequently apply a fast-
Fourier transform (FFT) to obtain the amplitudes which
govern the Fisher-matrix components. Taking derivatives
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with respect to r and �c is trivial. The same is true for all
other extrinsic parameters, although the result is rather
complicated due to the waveform’s dependence on the
angles �, �,  [see Eq. (11)]. However, we think that it
is instructive to present derivatives of the GW phase, since
for all three nonzero derivatives of the phase, the result can
be cast into a form which resembles the pN expansion
Eq. (9) of the phase. The corresponding expressions can
be found in the Appendix.

Finally, one has to specify models for the noise spectral
densities SnðT Þ. The spectral densities for the uncorrelated
channels read [26]

SnðAÞ ¼ SnðEÞ
¼ 16sin2ð2�fL=cÞ � ð3þ 2 cosð2�fL=cÞ

þ cosð4�fL=cÞÞStm þ 8sin2ð2�fL=cÞ
� ð2þ cosð2�fL=cÞÞSshot;

SnðTÞ ¼ 128sin2ð2�fL=cÞsin4ð�fL=cÞStm
þ 16ð1� cosð2�fL=cÞÞsin2ð2�fL=cÞSshot;

(12)

with test-mass noise Stm ¼ Sacc=ð2�fcÞ2 and shot noise
Sshot ¼ @!0=Precð2�f=!0Þ2 in terms of double-sided
spectral densities. The standard design of the BBO pro-
vides a spectral density of test-mass acceleration Sacc ¼
9� 10�34m2=s4=Hz, which in our simulation is assumed
to be equal for all test masses and light power Prec ¼ 9 W
which is received by a spacecraft from one of its neighbors.
The carrier frequency of the laser is!0 ¼ 5:31� 1015 s�1.
It is sufficient to express the noise models in terms of the
nominal arm length L ¼ 50 000 km, because estimation
errors of the noise will probably exceed the systematic
errors due to the implementation of a simplified model.
This is certainly true in our simulation, where an estima-
tion of the low-frequency test-mass noise spectrum would
be based on a few frequency bins. In contrast, the simulated
noise T n is based on a combination of individual Doppler
signals, which then depends on detector motion and
asymmetry.

B. Numerical evaluation of Fisher matrices

The complete simulated CBC foreground is composed
of 100 NS/NS systems which occupy frequencies between
52 mHz and 2.2 Hz. Restricted by computational power of
single notebooks (a cluster version of the code is being
developed), we could simulate data with an observation
time T ¼ 105 s and a sampling frequency of fs ¼
5:242 88 Hz, which essentially fix the frequency range of
the injected binaries. Parameter values for tc, r and the two
mass parameters of the CBCs are drawn from nonuniform
priors. Values for M and 	 are derived from normal dis-
tributions of the individual masses M1, M2 which are
centered at 1:4 M
, distance values are restricted to yield
sensible signal-to-noise ratios, and values for the chirp
time are determined by assuming a certain distribution of

signals over frequency bins. Assuming a Newtonian evo-
lution of the orbital frequency of the binaries, the number
of signals per frequency bin has to obey a distribution

NðfÞ / 1=f11=3 near BBO frequencies [35]. However, in
our simulation, we draw initial frequencies from a NðfÞ /
1=f distribution which yields a few systems at higher
frequencies, but otherwise has no significant effect on
our analysis. The frequency distribution of the 100 NS/
NS signals is displayed in Fig. 5. The reason for taking
greater care in frequency priors is that the signal distribu-
tion in frequency space has a significant impact on corre-
lation values between parameter distributions of different
CBCs, especially since the sky resolution of the detector
network is comparatively poor for short observation times.
The systems with highest frequencies have chirp times tc
which are of the order of a few T, and therefore the signal
spectrum which is shown in Fig. 6 exhibits multiple qua-
simonochromatic peaks at low frequencies and a few chirp
’’plateaux’’ at higher frequencies.
Before being able to numerically evaluate the Fisher

matrix, one has to search the simulated data for the injected
binaries and estimate their parameter values. The signal
derivatives in Eq. (7) have to be evaluated at the estimated

parameter values ~̂�. Implementing uniform priors of pa-
rameter distributions at this point, an optimal analysis is

performed by searching the likelihood function Lð ~�Þ /
expð�1=2

P
ihT s

i �T m
i ð ~�ÞjT s

i �T m
i ð ~�ÞiÞ for its global

maximum [36,37]. Here the sum has to be taken over all
independent network channels (the BBO network furnishes
12 independent channels, 3 per detector). As was argued in
[12], no existing computer or network of computers could
accomplish that search for a realistic foreground formed by
105–106 CBCs. Even searching simulated BBO data for
100 signals, including the estimation of parameters, is a
difficult task which optimally requires a high-end cluster.
Our work is not intended to make any propositions for how
to perform that search, let alone to carry it out. So we have
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FIG. 5 (color online). Initial distribution of NS/NS signals over
frequency bins.
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to work around the problem. The idea is that knowing the
realization of the instrumental noise in a simulation run—
which we do, since we generate the noise T n and add it to
the signals T h—and assuming Gaussian distributions for
the signal parameters with small estimation errors (high
SNR), one can use the following equation to calculate the
estimation errors ��� (the difference between the maxi-

mum likelihood values �̂� and the true parameter values
�� of the signals) [12,38]:

��� ¼ ��	
X
i

hT n
i j@	T m

i i: (13)

Again, the sum has to be taken over all independent
channels T i of the detector network. The parameter errors
depend on the inverse of the network Fisher matrix
ð���Þ � ðPi�

i
��Þ�1 with �i�� � h@�T m

i j@�T m
i i. The pa-

rameter estimation errors are added to the true parameter
values of the signals injected into the simulation pipeline,
and the Fisher matrix can finally be evaluated. A brief
introduction into the geometric interpretation of the
Fisher matrix and how to make use of it can be found in
Sec. VI, which also explains Eq. (13). The reader may have
worked with a close relative of Eq. (13) in another context.
It is a generalization of the F -statistic equation to obtain
best fits of its 4 amplitude parameters [39]. The F statistic
is based on templates which are linearized with respect to
r, �,  , and �c. It is straightforward to show that if one
substitutes the complete data T s

i for the noise T n
i in

Eq. (13), then the equation directly yields the best fit of
any parameter which enters linearly into the definition of

the template. Our model does not have linear parameters,
but many alternative template models do.
Notice that by calculating the best fits, we neglect the

detection problem, i.e. we assume that all binaries in the
data are detected. We should also mention that our method
to calculate the best fits represents an optimal analysis
scheme. The optimal scheme is to search simultaneously
for all signals. A more realistic search which requires much
less computational power is the hierarchical search. There,
one detects signals one by one, starting with the highest
SNR and ’’digging’’ down the signal spectrum until the last
binary is identified and measured. Unresolved binaries act
as confusion noise. Identified binaries are subtracted from
the data so that, during the hierarchical search, parameters
of already detected binaries are constantly refined as the
confusion noise decreases. This scheme has been studied
by means of a self-consistent recursive evaluation in [12].
In contrast, the optimal search is not corrupted by confu-
sion noise. Correlations between different signals, which
lead to confusion noise in the hierarchical search, are
incorporated into the signal model of the optimal search.
The only possible shortcoming of an optimal search is that
it may fail to accurately estimate parameter values of the
model (including finding the right template-manifold di-
mension which depends on the number of detected
signals).

C. Multisignal templates and Fisher-matrix inversion

Given 100 signals which each depend on 9 parameters,
the total Fisher matrix �i�� for each channel i becomes a

900� 900 matrix. It turns out that inverting the Fisher
matrix is a highly nontrivial task. In our simulation, inverse
Fisher matrices are used in two different ways. First, we
need the network matrix evaluated at the true parameter
values to compute the estimation errors by means of
Eq. (13). Second, the inverse Fisher matrices of individual
channels evaluated at the estimated parameter values have
to be computed to define the subtraction-noise projector in
Eq. (42). To start with, we outline a generic inversion
scheme which, in the end, does not solve all problems.
However, this method still forms the foundation of the
complete solution. In the next part of this section, we
omit the channel index i, since the described method is
used in the same way to invert channel and network Fisher
matrices.
The inversion procedure starts with the computation of a

new matrix �0
�� ¼ ���=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
������

q
such that �0

�� ¼ 1 and

all off-diagonal components have an absolute value smaller
than 1. This step is necessary since in our simulation the
numerical range of Fisher-matrix components is
10�50–105. Consequently, ratios of different eigenvalues
of the Fisher matrix can assume large values. Such a matrix
is called ill conditioned and is known to be hard to invert
numerically, because tiny inaccuracies of a few matrix
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FIG. 6. Signal spectrum of the A channel of the first detector.
At low frequencies up to 0.7 Hz, the spectrum features distin-
guishable, mildly chirping signals. At high frequencies, many
signals overlap to form a plateau of chirps. The signals’ merger
times were chosen such that, within T ¼ 105 s, signal frequen-
cies never become greater than 2.6 Hz, which is half the
sampling frequency. Note that at frequencies above 0.5 Hz,
only every 20th frequency bin is plotted to reduce figure size.
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components may have a great effect on the eigenvalues or
the components of the inverted matrix. These inaccuracies
are unavoidable due to limited machine precision. It turns
out that �0

�� is still ill conditioned and cannot be inverted

using standard double-precision variables. At this point,
one has to implement a multiprecision package into the
code. We found that CLN (Class Library for Numbers) [40]
provides all required functions. Using a 50-digit precision,
the scaled matrix can be inverted following its LU decom-
position. Next, the inverted matrix is scaled back to form

the inverted Fisher matrix ��� ¼ �0��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
������

q
. We ex-

pect that the degree of ill conditioning decreases signifi-
cantly once much longer observation times can be
simulated. To explain this, we need to have a look at the
correlation matrix of a single binary. The correlation ma-
trix is derived from the covariance matrix ��� in the same
way as �0

�� was derived from ���. As can be seen in

Table I, correlation is especially strong between r$ �,
�c $ tc, and M $ 	. Strong correlations indicate that
by changing one parameter from its best-fit value, the
loss in accuracy of the waveform fit can be compensated
by changing the value of the other parameter of the corre-
lation pair. Therefore, at first sight, it seems to be obvious
that these pairs may be strongly correlated. The question is,
under which circumstances do these correlations become
weaker. The pairM $ 	 decorrelates once a considerable
amount of the chirp is observed and the signal-frequency
change accelerates. It is well known that the low-frequency
evolution of CBC waveforms is completely determined by
a single mass parameter, the binary’s chirp mass Mc. For
those waveforms, implementing a model which needs two
mass parameters must exhibit maximal correlations be-
tween them. A similar argument can be invoked for the
pair�c $ tc. Consequently, correlation matrices of signals
with higher frequencies have lower correlation coefficients
for these pairs. A decorrelation of r$ � (and weakening of
many other correlation coefficients) is observed as soon as
the orbital motion of the detectors leads to a measurable
amplitude and phase modulations of the signal. With maxi-
mal observation times of T ¼ 105 s, we are not able to

study the impact of the Doppler shift on parameter estima-
tions. However, as we are not particularly interested in the
quality of best fits, but accept any quality as long as a
projection of subtraction noise can be carried out success-
fully, we do not investigate parameter correlations further
in this paper. It turns out that the best fits are accurate
enough for this purpose.
As mentioned in the beginning of this paper, the inver-

sion algorithm as presented in the last paragraph does not
provide a complete solution of the inversion problem. The
reason is that a 900� 900 matrix determined by multi-
precision components needs too much memory, and even if
it can be kept in memory during runtime (e.g. by imple-
menting specifically designed inversion schemes [41]), the
inversion would take too much time. To solve this problem,
we have to understand a little more about Fisher matrices.
Consider a matrix which includes N copies of single CBC
templates. Each CBC is determined by P parameters. In
our case, the number of templates is N ¼ 100 and the
number of parameters is P ¼ 9. Let us introduce the
’’confused’’ Fisher matrix

�0 ¼

g1 0 . . . 0

0 . .
. ..

.

..

.
0

0 . . . 0 gN

0
BBBBB@

1
CCCCCA: (14)

It is a block matrix which contains the Fisher matrices gk��
with �, � 2 f1; . . . ; Pg of N CBCs on its diagonal. In other
words, it differs from the total Fisher matrix by neglecting
correlations between different signals. We call it confused,
because whenever this matrix is applied instead of the total
matrix, it is like that our knowledge of correlations be-
tween different signals is ignored. Correlation coefficients
become random variables in the analysis pipeline leading
to confusion noise. We claim that it is legitimate to use the
block matrix when calculating estimation errors by means
of Eq. (13). To support this claim, one has to investigate the
impact of the correlation coefficients on the eigenvalues of
Fisher matrices of individual CBCs. Fisher matrices (their
inverses to be precise) define a multivariate Gaussian

TABLE I. The network correlation matrix for a single NS/NS at 0.57 Hz. Some correlation
coefficients strongly depend on the observation time, which is T ¼ 105 s in this case.

~� r � �  � �c tc M 	

r 1 �0:287 �0:038 �0:049 �0:999 �0:066 �0:066 0.050 �0:048
� 1 0.162 0.118 0.287 �0:189 �0:189 �0:062 0.068

� 1 �0:055 0.038 0.043 0.043 0.045 �0:046
 1 0.049 0.014 0.014 �0:084 0.084

� 1 0.066 0.066 �0:050 0.048

�c 1 0.999 �0:017 �0:011
tc 1 �0:014 �0:014
M 1 �0:999
	 1
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distribution in parameter space. Their eigenvalues corre-
spond to the variances of the distribution along its principal
axes. The question is, what happens to the distribution
defined by a matrix gk�� when the correlations between

the signal k and other signals are incorporated into the
model. This problem can be treated with perturbation
theory, similar to perturbations of a Hamiltonian (here,
�0) which is weakly perturbed by interactions,

C ¼

0 g12 . . . g1N

g12;> . .
. ..

.

..

.
gN�1;N

g1N;> . . . gN�1;N;> 0

0
BBBBB@

1
CCCCCA (15)

where gij�� are the correlation coefficients between signals

i; j 2 f1; . . . ; Ng and ’’ >’’ denotes the transposition of a
matrix. The proper condition to justify the perturbation
approach is that correlations gij have to be small compared
to differences of eigenvalues of gi and gj, which is the case
for any combination of signals in our simulation. For this
particular form of perturbationC, theory tells us that the lth
eigenvalue �0kl of the Fisher matrix gk (l 2 f1; . . . ; Pg) is
perturbed at second order in C according to

�kl ¼ �0kl þ
XN
i�k

XP
j¼1

jhkl0jgkilj jij0ij2
�0kl � �0ij

þOðC4Þ (16)

where jkl0i are the P eigenvectors of the Fisher matrix gk

with eigenvalues �0kl. The perturbation of the eigenvectors

reads

jkli ¼ jkl0i þXN
i�k

XP
j¼1

hkl0jgkilj jij0i
�0kl � �0ij

� jij0i þOðC2Þ: (17)

Therefore, up to first order in C, one can say that the
multivariate Gaussian does not change the lengths of its
major axes. Instead, the distribution is rotated and the small
rotation angles are given by the fraction in Eq. (17). This
means that, when using the block matrix �0 instead of the
total Fisher matrix �, the coordinate basis j@	T m

i i in

Eq. (13) is misaligned with respect to the inverted Fisher
matrix ð�0Þ�1, and that the parameter errors ��� lie in
false ’’directions,’’ but give rise to a comparable accuracy
of the waveform fit up to order OðCÞ. That is the reason
why we may use the block matrix at this point. The
projection method described later does not depend on these
rotations of the parameter space. The benefit is that we can
easily invert the confused Fisher matrix by inverting Fisher
matrices of each signal. In principle, we could even correct
the misalignment by rotating the inverted matrix with
rotation angles hkl0jgkilj jij0i=ð�0kl � �0ijÞ provided that we

also calculate the eigenvalues and eigenvectors of all
Fisher matrices gk. As a corollary, we add that correlations
between different signals always lead to a loss of Fisher
information represented by the determinant of the Fisher

matrix,

det� ¼ det�0

�
1�XN

k

XN
i�k

XP
l;j¼1

jhkl0jgkilj jij0ij2
�0kl�

0
ij

�
þOðC4Þ:

(18)

The second term in round brackets is always positive and
well defined, because Fisher matrices are positive definite.
So, the decrease of the determinant is a second-order effect
in correlation coefficients which is further suppressed by
the Fisher information of particular template parameters
(i.e. the respective eigenvalue �0kl), and therefore, espe-

cially in the high SNR regime, one may neglect informa-
tion loss.
Unfortunately, we cannot make use of the same simpli-

fication when dealing with Fisher matrices which define
the projection operator. There, directions reflect the
amount of correlations between the template derivatives
and actual subtraction noise in the data. These very corre-
lations have to be exploited to facilitate removal of the
subtraction noise. Our strategy in this case is to reduce the
dimension of the template manifold by projecting a subset
of all signals. Namely, we project all signals which possess
power in the frequency range that contributes most of the
SNR to the final correlation measurements of the CGWB.
More details can be found in Sec. VIII A.

V. THE STOCHASTIC BACKGROUND

In this section we sketch out how to simulate the
CGWB. The stochastic data are generated directly in the
frequency domain starting with one channel and then tak-
ing correlations between channels into account to derive
data for other channels. The function which describes the
correlations is called the overlap-reduction function (ORF)

abðfÞ between channels a and b of the same detector or
different detectors. As we are going to learn in Sec. VB,
correlations between channels A, E, T of the same detector
are negligible. We introduce a new definition for the ORF
which does not make any attempt to factor out a channel’s
transfer function. This is the most convenient approach
based on a dynamical detector model where relative detec-
tor and satellite motion has to be taken into account.
Henceforth, since the T channel does not furnish signifi-
cant sensitivity with respect to a measurement of the
CGWB (see [42] and Sec. VB), it will be excluded from
the branch of the pipeline which processes the CGWB.

A. Generation of stochastic backgrounds in detector
networks

A zero-mean Gaussian background is completely char-
acterized by its second-order moments, i.e. the autocorre-
lations and cross correlations of TDI channels. In our case,
we just have to include channels of the two collocated
detectors in our investigations since correlations between
other detectors are negligible (correlations fall off rapidly
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if the distance between detectors becomes much larger
than the length of the GW). Therefore, based on correlation
properties of a simulated stochastic background signal T b

in detector channels a and b, notably

1

T
Refh ~T b

aðfÞ½ ~T b
bðfÞ�	ig ¼ SbðfÞ
abðfÞ; (19)

we have to find an algorithm to calculate the stochastic TDI
signals T bðfÞ produced by all channels of the two collo-
cated detectors. We define the ORF 
ab as a real-valued
function, which essentially establishes a convention for
how correlations between channels are evaluated [see
Eq. (46)]. The ORF governs the strength of cross correla-
tions (a � b) and autocorrelations (a ¼ b) in the fre-
quency domain. Here, the observation time T is used to
convert amplitude squares into spectral densities and the
(double-sided) background spectral density SbðfÞ of the
GWamplitude is related to the fractional energy density�
by

SbðfÞ ¼ 3H2
0

4�2
��ðfÞ
f3

: (20)

The background is assumed to be isotropic and to have a
white energy spectrum with the fiducial value �ðfÞ ¼
10�15. In our simulation, the value of the Hubble constant
is H0 ¼ 72 km=s=Mpc.

Now, the idea is to generate a stochastic signal with the
correct spectrum in one channel and then to proceed with
other channels by taking mutual correlations into account.
The equations used to generate the background are [6]

~T 1ðfÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SbðfÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11ðfÞ

q
ða1ðfÞ þ ib1ðfÞÞ;

~T 2ðfÞ ¼ ~T 1ðfÞ
12ðfÞ

11ðfÞ þ

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SbðfÞT

�

22ðfÞ � 
2

12ðfÞ

11ðfÞ

�s

� ða2ðfÞ þ ib2ðfÞÞ: (21)

For each frequency, random values a1ðfÞ, a2ðfÞ, b1ðfÞ, and
b2ðfÞ are drawn from a normal distribution N ð0; 1Þ. It is
not necessary to extend Eq. (21) to three or more channels,
because in the end, correlations are evaluated between
independent pairs A0 $ A1 and E0 $ E1 of the two collo-
cated detectors. In the next section, we show how to obtain
the overlap-reduction function 
abðfÞ in a TDI network.

B. Overlap-reduction function

As already mentioned, we need a procedure to calculate
the ORF between arbitrary detector channels at all frequen-
cies. In previous publications, the ORF has been defined by
[43]


pre
ab ðfÞ ¼

5

8�

Z
S2
d�̂e2�if�̂� ~x=cðFþ

a F
þ
b þ F�

a F
�
b Þ: (22)

Here � ~x denotes the separation vector between the detec-

tors, �̂ is a unit-length vector on the two-sphere S2, and

Fþ;�
a are the response functions of the detector a to the þ

or� polarization. This function is normalized such that its
value is unity for two coincident, aligned Michelson de-
tectors with perpendicular arms. The motivation for this
definition was to separate the optical properties of the
detectors from their geometric properties which determine
the response functions. The ORF 


pre
ab is used to calculate

correlations between projected GW amplitudes in two
detectors, and then optical transfer functions can be used
to derive the correlations of the detector outputs.
There are a few reasons why the ORF in Eq. (22) cannot

be used under general circumstances. First, it assumes that
the response functions are constant in time. Obviously, this
is not the case for space-borne detectors, where test masses
which are on individual orbits around the sun move relative
to each other. Also, the separation vector between different
detectors does not have to be constant. Beyond the long-
wavelength limit which demands that the length of a GW is
much larger than the dimension of detectors, it is in any
case difficult to agree upon a detector position. In other
words, light-traveling times between test masses are ne-
glected in 


pre
ab . Therefore, we propose a slightly different

definition of the ORF which is not normalized and which is
a direct representation of the correlation strength between
channels. We will not make any attempts to separate optics
and geometry, since they are tightly linked in TDI detec-
tors. The complete detector dynamics can be incorporated
into a frequency-domain correlation function in the follow-
ing way:
(1) Inject a time-domain delta signal �ðt; t0Þ ¼

fs � sincð�fsðt� t0ÞÞ (fs being the sampling fre-
quency) associated with a polarization and sky di-
rection into each detector of the network. Propagate
it from a common origin so that relative phase shifts
of the GW at different detectors are automatically
taken into account. Make sure that t0 is larger than
any light-traveling times between detectors; other-
wise the peak does not appear in all data streams.

(2) Record the outputs T wþ;�
a ð�;�; tÞ of all TDI

channels.
(3) Apply an FFT to the data and thereby obtain the

complex-valued transfer functions ~T wþ;�
a ð�;�; fÞ

of the TDI channels. In our case, the transfer func-
tion can be used to map GW amplitudes to TDI
Doppler outputs in the frequency domain.

(4) Multiply the transfer functions of different channels
and average the product over many sky directions
and polarizations to obtain the ORF.

In summary, the ORF for a TDI network is defined by


abðfÞ ¼
� X
I¼þ;�

Ref ~T wI
a ðf; �; ’Þ½ ~T wI

b ðf; �; ’Þ�	g
�
s:a:
:

(23)
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In our case the phase factor e2�if�̂� ~x=c arising from the
time delay between the detectors is already included in the
Doppler signal outputs of the TDI. We found that averag-
ing over 200 random sky directions provides very accurate
results. Values for the right ascension � are drawn from a
uniform distribution Uð0; 2�Þ, whereas values for the
declination � are obtained by calculating the arcsin of
values drawn from a uniform distributionUð�1; 1Þ, which
entails an isotropic distribution of corresponding sky
directions.

The set of curves displayed in Fig. 7 shows the ORFs
between channels A, E, and T of the two collocated de-
tectors in comparison to the channels’ sky-averaged
squared transfer functions (STF).


aa ¼ jTaðfÞj2 ¼
� X
I¼þ;�

j ~T wI
a ðf; �; ’Þj2

�
s:a:
: (24)

The response of the T channel lies well below the response
of channels A, E at frequencies up to 2 Hz. More specifi-
cally, within the correlation band 0:1–0:4 Hz (see Sec. VII)
of the BBO, the T channel response (i.e. expressed as STFs
or ORF) is smaller by a factor �2� 105ð0:4 Hz=fÞ6 than
the response of the other two channels. This again is the
reason why our correlation analysis will not include the T
channel.

In this paper, the ORFs are defined as correlation func-
tions between TDI Doppler channels which are—at low
frequencies—proportional to the square of the second (e.g.
A, E) or even higher derivative (e.g. T) of the GW ampli-

tude. To find a better measure of stochastic GW back-
ground correlations (as projection/combination onto two
different TDI channels), one has to compare the ORF with
the channel responses to GWs. In Fig. 8, the ORF between
the two A channels of the collocated detectors is shown
normalized by the geometrical mean of the two respective
STFs:


N
A0A1

� 
A0A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0A0


A1A1

p : (25)

At frequencies up to 0.5 Hz, the ORF and the STFs show
identical response. This region is called the long-
wavelength regimewhere the length of GWs is much larger
than the dimension of the detectors. Beyond the long-
wavelength limit, the ORF becomes weaker at higher
frequencies compared to the STFs. As we expound in
Sec. VII, correlation measurements with BBO detectors
will be dominated by contributions of frequencies in the
long-wavelength regime.
The graph in Fig. 9 allows one to draw another interest-

ing and important conclusion. It shows the normalized
ORF between channels A, E of the same detector.
Obviously, cross correlating A channels of two different
(collocated) detectors provides much more sensitivity than
cross correlating independent channels of the same detec-
tor. In fact, one can show that if the detectors were equi-
lateral triangles, then the ORF between channels A and E
of the same detector would vanish [44,45]. Sky averages of
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FIG. 7. The figure shows the overlap-reduction functions 

between channels A, E, T of the collocated detectors compared
with the corresponding squared transfer functions. The sky
average was taken over 400 random sky directions. The squared
transfer functions of each channel type are identical in both
detectors. At frequencies below 0.1 Hz, all displayed curves
related to channels A, E are proportional to f4, and the T
channel curves are proportional to f10. The response of the T
channel to GWs is very poor below 2 Hz.
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FIG. 8. The figure displays the normalized ORF between
channels A0 $ A1 of the two collocated detectors. The normal-
ized ORF has a maximum at f ¼ 0 Hz and then oscillates
around zero with constantly decreasing amplitude towards
higher frequencies. The ORF as defined in Eq. (23) governs
the correlation of TDI outputs. In contrast, the normalized ORF
is a better representation of the correlation of a stochastic GW
signal as input to the detectors. However, one has to keep in mind
that all frequency-domain functions are obtained via FFT from a
dynamical model, and therefore it is not possible in a simple way
to deduce GW correlations from measured TDI outputs.
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these two channels are orthogonal to each other in terms of
their response to an isotropic stochastic GW background,
but they do permit nonvanishing correlations arising from
higher moments of anisotropic backgrounds (e.g. the hexa-
decapole moment). In our simulation, asymmetries in the
triangular detector shape are responsible for a residual sky-
averaged correlation strength. The detector asymmetry is
of the order of the orbital eccentricity of the satellites. To
make this effect stronger than artificial anisotropies re-
sulting from a sky average over a finite number of sky
directions, we chose a model detector with increased ec-
centricity value (e ¼ 0:04) to generate Fig. 9. Since the
BBO has collocated detectors, the residual correlation will
not be exploited, because in that case one can form more
efficient correlation schemes based on channels of differ-
ent detectors. Also, when generating the CGWB data, we
may neglect correlations between channels A and E which
justifies the two-channel approach in Eq. (21) to the BBO
network.

In terms of the calculated ORFs 
A0A1
ðfÞ, 
E0E1

ðfÞ and
STFs 
A0A0

ðfÞ, 
A1A1
ðfÞ, 
E0E0

ðfÞ, and 
E1E1
ðfÞ, we are

able to calculate the stochastic background Ab
0;1ðfÞ and

Eb
0;1ðfÞ by means of Eq. (21). In Fig. 10, its spectral density

in channel A0 is shown together with the instrumental-
noise spectral density. One can directly infer from the
graph that the SNR is about 0.1. A correlation measure-
ment has to raise this value to at least 5. By simple argu-
ments, we can determine the conditions under which the
CGWB becomes detectable by means of correlation mea-
surements. As a first approximation one can say that the

correlation measurement effectively shifts the CGWB

curve in Fig. 10 upwards by a factor
ffiffiffiffi
T

p
. Adding the

SNRs obtained from two independent correlation pairs,
we find that a CGWB with energy density � ¼ 10�15

can be detected if correlation times exceed 104 s.
Section VII provides more details of the correlation mea-
surement, and we are going to show in Sec. VIII that our
first guess gives the right order of magnitude for the
minimal correlation time.

VI. TEMPLATE-BASED PROJECTIONS OF
SUBTRACTION NOISE

In this section we introduce a differential geometric
point of view based, in principle, on the work of S.-I.
Amari [32] but adapted to the needs of data analysis of
gravitational-wave signals as is shown in [46]. The main
focus is on presenting methods to deal with the inevitably
occurring errors when subtracting the best-fit waveforms
from the data stream. The residual errors have comparable
spectral densities to the instrumental noise, because,
roughly speaking, the subtraction of the best fit reduces
the signal spectral density by a factor of 1=SNR2. This is
true for broadband and narrow-band signals. Therefore,
residual errors are too large to allow a measurement of
an inflation generated background of gravitational waves.
Fortunately, though arising from the presence of instru-
mental noise, the subtraction errors are not completely
random but mostly confined to the tangent space of the
template manifold at the point of the best fit. This restric-
tion can be used to define a projection operator on the
tangent space that cancels out all parts tangential to the
manifold and hence most parts of the residual error [12].
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the residual correlation could lead to an increased sensitivity of a
single detector to isotropic stochastic backgrounds. Here, the
data are based on a model detector with orbital eccentricity e ¼
0:04 to make the effect of a residual response due to asymmetries
stronger than artificial anisotropies resulting from a sky average
over a finite number of sky directions.
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In Sec. VIA, we give a short introduction to matched
filtering and briefly point out the connection to differential
geometry. Section VIB shows the derivation of the first-
order approximation of the maximum likelihood estimator
in the case of a high signal-to-noise ratio, which provides
important formulas and justifies the use of differential
geometry. In the last section, we present the actual method
of projection.

A. Matched filtering and differential geometry

Most of the NS/NS signals observed by the BBO will
have amplitudes roughly 2 orders of magnitude smaller
than the amplitude of the instrumental noise. Therefore
some technique of filtering must be used to extract the
information from the noisy data. Post-Newtonian expan-
sions up to order 3.5 of the equations of motions of stellar
objects, such as compact-binary systems, yield very accu-
rate waveforms throughout the BBO detection band, which
can be employed to search for CBCs in the data streams.
The fact that the shape of the signals is known to high
accuracy is the reason why one can use matched filtering,
which is also known as optimal filtering since it provides
the highest SNR of all linear filters [47].

The detector outputs can, in two ways, be regarded as a
vector. The first way which will be introduced in this
section helps us find an expression for the SNR. In this
case the detector output is a vector whose components are
the outputs of the different detectors in different TDI
channels. For LISA-type detectors the output vector could

be ~T
sðtÞ ¼ ðT s

AðtÞ;T s
EðtÞ;T s

TðtÞÞ, which is the one-
detector case, and for the BBO the vector has 12 compo-
nents, respectively. In the case of a successful detection of
a GW, the detector output is the sum of the signal T h

i ðtÞ
and additive, stationary, Gaussian noise T n

i ðtÞ, which are
vectors in the same manner as described above. Optimal
filtering of the data stream nowmeans folding the output of

the detector with a filter function ~kðtÞ, and normalizing it
with the correlation of the instrumental noise. Henceforth,
for ease of notation, we will drop the tilde ‘‘ ~’’ over
frequency-domain functions and distinguish between
time- and frequency-domain functions by means of their
arguments. Then, the multichannel SNR can be defined in
terms of scalar products between channel vectors:

SNR ¼
R
df ~kðfÞ � ~T sðfÞ

rms
R
df ~kðfÞ � ~T nðfÞ

: (26)

The optimal filter function ~kðfÞ can be cast into the form

~kðfÞ ¼ ½ ~T mð ~�; fÞ�yðSnÞ�1ðfÞ (27)

where ~T
mð ~�; fÞ is the Fourier transform of the GW signal

parametrized by a set of parameters denoted by ~�, and the
dagger is the conjugate transpose. SnðfÞ is the Fourier
transform of the noise covariance matrix and its diagonal

elements are the (double-sided) power spectral densities of
the noise in the corresponding TDI channel. Hence it
follows that

SNR ð ~�Þ ¼
R
df½ ~T mð ~�; fÞ�y � ðSnÞ�1ðfÞ � ~T sðfÞ

rms
R
df½ ~T mð ~�; fÞ�y � ðSnÞ�1ðfÞ � ~T nðfÞ

;

(28)

where ~T
sðfÞ is the Fourier transform of the detector out-

put, and ~T
nðfÞ the noise in Fourier space.

In the following we assume, as in the previous sections,
that the noise of different detectors and channels is uncor-
related, and that we use the optimal TDI configuration. The
optimal channels, typically called A, E, and T [48], are all
statistically independent and, hence, have uncorrelated
noise contributions. In this case the correlation matrix of
the noise is diagonal, and with a new optimal filter function

k0ið ~�; fÞ ¼ ½T m
i ð ~�; fÞ�	=Sni ðfÞ, the SNR can be rewritten in

the form

SNR ð ~�Þ ¼
P
i

R
dfk0ið ~�; fÞT s

iðfÞ
rms

P
i

R
dfk0ið ~�; fÞT n

i ðfÞ
: (29)

Here Sni ðfÞ is the noise spectral density in the ith optimal
TDI channel. The index i runs over all detectors and
channels.
However, at this point it is advantageous to regard the

data of each channel T s
i as vectors themselves. Since a

detector will sample data at a fixed frequency fs ( � 10 Hz
for the BBO), each data stream will comprise N ¼ fs � T
measuring points, where T is the total observation time
(typically 108 s, which is the BBO’s lifetime). Each
measuring point at time tk ¼ k=fs can be seen as a com-
ponent of an N dimensional vector T s

i ¼ðT s
iðt1Þ;T s

iðt2Þ; . . . ;T s
iðTÞÞ in the vector space V i of all

detector outputs of channel i. In the first place, it is this
definition of a data vector which underlies the geometrical
interpretation presented in the following paragraphs, not
necessarily the gathering of detector outputs into a channel
vector. The outputs of all channels form a
12N-dimensional vector space V which formally can be
thought of as a direct sum of the V i. The instrumental
noise T n

i and the gravitational-wave signal T
h
i are vectors

in the same manner. Because of the fact that each binary
signal is described by a set of 9 parameters (neglecting spin
and eccentricity), the complete signal formed by about
104–105 NS/NS with redshifts z < 8 will be parametrized
by NP ¼ 105–106 parameters and hence will lie on a sub-
manifold M in V with dimension NP.
In case of stationary, Gaussian, instrumental noise, the

matched filter induces an inner product on V that is
defined by
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h ~gj ~hi � X
i

Z 1

0
df
g	i ðfÞhiðfÞ þ giðfÞh	i ðfÞ

Sni ðfÞ
: (30)

It is straightforward to show that the ensemble average of

h ~gj ~T nih ~T nj ~hi is equal to h ~gj ~hi for an ensemble of realiza-
tions of instrumental noise, which can be proved by using

T nðfÞT nðf0Þ ¼ �ðf� f0ÞSnðfÞ (see also [12,46]). In
terms of this inner product, the optimal signal-to-noise
ratio, with the help of the above property, can easily be
written as

SNR ð ~�Þ ¼ h ~T mð ~�Þj ~T mð ~�Þi1=2: (31)

The inner product defined in Eq. (30) has the same features
as the scalar product in Euclidean vector spaces; i.e. it is
positive definite, and can therefore be used as a measure of
distance and angles within the vector space. The length in
Euclidean space corresponds to the total SNR Eq. (31)
collected by all channels. Angles quantify the correlation
of two outputs, e.g. two outputs are orthogonal if their
correlation vanishes. Thus the definition of an inner prod-
uct enables one to establish a geometrical description of
the problem of filtering.

In the high SNR limit, the best-fit parameters are found
by maximizing the likelihood function, see Eq. (36), which

is equivalent to minimizing the inner product h ~T s �
~T
mð ~�Þj ~T s � ~T

mð ~�Þi, which can be considered as the
distance of the detector output to the template manifold.
Hence the best-fit template waveform is the one which has
the least separation from the detector output. In other
words, geometrically, the best fit corresponds to the pro-

jection of the output ~T
s
onto the submanifoldM; for more

details see Secs. VI B and VIC.
To finish this section it should be said that generally the

template manifold is not flat but rather has a curvature
varying with the values of the parameters of the true signal.
Like in general relativity, this can be addressed by intro-
ducing a metric on the manifold. One possible choice for
the metric is the covariance matrix of the parameter errors,
which also is the inverse of the Fisher-information matrix
(see Sec. II), defined by

��� ¼
�
@ ~T

mð ~�Þ
@��

��������@
~T
mð ~�Þ

@��

�
: (32)

This statement will not be proven in this paper but the
interested reader shall be referred to [46].

B. Maximum likelihood estimator in the high signal-to-
noise ratio limit

In this section we briefly derive the deviation of the best-

fit parameters ~̂� from the true ones ~�0 in the limit of high
SNR, assuming that the signal model is accurate. The
outcome will give the desired results in terms of the

geometrical quantities introduced in the previous section.
To obtain the results, we use the Bayesian estimator and
write the exponent of the posterior distribution as a Taylor
series around the best-fit parameters. For more information
and different ways of deriving the parameter errors, see
[38].
First consider the Bayesian estimator of the parameter

error which we name ~� ¼ ~�� ~�0 and which is defined by

h��i ¼
Z

dNP���pð ~�j ~T sÞ: (33)

The function pð ~�j ~T sÞ is the posterior distribution which
determines the probability of a model determined by
parameter-value deviations ~� from the true signal, given

a measurement ~T
s
. The connection between the posterior

and the likelihood function is the following:

pð ~�j ~T sÞ ¼ N p0ð ~�Þpð ~T sj ~�Þ; (34)

whereN is a normalization constant, p0ð ~�Þ comprises the

prior knowledge of parameter values, and pð ~T sj ~�Þ is the
likelihood of data ~T

s
given a model ~�. At the moment,

only flat a priori probabilities are put into our simulation,
which means p0ð ~�Þ � 1, and the estimator can be written
as

h��i ¼ N
Z

dNP���pð ~T sj ~�Þ; (35)

depending only on the likelihood function. In this case the
normalization constant is the inverse of the integral over
the likelihood over the whole parameter space.
As shown in [36], the likelihood can be expressed with

the help of Eq. (30) as

pð ~T sj ~�Þ / expð�1
2h ~T

s � ~T
mð ~�Þj ~T s � ~T

mð ~�ÞiÞ: (36)

Because of the fact that the data are the sum of instrumental
noise and a signal, one can rewrite the argument within the

brackets of Eq. (36) as ~T
n þ � ~T

m
, where � ~T

m ¼
~T
mð ~�0Þ � ~T

mð ~�Þ. Here, ~T mð ~�0Þ represents the true sig-

nal ~T
h
in terms of the accurate model. Now, the difference

in the waveforms can be expanded in a Taylor series as

� � ~T
m ¼ @�

~T
mð ~�0Þ�� þ 1

2@�@�
~T
mð ~�0Þ���� þOð�3Þ:

(37)

Inserting Eq. (37) into Eq. (36) and introducing normalized

waveforms ~N m � ~T
m
=A and ~N m

� � @�
~T
m
=Awith A ¼

h ~T mð ~�0Þj ~T mð ~�0Þi1=2, which helps to highlight the depen-
dence of the equations on the SNR, yields the following
approximation of the likelihood:
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pð ~T sj ~�Þ / exp

�
� 1

2

�
h ~T nj ~T ni � 2Ah ~T nj ~N m

� ð ~�0Þi��

þ A2

�
h ~N m

� j ~N m
� i � 1

A
h ~T nj ~N m

��i
�

� ���� þOð�3Þ
��
: (38)

The expansion can be cut off at order �3 because higher
order corrections in the exponent would correspond to
higher order corrections to the estimator and we are only
interested in the first-order terms. One sees that for high
SNR the likelihood is approximated by a multivariate
normal distribution. The first summand is just a constant
and will be absorbed into the normalization constant N ,
the second term shifts away the maximum of the distribu-
tion from the true parameters due to instrumental noise,
whereas the third term contains, in round brackets, the
inverse of the covariance matrix of the errors and mainly
determines the width of the distribution. The correlation of
the noise with the second derivatives of the signal gives a
first correction to the Fisher matrix as the inverse of the
covariance, but as will be clear from Eq. (39), one can
neglect this correction for high SNR since it scales with
1=A compared to the Fisher matrix.

With all that at hand, one can compute the Bayesian
estimator by solving the integral over the likelihood, which
is a lengthy but straightforward calculation. Here we
present just the result,

h��i ¼ 1

A

�
h ~N m

� j ~N m
� i � 1

A
h ~T nj ~N m

��i
��1h ~T nj ~N m

�i

� ���h ~T nj ~T m

�i: (39)

This equation reveals that, as promised, the deviations
from the true parameters are completely determined by
the template-manifold metric and the length of the projec-
tion of the noise vector onto the tangent space ofM at the
point of the best fit. Also, the parameter errors decrease
with 1=SNR. We stress again that this result is obtained as a
first-order SNR approximation, which is supposed to be
sufficient for the BBO as the expected SNRs are high
enough to justify this approach. Anyway, higher order
expansions and the influence of prior information on the
estimator can be looked up in [37,38].

C. The projection operator

In the last two sections, we outlined a strong connection
between differential geometry and methods used in data
analysis of gravitational waves from compact-binary ob-
jects such as neutron-star neutron-star binaries.
Investigations of matched filtering of data led to a defini-
tion of a scalar product on the vector space V of detector
outputs, and modeling the waveforms by post-Newtonian
templates smoothly depending on a set of parameters
describing the physical properties of the binaries, the de-

tector as well as their relative motion, confines the possible
outputs generated by a gravitational wave to a submanifold
M withinV . The errors occurring at the estimation of the
signal parameters are then completely given in terms of
geometrical quantities such as projections onto and within
the tangent space of M at the best-fit parameters.
In this section, we further exploit the geometrical re-

strictions on the waveforms and present a successful im-
plementation of a projection method to cancel the

subtraction noise � ~T
m
occurring by subtracting the best

fit from the data stream. Equation (39) showed that the
expected parameter errors are proportional to 1=SNR,
which can be used to see how the amplitude of the sub-
traction noise depends on the SNR. The following equation
provides a Taylor expansion of the template waveform

around the true signal ~T
mð ~�0Þ evaluated at the expected

error:

~T
mðh ~�iÞ ¼ ~T

mð ~�0Þ þ ~T
m

� ð ~�0Þh��i þ ~T
m

��ð ~�0Þh��ih��i
þOðSNR�2Þ: (40)

Making use of the fact that ~T
mð ~�0Þ and all derivatives of

~T
m
depend linearly on the SNR, one finds that the first

term in this expansion is proportional to SNR; the second,
which is the leading term of the subtraction noise, is
independent of the SNR, which can be seen, too, by
computing the mean norm of the subtraction noise to
leading order in the SNR,

h� ~T mð ~�Þj� ~T mð ~�Þi ¼ h ~T m

� ð ~�0Þj ~T m

� ð ~�0Þi���� ¼ NP:

(41)

Again, NP is the number of parameters describing the total
signal or in other words, the dimension of the template
manifold. The mean spectral density of the subtraction
noise in each channel is most suitably expressed in terms
of the ratio Sð�T m

i ; fÞ=SnðfÞ of spectral densities of the
subtraction and the instrumental noise. In the simplest
possible case, we could consider a signal with a constant
ratio Sð�T m

i ; fÞ=SnðfÞ for each frequency within a given
signal bandwidth and negligible ratios outside the band-
width. The integral which yields the scalar product in
Eq. (41) is converted into a sum of these ratios over all
frequency bins at f ¼ 1=T; . . . ; fs=2 within the signal
bandwidth. For the BBO which furnishes data from 8
channels that are sensitive to GWs and which permits a
total observation time of T ¼ 108 s, and assuming a total
signal of 105 CBC sðNP � 106Þ is contained within a band-
width of 1 Hz, this would lead to Sð�T m

i ; fÞ=SnðfÞ ¼
0:5NP=ð8 � 1 Hz � TÞ � 10�3. A cosmic gravitational-
wave background with energy density � * 10�17 would
have a spectral density which is more than 1 order of
magnitude less than the weakest possible subtraction-noise
level. This level is based on an optimal search of the CBCs
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which cannot be performed even if a steady development
of computational facilities over two or three decades in
accordance with Moore’s law is assumed. So the subtrac-
tion noise, if remaining within the data, would prohibit the
detection of an inflation-generated background with high
certainty.

Equation (40) also shows that the third term is propor-
tional to 1=SNR. So in deleting the zeroth- and first-order
terms from the data stream, one reduces the signal strength
by a factor of 1=SNR2. The first-order term is a linear
combination of first derivatives of the signal or, in other
words, a vector lying in the tangent space ofM at the true
parameter values. Since the expected parameter errors
scale with 1=SNR, it follows that the two tangent spaces
at the best fit and the true signal can be regarded as nearly
identical. So from now on, all derivatives are taken at the
best-fit parameters which are obtained by searching the
data for signals and estimating model parameters. The
leading term of the subtraction noise is taken as a vector
in the tangent space at the best fit.

Figure 11 schematically shows the template manifold
Mi of signals contained in the data stream of channel i, the

true signal T h
i , the best fit T m

i ð ~̂�Þ, and the parallel and
perpendicular parts of the instrumental noise. In a specific
TDI channel, the projection of instrumental noise generally
does not coincide with the difference between the best-fit
template and the true signal, as it is the case in the complete
vector space V . That is due to the fact that by using
information from all channels to find the best fit, the
estimate will be somewhat better than if one had deter-

mined the parameters just with one data stream. It is
important to note that, because the best fit subtracted
from the data in each channel is determined by the same
best-fit parameters, the subtraction noise will be correlated
in all channels and will not be deleted by a cross-
correlation measurement between channels; see Sec. VII.
But the good news is that most of the correlated error is
restricted to the tangent space of the manifolds Mi at the
best fit, and projection out tangential directions of the
residual data will delete the correlations. The tangential
part of the CGWB which gets projected out is negligible
[12].
To perform this task, one can define a projection oper-

ating on a specific channel i, which removes the tangential
parts:

P i ¼ 1� ���i j@�T m
i ih@�T m

i j (42)

where ���i denotes the inverse of the Fisher matrix �i�� ¼
h@�T m

i ð ~̂�Þj@�T m
i ð ~̂�Þi. The projected data stream can be

calculated, e.g. in the frequency domain, according to

P iT res
i ðfÞ ¼ T res

i ðfÞ � ���i h@�T m
i jT res

i i@�T m
i ðfÞ:

(43)

Here,T res
i denotes the residual data which remains after

subtraction of the best fits. If the initial data stream con-
tains a GW foreground T h

i generated by CBCs, a CGWB
T b

i , and instrumental noise T n
i , then after subtracting the

best fit and projecting the data, what is left is

P ðT res
i Þ ¼ T n

i? þT b
i? þOðT h

i =SNR
2Þ; (44)

the perpendicular parts of the instrumental noise and the
cosmic GW background. The loss of power in T b

i is
negligible as already mentioned, and the remnants of the
instrumental noise will be removed by cross correlating the
data of the two collocated detectors in a Star-of-David
configuration.
We want to point out another interesting property of the

subtraction-noise projection. For arbitrary template mani-
folds, the best fit has to lie close to the true signal. If that is
not the case, then tangential planes at the best fit and the
true signal do not coincide. This could entail a poor per-
formance of the projection operator Eq. (42) in removing
residual power of the signal spectrum. Now, imagine a flat
template manifold. In that case, the best fit does not have to
be accurate, since tangential planes coincide at all points
on the manifold. In fact, since the vanishing signal is
always an element of the model (e.g. coming from a source
which is far away), the projection method works without
having to estimate the signals at all. The only information
which is needed is the number of signals. This information
determines the right dimension of the manifold. Although
a completely flat metric does not represent most
analysis problems, we can already see in (signal !
subtraction noise ! projected signal) spectra shown in

λα λβ

T s
i (t1)

T s
i (tN)

T n
i

T n
i

T n
i ⊥

T s
i

T m
i (ˆλ)

FIG. 11 (color online). The figure represents the template
manifold Mi of a specific TDI channel i. Since the best-fit

parameters ~̂� are estimated with information from all channels,
the projection of data T s

i in channel i does not yield the best-fit

waveform T m
i ð ~̂�Þ. It is assumed that the true signal lies on the

template manifold at the marked point. The noise vector T n
i ,

which points from the true signal to the measured data, is split
into its components parallel and perpendicular to the manifold at
the true signal. The (tiny) vector of the CGWB is not shown.
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Sec. VIII A that the power of the projected spectrum is very
low at all frequencies independent of the power of the
subtraction noise. Obviously in our simulation, some pa-
rameters of some signals were poorly estimated, but their
subtraction noise is removed with high accuracy. This can
just be explained with a sort of ‘‘partial’’ flatness of the
template manifold. Certainly, this feature needs to be in-
vestigated in the future.

VII. CROSS CORRELATION OF TDI CHANNELS

In Sec. VB we have seen that the CGWB is completely
covered by the detector noise. One needs to reduce the
difference between noise and background spectral den-
sities by a factor of 102 in the case of a CGWB with � ¼
10�15. In this section we will describe how that reduction
can be done by cross correlating the TDI streams of the
collocated detectors. Increasing the SNR of the back-
ground is achieved by increasing the observation time until
the correlation output is dominated by contributions from
the CGWB. One can study the correlation measurement for
small observation times T and then extrapolate the output
for higher T by making use of a simple scaling law of the
SNR with observation time. We will see that performing a
correlation measurement with data gathered over 3 years,
which is the BBO’s proposed mission lifetime, it is pos-
sible to detect a CGWB with energy densities below � ¼
10�16. These results are based on the assumption that the
subtraction noise from the CBC foreground can be re-
moved with sufficient accuracy. Our results, which are
presented in Sec. VIII, show that this is indeed the case
(at least for 100 NS/NS).

We consider the TDI channel output T s
iðfÞ as a sum of

the CGWB and of the detector noise,

T s
iðfÞ ¼ T b

i ðfÞ þT n
i ðfÞ; (45)

where the noise is assumed to be Gaussian, stationary, and
uncorrelated between different channels, and the fore-
ground signal is subtracted below the CGWB. Unlike the
instrumental noise, the CGWB will be correlated in differ-
ent channels to some degree, which can be predicted by the
ORF. In the frequency domain, the expected outcome of a
correlation Cij between channels i, j is an integral over all

frequencies of the data-stream product

Cij ¼
Z

dfRefT s
iðfÞ½T s

jðfÞ�	gQijðfÞ

¼ X
f

RefT s
iðfÞ½T s

jðfÞ�	g
T

QijðfÞ (46)

where a channel-dependent filter function Qij is used to

suppress contributions from frequencies with strong instru-
mental noise or weak (expected) CGWB. According to
Eq. (19), the expectation value hCiji of the correlation

measurement for sufficiently long observation times is

hCiji ¼
X
f


ijðfÞSbðfÞQijðfÞ (47)

where Sb is the GW strain spectral density. The variance of
correlation noise, which is dominated by contributions
from the instrumental noise, is given by

hð�CijÞ2i ¼
X
f

Sni ðfÞSnj ðfÞQ2
ijðfÞ: (48)

Now, we can understand how, in general, the correlation

signal-to-noise ratio SNRij ¼ hCiji=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�CijÞ2i

q
scales

with observation time T. The number of frequencies (fre-
quency bins) summed over in Eq. (47) increases propor-
tional to T, whereas the standard deviation, which is the

square root of Eq. (48), scales with
ffiffiffiffi
T

p
. Therefore, increas-

ing the observation time, one eventually raises contribu-
tions from the CGWB above the expected deviations. If the
range of frequencies �f contained in the sums is small
enough, then the functions within the summands can be
taken as constants and the two equations, evaluated at a
fiducial frequency f0 which lies within the bandwidth,
become

hCiji � ðT ��fÞ
ijðf0ÞSbðf0ÞQijðf0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�CijÞ2i

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � �fp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sni ðf0ÞSnj ðf0Þ

q
Qijðf0Þ: (49)

So, in this small-bandwidth approximation, the SNR is
independent of the (constant) filter function Qij,

SNR ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � �fp 
ijðf0ÞSbðf0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sni ðf0ÞSnj ðf0Þ
q : (50)

If the small-bandwidth, flat spectrum approximation does
not hold, then there exists an optimal filter which is based
on models for the noise spectral densities in the two
channels, the ORF and the spectral density of the stochastic
background. Its purpose is to suppress contributions from
frequencies which would contribute strongly to the instru-
mental noise in Cij, but weakly to the GW correlations.

Accordingly, the optimal filter is given by [14]

QijðfÞ ¼

ijðfÞSbðfÞ
Sni ðfÞSnj ðfÞ

: (51)

The filter function between channels A0 and A1 based on a
flat � ¼ 10�15 model for the CGWB is shown in Fig. 12.
In addition, one should keep in mind that the WD/WD
barrier enforces a lower boundary on correlation frequen-
cies. The filter maximum lies at 0.2 Hz which is halfway

HARMS, MAHRDT, OTTO, AND PRIESS PHYSICAL REVIEW D 77, 123010 (2008)

123010-18



inside the WD/WD spectrum. In fact, most models pre-
sented in [17] predict a cosmological distribution of WD/
WD which gives rise to an energy density of ��
10�14–10�13 at 0.2 Hz, which would make detection of a
cosmological background impossible at these frequencies
unless the WD/WD signals were resolvable. Assuming that
the WD/WD foreground at frequencies 0.2 Hz cannot be
analyzed, one has to find out if the maximum of the filter
does determine the most efficient correlation frequencies.
This is not the case, but as we will see, efficient frequencies
are not much greater than suggested by the filter.
Optimally, one had to design the instrument such that the
most efficient frequencies lie above the WD/WD barrier.
To find a definite answer to this problem, one has to
calculate the contribution from certain frequencies to the
SNR expected from a specific model of the CGWB. The
SNR for the optimal filter assumes the form

SNR ij ¼
�X
f


2
ijðfÞ½SbðfÞ�2
Sni ðfÞSnj ðfÞ

�
1=2
: (52)

For a network of detectors, one would sum over all
independent correlation pairs ðijÞ to obtain the total net-
work SNR

SNR tot ¼
�X
ðijÞ

SNR2
ij

�
1=2 ¼

�X
f

SNR2
totðfÞ

�
1=2

¼
�X
f

X
ðijÞ


2
ijðfÞ½SbðfÞ�2
Sni ðfÞSnj ðfÞ

�
1=2
: (53)

Figure 13 shows SNR2
totðfÞ including the two correlation

pairs A0 $ A1, E0 $ E1 of the BBO. The maximum of this
curve is shifted towards higher frequencies with respect to

the filter maximum, because the additional 
ij brings in a

factor f4 at frequencies below 1 Hz and the additional
background spectrum a factor f�3. So, in total, the filter
spectrum is multiplied by a factor f. Most of the SNR is
collected at frequencies near 0.23 Hz which may still be a
bit too low. Certainly, this issue needs to be investigated in
the future.

VII. RESULTS

Our results are presented in two ways. In the first part of
this section, we show subtraction noise and projected
signal spectra and compare them in total power. In the
second part, the outcome of correlation measurements
between the two collocated detectors is summarized in
Table II, and we compare contributions from instrumental
noise, CGWB, and CBCs. Also, the decrease of CBC
correlations by subtraction of best fits and noise projection
is investigated. Sensitivity of the BBO to stochastic back-
grounds is derived and extrapolated to an observation time
of 3 years.

A. Projection

In this section, we focus on two salient features of the
projection results, which are predicted by theory. First, the
projected spectra are compared with subtraction-noise
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FIG. 13. The curve shows SNR2
totðfÞ as defined in Eq. (53). It

includes contributions from the two statistically independent
pairs A0 $ A1 and E0 $ E1. This curve does not depend on
the observation time T. The total SNR2 can be calculated by
adding values of SNR2

totðfÞ for each frequency bin fi ¼ i=T
within a chosen correlation bandwidth (a lower boundary for this
band is set by the WD/WD barrier; the upper boundary is
ultimately set by half of the sampling frequency fs). For
example, neglecting the WD/WD barrier and approximating
the area under the curve by a rectangle ð0:3 HzÞ � ð0:003Þ, a
SNR2 ¼ 25 would be obtained after T ¼ 25=ð0:3� 0:003Þs �
3� 104 s.
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spectra to find that the residual signal power is sufficiently
small to enable CGWB detection within a certain fre-
quency range. Second, we show that the projection oper-
ates selectively on subtraction noise and leaves stochastic
signals like the instrumental noise and the CGWB more or
less unaffected.

In Fig. 14, the CBC spectrum together with the subtrac-
tion noise and its projection are displayed from 0.1 Hz to
1 Hz. With a few exceptions, the subtraction noise is
weaker than the signal spectrum. The projection is applied
to 17 out of 100 signals to remove the subtraction noise
between 0.2 Hz and 0.5 Hz. The peaks in the subtraction-
noise spectrum are removed. The residual spectrum lies
below a CGWB with � ¼ 10�15 (see Fig. 10).
Remarkably, the projection works accurately although
some of the CBCs in the correlation band are poorly
estimated, which can be seen by comparing the subtraction
noise with the signal spectrum: the weaker the subtraction
noise, the better the best fit. Simulating longer observation
times would significantly improve the gain of the noise
projection. We conclude that the subtraction noise will
pose no problem for future-generation detectors as long
as all foreground signals can be detected and modeled
accurately.

Projecting the data means removing all contributions
which are correlated with certain template derivatives.
These derivatives are associated with directions in a sam-

pling space. A stochastic process has the property of
distributing its energy randomly along all directions of
the sampling space with a given mean value of the energy
per direction, which is the geometrical interpretation of the
fact that a stationary process has constant variance. If we
project out Np directions of the sampling space, then, on

average, we will remove a fraction Np=N of the power of

any stochastic, stationary process, where N is the dimen-
sion of the sampling space which is the number of samples.
As long as the number of projected directions is much
smaller than N, the loss in power will be negligible. In
our case, we project along 17� 9 (17 CBCs with 9 pa-
rameters each) out of 105 � 5:242 88 (observation time
multiplied by sampling frequency) directions. The mean
predicted power loss of stationary processes like the
CGWB or the instrumental noise is 0.03%, which is indeed
insignificant. In Fig. 15, we plot the spectrum of the total
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projected subtraction-noise spectrum (solid line) between 0.1 Hz
and 1 Hz. The subtraction noise is comparatively high at low
frequencies, since pN waveforms are determined by strongly
correlated parameters. These correlations decay at higher fre-
quencies where a considerable part of the phase evolution is
observed, leading to better waveform estimates. Subtraction
noise within the correlation band 0.2 Hz–0.5 Hz is projected.
As one can see, all peaks of the subtraction noise are removed.
The residual noise is negligible compared with a CGWB spec-
trum with fractional energy density � ¼ 10�15.
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data before it is analyzed, whereas the lower graph displays the
spectrum after best-fit subtraction and noise projection. Some of
the signal peaks in Fig. 14 can be identified in these two spectra.
There is no visible change of the instrumental-noise level. Here,
every 20th frequency bin is plotted to reduce the amount of data.
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data before (upper figure) and after (lower figure) data
analysis, including the noise projection. There is no visible
change in the instrumental-noise spectrum, but all signal
peaks between 0.2 Hz and 0.5 Hz are removed. More
quantitative results can be found in the next section which
presents correlation values of all components of the total
data.

B. Correlation

The correlation measurement is evaluated in two ways.
At first, we compute statistics for different observation
times to make it possible to extrapolate our results to a
3 yr observation time with certain confidence. These sta-
tistics are based on simulations without the CBC fore-
ground. The reason is that the computation would take
too long, and also, the projection performance is insuffi-
cient at observation times much shorter than T ¼ 105 s
because the Fisher matrices are highly ill conditioned and
parameter correlations are too strong to allow a meaningful
estimation of signal parameters by means of Eq. (13).
Second, we investigate the correlation including the
CBCs and noise projection for an observation time T ¼
105 s.

As mentioned in earlier sections, the correlation mea-
surements are carried out between channels A0 $ A1 and
E0 $ E1, and subsequently, the two values are added to
form the total correlation SNR. Each correlation value
corresponds to an integral over the correlation band
0.2 Hz–0.5 Hz. The results are shown in Table II. The first
column contains values of four different observation times
used to obtain the correlation statistics. The second column
shows the respective correlation outcome of the instrumen-
tal noise, the third column shows that of the CGWB with
� ¼ 10�15, and the last column shows that of the total
data, which, in this case, is the sum of the instrumental
noise and the CGWB. Each correlation value is based on 20
measurements. In summary, the evolution of the mean

values and standard deviations of the correlation with
observation time confirms theoretical predictions. The
mean value of Ctot increases approximately linearly with
observation time T, and its standard deviation increases
with the square root of T. Furthermore, the standard devia-
tions of Ctot are always close to the square root of the mean
value which would ideally hold, since the optimal filter
defined in Eq. (51) is applied. The fact that the measured
standard deviation is somewhat higher than the predicted
value means that our noise model which governs the
correlation filter is weaker than the actually measured
spectrum of the instrumental noise. This discrepancy can
be explained since the (equal-arm) noise model is not used
to generate a time series of the noise in our simulation. In
reality, one would take greater care in choosing the right
noise model such that variances are equal to mean values,
and the SNR is faithfully calculated for a single measure-
ment. Alternatively, one may use the total spectrum after
projection as a noise model. In our simulation, we obtain
the SNR by averaging over many measurements, and the
quality of the noise model does not have to be very high.
Before extrapolating to higher observation times, we

have to make sure that subtraction noise can be removed
from the data. Therefore, we show correlation values for
our longest run with T ¼ 105 s related to the CBC:

Ccbc ¼ 19 000; Csub ¼ 3560; Cproj ¼ 2:34:

(54)

The correlation value of the CBC without best-fit subtrac-
tion and projection is Ccbc. When the best fits are sub-
tracted, this value is reduced to Csub. Consequently, a
CGWB with � ¼ 10�15 could not be detected without
noise projection, since the CGWB correlation is around
55. The correlation of the projected noise is further reduced
to Cproj, which lies well below the CGWB value. The

background becomes detectable. A remaining problem is
that the true data will contain about 100 to 1000 times more
signals, which leads to a similar increase of the projected
spectrum, but two effects are working for the good of the
mission. Theoretically, the projected spectrum should de-
crease with 1=T, which is due to an improvement of the
accuracy of the estimated signal parameters. In addition,
we believe that our projection results would be much
better, if a different template class was used or if we had
implemented the F statistics to maximize over nuisance
parameters, since our waveforms are governed by tem-
plates with highly correlated parameters. These issues
will have to be scrutinized in the future.
Now, assuming that the foreground subtraction noise can

be projected out, we extrapolate correlation values to an
observation time T ¼ 108 s. Our measurements confirm
that the SNR scales with the square root of the observation
time, and so we extrapolate our results in Table II accord-
ingly for each observation time, and average over the four
different predictions to obtain the BBO’s SNR correspond-

TABLE II. The mean values and standard deviations of corre-
lation measurements between channels A0 $ A1 and E0 $ E1

for different observation times. Values in each row are based on
20 measurements. Here, the total data are the sum of the CGWB
and the instrumental noise. Whereas the mean value of the
correlation Ctot of the total data is dominated by contributions
from the CGWB, its standard deviation is determined by con-
tributions from the instrumental noise. The mean value of Ctot is
supposed to increase linearly with T, whereas its standard
deviation—predicted to be the square root of the mean value—
is supposed to increase with

ffiffiffiffi
T

p
.

T Cn Ccgwb Ctot

1� 104 s 0:00� 2:60 5:90� 0:07 5:90� 2:54
2� 104 s 0:83� 5:74 14:72� 0:12 15:34� 5:87
4� 104 s �0:93� 6:54 26:28� 0:19 25:56� 6:42
8� 104 s 1:73� 9:87 53:80� 0:29 55:20� 10:12
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ing to a flat stochastic background (i.e. constant �):

SNR ð3 yearsÞ � 200 � �

10�15
: (87)

One has to keep in mind that this prediction is based on a
restricted correlation band, 0.2 Hz–0.5 Hz. The SNR would
double if the entire detection band, especially towards
lower frequencies, was chosen as the correlation band.
The lower boundary is understood as the cutoff frequency
due to the WD/WD foreground which may not be analyz-
able below 0.2 Hz. The upper boundary has no significant
effect since high-frequency contributions to the SNR of the
cosmic background are negligible. If one demands a mini-
mal SNR of 5, then the BBO’s sensitivity is

�min � 2:5� 10�17: (56)

Given a lower bound of 0.2 Hz for correlation measure-
ments, there should exist an optimal arm length of the BBO
which is slightly smaller than 50 000 km, and which leads
to a slightly improved sensitivity. It may also turn out that
our choice for the lower boundary was too pessimistic and
that the BBO is more sensitive even without modifications.

IX. CONCLUSION

The analysis presented in this paper serves three main
purposes. The primary intention is to demonstrate the
application of a subtraction-noise projection on a simulated
data-analysis problem. The method is explained by invok-
ing a geometrical interpretation of optimal signal detection
and parameter estimation in the presence of additive,
Gaussian noise. Second, we showed how to construct an
analysis pipeline for a time-delay interferometer network,
which seeks for a stochastic gravitational-wave back-
ground in the presence of a foreground built of CBCs.
The detector network is simulated dynamically, thereby
automatically including detector motion and time-varying
response functions. Therefore, the definition of the
overlap-reduction function has to be generalized so that it
directly quantifies the total instrumental influence on cor-
relation strengths of detector outputs, instead of quantify-
ing the correlation of projected gravitational-wave induced
strains in terms of somehow normalized quasistationary
detector response functions. Third, since our simulation is
based on a design proposal for the BBO detector network,
we derive a prediction of its sensitivity towards stochastic
backgrounds, which should be more robust than values
obtained from previous investigations.

The simulation creates a time series of the instrumental
noise and compact binaries for each photodiode in the
network. During observation, response functions and de-
tector positions change. We use equations of the orbital
motion of each satellite which are specified up to second
order in the orbital eccentricity. Consequently, each trian-
gular configuration of satellites is simulated with cartwheel
and breathing motion. The isotropic stochastic background

with a given spectral density is directly generated in the
frequency domain, by first computing transfer functions
and overlap-reduction functions of and between each net-
work output. These frequency-domain functions are ob-
tained via FFT of the detectors’ impulse responses.
Based on the assumption that all foreground signals in

the data from compact binaries are detected, we found, as
expected, that by removing the estimated foreground from
the data, the residual foreground spectrum due to inaccu-
rate fitting of waveforms covers the spectrum of the cos-
mological background and makes it impossible for the
BBO to detect it, unless its fractional energy density as-
sumes very high values. We implemented a subtraction-
noise projection into the pipeline, which allows us to
accurately remove the subtraction noise. In simulation
runs with T ¼ 105 s and operating on data with
100 CBCs, the total power of the projected signal is 4
orders of magnitude weaker than the original signal spec-
trum, which is much better than previously expected since
the analysis is based on a comparatively short observation
time which entails strong correlations between different
parameters of the signal model. This outcome can just be
explained by assuming that the template manifold is ap-
proximately flat, at least along certain directions. The
smaller the curvature of the manifold in the vicinity of
the true signal, the weaker the requirements on the accu-
racy of waveform fitting. A detailed analysis of the
template-manifold curvature will have to be carried out
in the future to understand how precise a best fit has to be
such that the respective subtraction noise can be projected
out.
If one wants to extrapolate this result to higher observa-

tion times and more CBCs, then one needs to separate the
detection and estimation problem from the projection prob-
lem. Certainly, it will be much more difficult to detect all
signals of a realistic foreground, and for a more realistic
analysis scheme, like the hierarchical search, one has to
study the influence of confusion noise on the quality of the
waveform estimates. The final answer depends on how
close one will come to an optimal CBC analysis. We do
not intend to make any predictions here concerning this
point. However, assuming that all CBCs are detected and
accurately analyzed, we claim that the projected
subtraction-noise spectrum of a realistic foreground ob-
served over 3 years will be negligible. First, we argued in
our paper that confusion noise is not an issue in the
subtraction-noise projection, since the projection is based
on the total Fisher matrix of all projected signals, including
mutual correlations, into the model. Only if excluded,
correlations between signals manifest themselves as con-
fusion noise, which may deteriorate the projection.
Second, Fisher matrices which characterize 3 years of
data will be much less ill conditioned and, for that reason,
much easier to handle numerically. That is the main reason
why we consider our projection results very promising: we
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obtained good results choosing templates with strong pa-
rameter correlations. Third, and more fundamentally, the
projected spectral power is supposed to decrease with 1=T,
which further reduces the projected spectrum by a factor
1000.

Now, applying simple, numerically confirmed scaling
laws of the correlation SNR, we extrapolate correlation
results obtained for a few runs with observation times
below T ¼ 105 s to the full BBO mission lifetime of T ¼
108 s. In conclusion, provided that the subtraction noise
can be removed, the extrapolated sensitivity of the BBO to
a stochastic background is �min � 2:5� 10�17. However,
one condition for this result is that the cosmological WD/
WD foreground of above 0.2 Hz can be resolved and fitted
like the foreground of NSs and BHs. Conversely, it may
turn out that the lower boundary of the correlation band is
too pessimistic, which would entail a better sensitivity of
the BBO (up to a factor of 2). Ultimately, the problem of
the WD barrier can be ameliorated by making the BBO
arms shorter by a small factor to increase the frequency of
optimal sensitivity towards stochastic backgrounds.
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APPENDIX: PARAMETER DERIVATIVES OF GW
PHASE

In this appendix, we elaborate on some details concern-
ing the Fisher matrix of comparable-mass, compact-binary
inspirals within the pN formalism. The general framework
is set in Sec. IV.
The GW phase evolution depends on the three parame-

ters tc. M, 	, and therefore the respective Fisher-matrix
components depend on the derivative of the GW phase with
respect to these parameters. We found that the result can be
cast into a form which resembles the pN expansion Eq. (9).
In the following, these results will be presented. We start
with the derivative of the phase with respect to the chirp
time. It can be written as a sum

@tc� ¼ � c3

4GM

X7
k¼0

ptck �
�ð3þkÞ=8 (A1)

with expansion coefficients

ptc0 ¼ 1; ptc1 ¼ 0; ptc2 ¼ 743

2688
þ 11

32

; ptc3 ¼ � 3

10
�;

ptc4 ¼ 1 855 099

14 450 688
þ 56 975

258 048

þ 371

2048

2; ptc5 ¼ �

�
7729

21 504
þ 3

256



�
�;

ptc6 ¼ � 720 817 631 400 877

288 412 611 379 200
þ 107

280
Cþ 53

200
�2 � 107

2240
log

�
�ðtÞ
256

�
þ

�
25 302 017 977

4 161 798 144
� 451

2048
�2

�



� 30 913

1 835 008

2 þ 235 925

1 769 472

3;

ptc7 ¼
�
� 188 516 689

433 520 640
� 28 099

57 344

þ 122 659

1 290 240

2

�
�:

(A2)

All symbols are defined as in Sec. IV. A similar expression can be found for the derivatives with respect to the two mass
parameters. The two expansions

@	� ¼ 3

4
	

X7
k¼0

p	k �
ð5�kÞ=8; (A3)

@M� ¼ 1

2
M

X7
k¼0

pMk �
ð5�kÞ=8 (A4)

are determined by expansion coefficients
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p
	
0 ¼ 1; p

	
1 ¼ 0; p

	
2 ¼ 18 575

24 192
� 55

96

; p

	
3 ¼ � 3

2
�;

p
	
4 ¼ 9 275 495

6 193 152
� 284 875

774 144

� 5565

2048

2; p

	
5 ¼

�
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