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The bispectrum of cosmic microwave background (CMB) anisotropies is a well-known probe of the

non-Gaussianity of primordial perturbations. Just as the intervening large-scale structure modifies the

CMB angular power spectrum through weak gravitational lensing, the CMB primary bispectrum

generated at the last scattering surface is also modified by lensing. We discuss the lensing modification

to the CMB bispectrum and show that lensing leads to an overall decrease in the amplitude of the primary

bispectrum at multipoles of interest between 100 and 2000 through additional smoothing introduced by

lensing. Since weak lensing is not accounted for in current estimators of the primordial non-Gaussianity

parameter, the existing measurements of fNL of the local model with WMAP out to lmax � 750 is biased

low by about 6%. For a high resolution experiment such as Planck, the lensing modification to the

bispectrum must be properly included when attempting to estimate the primordial non-Gaussianity or the

bias will be at the level of 30%. For Planck, weak lensing increases the minimum detectable value for the

non-Gaussianity parameter of the local type fNL to 7 from the previous estimate of about 5 without

lensing. The minimum detectable value of fNL for a cosmic variance limited experiment is also increased

from less than 3 to �5.
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I. INTRODUCTION

The weak lensing of cosmic microwave background
(CMB) anisotropy angular power spectrum is now well
understood in the literature [1,2]. The modifications result
in a smoothing of the acoustic peak structure at large
angular scales and an increase in power below a few
arcminute angular scales corresponding to the damping
tail of CMB anisotropies [3].

The angular power spectrum of the lensing potential out
to the last scattering surface can be established with qua-
dratic estimators that probe lensing non-Gaussianity at the
4-point level of a CMB map [4]. Such a reconstruction of
the lensing potential is helpful for CMB B-mode studies of
polarization [5], especially in the context of searching for
the signature of the primordial tensor modes [6]. This is
due to the fact that in addition to inflationary gravitational
waves, the B-modes of CMB polarization also contains a
signal generated by lensing of scalar E-modes with a peak
in power at a few arcminute angular scales [7]. The lensing
reconstruction has now been applied to existing Wilkinson
Microwave Anisotropy Probe (WMAP) data leading to a
�2� to 3� detection of gravitational lensing in the CMB
through a correlation between the reconstructed lensing
potential and tracers of the large-scale structure such as
radio galaxies [8,9].

In parallel with the progress on lensing studies with the
CMB, the search for primordial non-Gaussianity using the
CMB bispectrum with constraints on the non-Gaussianity
parameter fNL is now an active topic in cosmology [10–
12]. The 5-year WMAP data is consistent with �9<
fNL < 111 at the 95% confidence level for the local model
[13], though a nonzero detection of primordial non-

Gaussianity at the same 95% confidence level with 26:9<
fNL < 146:7 is claimed elsewhere using the WMAP 3-year
data [14]. This result, if correct, has significant cosmologi-
cal implications since the expected value under standard
inflationary models is fNL & 1 [15–22], though alternative
models of inflation, such as the ekpyrotic cosmology
[23,24], generally predict a large primordial non-
Gaussianity with fNL at few tens.
Just as the CMB power spectrum is modified by lensing

from potential fluctuations of the intervening large-scale
structure [1], the CMB bispectrum will also be modified by
gravitational lensing. The correlation between the pro-
jected lensing potential and CMB secondary effects, such
as the integrated Sachs-Wolfe (ISW) effect or the Sunyaev-
Zel’dovich (SZ) effect, leads to a non-Gaussian signal at
the three-point level [25,26]. These secondary non-
Gaussianities are expected even if the primordial perturba-
tions are Gaussian and impact existing primordial non-
Gaussianity parameter measurements by introducing a
small, but unavoidable, bias [27–29].
Beyond secondary non-Gaussianities, weak lensing by

the intervening large-scale maps the intrinsically non-
Gaussian CMB sky to a different anisotropy pattern when
observed today. Thus the bispectrum one reconstructs with
a CMB map, assuming it to be of the expected form at the
last-scattering surface due to primordial non-Gaussian
perturbations, will result in a biased estimate of the pri-
mordial non-Gaussianity parameter. The existing estimator
can be modified to account for lensing modifications and to
obtain a bias-free estimate of the non-Gaussianity, but at
the expense of factorizability that has allowed fast compu-
tation of the bispectrum in existing analyses [30]. Since
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lensing modifies the anisotropy pattern by smoothing the
fluctuations, a change in the minimum detectable non-
Gaussianity parameter fNL for a given experiment is ex-
pected to be different from the existing values in the
literature [10].

In this paper, we present a general derivation of the
lensed CMB primary bispectrum and quantify above state-
ments on the changes imposed by lensing for the detection
of primordial non-Gaussianity. We find that the non-
Gaussianity parameter measured with WMAP, ignoring
lensing, will result in an estimate of fNL for the local model
that is biased low by about 6%, when measurements are
extended out to lmax � 750. Furthermore, with lensing, the
minimum detectable level of fNL with Planck is increased
by roughly 40% from less than 5 to about 7 and the cosmic
variance limit of fNL is increased from 3 to 5.

This paper is organized as follows: we first discuss the
CMB primary bispectrum of the local type in Sec. II. Some
basic ingredients related to the lensing calculation is pre-
sented in Sec. III. We derive the lensing effect on the
bispectrum, under both flat-sky and all-sky formulations,
in Sec. IV. We discuss our results and conclude with a
summary in Sec. V. In illustrating our results we make use
of the standard flat �CDM cosmological model consistent
with WMAP with �b ¼ 0:042, �c ¼ 0:238, h ¼ 0:732,
ns ¼ 0:958, and � ¼ 0:089.

II. CMB PRIMARY BISPECTRUM

The CMB temperature perturbation on the sky, �ðn̂Þ ¼
�Tðn̂Þ=T, is decomposed into its multipole moments

�ðn̂Þ ¼ X
lm

�lmY
m
l ðn̂Þ: (1)

The angular power spectrum and bispectrum of CMB
anisotropies are defined in the usual way, respectively, as

h�lm�l0m0 i ¼ �l;l0�m;m0C��
l ;

h�l1m1
�l2m2

�l3m3
i ¼ l1 l2 l3

m1 m2 m3

 !
Bl1l2l3 ;

(2)

where, for the bispectrum, we have introduced the
Wigner-3j symbol (see the Appendix of Ref. [26] for
some useful properties of this symbol).

The CMB bispectrum is generated by a coupling of the
local-type with a quadratic correction to the Newtonian
curvature such that

�ðxÞ ¼ �LðxÞ þ fNL½�2
LðxÞ � h�2

LðxÞi� (3)

where �LðxÞ is the linear and Gaussian perturbation and
fNL in the non-Gaussianity parameter, which is taken to be
scale independent [10].

In Fourier space, we can decompose Eq. (3) as

�ðkÞ ¼ �LðkÞ þ fNL�NLðkÞ; (4)

with

�NLðkÞ ¼
Z d3k1

ð2�Þ3 �Lðkþ k1Þ��
Lðk1Þ � ð2�Þ3�ðkÞ

�
Z d3k1

ð2�Þ3 P�ðk1Þ; (5)

where P�ðkÞ is the linear power spectrum, defined as

h�ðkÞ�ðk0Þi ¼ ð2�Þ3�ðkþ k0ÞP�ðkÞ: (6)

The multipole moments of the anisotropy can be written
as

�lm ¼ 4�ð�iÞl
Z d3k

ð2�Þ3 �ðkÞgTlðkÞY�
lmðk̂Þ; (7)

where �ðkÞ from above is the primordial curvature per-
turbation in the Fourier space, and gTlðkÞ is the radiation
transfer function. With �LðkÞ and �NL, the moments
can be separated into two components with �lm ¼ �L

lm þ
�NL

lm .

The CMB angular power spectrum can be defined using
the transfer function and the power spectrum of dominant
linear fluctuations as

C�
l ¼ 2

�

Z 1

0
k2dkP�ðkÞg2TlðkÞ: (8)

Using the definition of the angular bispectrum [Eq. (2)],
the primordial temperature anisotropy bispectrum can be
written as

Bl1l2l3 ¼
X

m1m2m3

l1 l2 l3
m1 m2 m3

� �
½h�L

l1m1
�L

l2m2
�NL

l3m3
i

þ h�L
l1m1

�NL
l2m2

�L
l3m3

i þ h�NL
l1m1

�L
l2m2

�L
l3m3

i�;
(9)

which can be simplified to [10]

Bl1l2l3 ¼ 2Gl1l2l3

Z 1

0
r2drbLl1ðrÞbLl2ðrÞbNL

l3
ðrÞ

þ bLl1ðrÞbNL
l2

ðrÞbLl3ðrÞ þ bNL
l1

ðrÞbLl2ðrÞbLl3ðrÞ; (10)

where

bLl ðrÞ ¼
2

�

Z 1

0
k2dkP�ðkÞgTlðkÞjlðkrÞ; (11)

bNLl ðrÞ ¼ fNL
2

�

Z 1

0
k2dkgTlðkÞjlðkrÞ; (12)

and

G l1l2l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3
0 0 0

� �
:

(13)

When illustrating our results, we make use of a modified
code of CMBFAST [31] for the standard flat �CDM cosmo-
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logical model to fully calculate radiation transfer functions
when generating the CMB primary bispectrum.

III. WEAK LENSING BASICS

The effects of weak lensing can be encapsulated, under
the Born approximation, in the radial projection of the
gravitational potential (�), given as [32]

�ðn̂Þ ¼ �2
Z rs

0
dr0

dAðrs � r0Þ
dAðrsÞdAðr0Þ�ðrðn̂Þ; r0Þ; (14)

where rðzÞ is the line-of-sight comoving distance (or look-
back time) to a redshift z from the observer with last
scattering surface at rs ¼ rðz ¼ 1100Þ, and dAðrÞ is the
comoving angular diameter distance. In a spatially flat
universe, dA ! r. Here, we ignore the time-delay effect
as it is small compared to the geometric lensing effect
captured by Eq. (14) [33].

The calculation related to the CMB bispectrum de-
scribed below requires the angular power spectrum of
lensing potential �, which can be decomposed into the
multiple moments as

�ðn̂Þ ¼ X
lm

�lmY
m
l ðn̂Þ; (15)

with the lensing power spectrum defined using

h�lm�l0m0 i ¼ �l;l0�m;m0C�
l to obtain [3]

C�
l ¼ 2

�

Z
k2dkP�ðkÞ½Ilenl ðkÞ�2; (16)

where

Ilenl ðkÞ ¼
Z

drW lenðrÞjlðkrÞ;

W lenðrÞ ¼ �2FðrÞ dAðrs � rÞ
dAðrÞdAðrsÞ :

(17)

Here FðrÞ describes the radial evolution of potential fluc-
tuations. Modifications to the CMB anisotropies, generated
at higher order in lensing potential fluctuations, are at the
level of at most 5% relative to those due to the lensing
potential angular power spectrum [34]. The bispectrum of
lensing potentials, due to the nonlinear evolution of density
perturbations, also modifies the CMB primary bispectrum,
but these changes can also be ignored since the lensing

potential bispectrum is at the order ðC�
l Þ2, while changes

we describe are first order in the angular power spectrum of
the lensing potential. Using the Limber approximation,
Eq. (16) can be further simplified, but we do not make
use of this approximation in numerical calculations illus-
trated here since the flat-sky form of the potential power
spectrum is known to bias lensing results of the power
spectrum by about 10% at all multipoles [3].

IV. LENSING OF THE CMB BISPECTRUM

We first give a treatment of the lensing of the CMB
bispectrum assuming a flat-sky approximation and discuss
a derivation under the spherical sky later.

A. Flat-sky case

Weak lensing deflects the path of background photons
resulting in a remapping of the observed anisotropy pattern
on the sky. Following an approach similar to [3], we write
the lensed temperature anisotropy as

~�ðn̂Þ ¼ �½n̂þr�ðn̂Þ�
� �ðn̂Þ þ ri�ðn̂Þri�ðn̂Þ

þ 1
2ri�ðn̂Þrj�ðn̂Þrirj�ðn̂Þ þ . . . (18)

Here, �ðn̂Þ is the unlensed CMB temperature anisotropy,
~�ðn̂Þ is the lensed anisotropy, and r�ðn̂Þ is the lensing
deflection angle for the CMB photons.
Taking the Fourier transform, as appropriate for a flat-

sky, we write the lensed temperature anisotropy in Fourier
space as

~�ðl1Þ ¼
Z

dn̂ ~�ðn̂Þe�il1�n̂

¼ �ðl1Þ �
Z d2l01

ð2�Þ2 �ðl01ÞLðl1; l01Þ; (19)

where

Lðl1; l01Þ � �ðl1 � l01Þðl1 � l01Þ � l01
� 1

2

Z d2l001
ð2�Þ2 �ðl001 Þ�ðl1 � l01 � l001 Þðl001 � l01Þ

� ðl1 � l01 � l001 Þ � l01 (20)

to the second order in lensing potential in the perturbative
expansion.
The observed angular power spectrum of CMB anisot-

ropies under weak lensing is discussed in [3]. The resulting
power spectrum consists of both the unlensed intensity and
a perturbative correction related to the lensing effect.
Making use of the expansion and after some straightfor-
ward calculations, we obtain the lensed anisotropy power
spectrum as

~C�
l ¼ C�

l ð1� l2RÞ þ
Z d2l1

ð2�Þ2 C
�
l1
C�
jl�l1j½ðl� l1Þ � l1�2;

(21)

where

R ¼ 1

4�

Z
dll3C�

l : (22)

Here, R describes the variance of the deflection angle. For

�CDM cosmology, �rms ¼
ffiffiffiffi
R

p � 2:60. This derivation
makes use of the flat-sky approximation to describe the
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lensing effect on CMB anisotropy power spectrum. When
the expressions derived in the previous section for C�

l and

C�
l under the exact spherical-sky treatment are used in

Eq. (21), the lensed CMB power spectrum can be derived

with a less bias than using, say, the flat-sky result for C�
l in

the same expression [3].
Keeping the flat-sky approximation, we can define the

angular bispectrum as

h�ðl1Þ�ðl2Þ�ðl3Þi � ð2�Þ2�ðl1 þ l2 þ l3ÞB�
ðl1;l2;l3Þ; (23)

and following the approach similar to the lensed angular
power spectrum that led to Eq. (21), the lensed bispectrum
can be expressed as

~B�
ðl1;l2;l3Þ ¼ B�

ðl1;l2;l3Þ

�
1� ðl21 þ l22 þ l23Þ

R

2

�

þ
Z d2l0

ð2�Þ2 C
�
l0 ½B�

ðl1;l2�l0;l3þl0Þðl2 � l0Þ
� l0ðl1-þ l2 � l0Þ � l0 þ B�

ðl1�l0;l2þl0;l3Þðl1 � l0Þ
� l0ðl3 þ l1 � l0Þ � l0 þ B�

ðl1þl0;l2;l3�l0Þðl3 � l0Þ
� l0ðl3 þ l2 � l0Þ � l0�: (24)

Note that we have identified the flat-sky bispectrum as
B�
ðl;l;lÞ321 to distinguish from the all-sky bispectrum

B�
l1;l2;l3

. The two are related through

B�
l1l2l3

¼ l1 l2 l3
0 0 0

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
B�
ðl1;l2;l3Þ (25)

B. All-sky treatment

The derivation related to the lensing of the CMB bispec-
trum under the more appropriate spherical sky can be
obtained by replacing the Fourier components with spheri-
cal harmonic multipole moments. In this case, the lensed
field can be represented as [3]

~�lm � �lm þ
Z

dn̂Ym�
l ri�ðn̂Þri�ðn̂Þ

þ 1

2

Z
dn̂Ym�

l ri�ðn̂Þrj�ðn̂Þrirj�ðn̂Þ
¼ �lm þX

l0m0

X
l00m00

�l0m0�l00m00

�
�
Imm0m00
ll0l00 þ 1

2

X
l000m000

��
l000m000Jmm0m00m000

ll0l00l000

�
; (26)

where, the integrals over the spherical harmonics were
replaced, in the last step, by the geometrical factors

Imm0m00
ll0l00 ¼

Z
dn̂Ym�

l ðriY
m0
l0 ÞðriYm00

l00 Þ;

Jmm0m00m000
ll0l00l000 ¼

Z
dn̂Ym�

l ðriY
m0
l0 ÞðrjY

m000�
l000 ÞrirjYm00

l00 :

(27)

Using Eq. (2), the lensed CMB temperature bispectrum
can then be expressed as

~B�
l1l2l3

¼ X
m1m2m3

l1 l2 l3
m1 m2 m3

� �
h ~�l1m1

~�l2m2

~�l3m3
i;

(28)

leading to

~B�
l1l2l3

¼ X
m1m2m3

l1 l2 l3

m1 m2 m3

 !�
h�l1m1

�l2m2
�l3m3

i þ 1

2

X
l03m

0
3

X
l003m

00
3

X
l0003 m

000
3

h�l1m1
�l2m2

�l00
3
m00

3
�l0

3
m0

3
��

l000
3
m000

3
iJm3m

0
3m

00
3m

000
3

l3l
0
3
l00
3
l000
3

þ 2Perm

þ X
l0
2
m0

2

X
l00
2
m00

2

X
l0
3
m0

3

X
l00
3
m00

3

h�l1m1
�l00

2
m00

2
�l00

3
m00

3
�l0

2
m0

2
�l0

3
m0

3
iIm2m

0
2
m00

2

l2l
0
2
l00
2

I
m3m

0
3
m00

3

l3l
0
3
l00
3

þ 2Perm

�
: (29)

Noting that the Wigner-3j symbol obeys the identity

X
m1m2

l1 l2 l3
m1 m2 m3

� �
l1 l2 l003
m1 m2 m00

3

� �
¼ �l3l

00
3
�m3m

00
3

ð2l3 þ 1Þ ;

(30)

we can rewrite the lensed bispectrum as

~B�
l1l2l3

¼ B�
l1l2l3

þ 1

2
B�
l1l2l3

X
l0
3

C�
l0
3
S1 þ 2Perm

þX
l00
2
l00
3

B�
l1l

00
2
l00
3

X
l0
2

C�
l0
2
S2 þ 2Perm (31)

where

S1 ¼ 1

ð2l3 þ 1Þ
X
m3

X
m0

3

J
m3m

0
3
m3m

0
3

l3l
0
3l3l

0
3

; and

S2 ¼
X

m0
2m

00
2m

00
3

X
m1m2m3

l1 l2 l3

m1 m2 m3

 !
l1 l002 l003
m1 m00

2 m00
3

 !

� I
m2m

0
2
m00

2

l2l
0
2l

00
2

I
m3m

0
2
m00

3

l3l
0
2l

00
3

(32)

The sum of the geometric term J
m3m

0
3
m3m

0
3

l3l
0
3l3l

0
3

over m0
3 yields

[3]

S1 ¼ � 1

ð2l3 þ 1Þ
X
m3

1

2
l3ðl3 þ 1Þl03ðl03 þ 1Þ 2l

0
3 þ 1

4�
: (33)
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Hence, with summation over m3 leading to a factor (2l3 þ
1), the expression for S1 simplifies to

S1 ¼ � 1

2
l3ðl3 þ 1Þl03ðl03 þ 1Þ 2l

0
3 þ 1

4�
: (34)

In order to evaluate S2, we first reexpress I
mm0m00
ll0l00 as

Imm0m00
ll0l00 ¼ fll0l00

l l0 l00
m m0 m00

� �
; (35)

where [3]

fll0l00 ¼ 1

2
½l0ðl0 þ 1Þ þ l00ðl00 þ 1Þ � lðlþ 1Þ� l l0 l00

0 0 0

� �
:

(36)

Then the expression for S2 can be rewritten as

S2 ¼ fl2l02l
00
2
fl3l02l

00
3

X
m0

2m
00
2m

00
3

X
m1m2m3

l1 l2 l3
m1 m2 m3

� �

� l1 l002 l003
m1 m00

2 m00
3

� �
l2 l02 l002
m2 m0

2 m00
2

� �

� l3 l02 l003
m3 m0

2 m00
3

� �

¼ fl2l02l
00
2
fl3l02l

00
3
ð�1Þl0þl0

2
þl0

3

�
l1 l2 l3
l02 l003 l002

�
; (37)

where, in the last step, we have introduced the Wigner-6j
symbol [35]. The values of the Wigner-6j symbol can be
computed numerically with a fast and efficient recursive
algorithm [36].

Finally, substituting the expressions for S1 and S2 in
Eq. (31) and including all permutations in a single expres-
sion, we can write the lensed bispectrum as

~B�
l1l2l3

¼ ½1�Rfl1ðl1 þ 1Þ þ l2ðl2 þ 1Þ þ l3ðl3
þ 1Þg�B�

l1l2l3
þX

lpq

C��
l

�
fl2lpfl3lqð�1Þn

�
�
l1 l2 l3
l q p

�
B�
l1pq

fl3lpfl1lqð�1Þn

�
�
l1 l2 l3
p l q

�
B�
pl2q

fl1lpfl2lqð�1Þn

�
�
l1 l2 l3
q p l

�
B�
pql3

�

where

R ¼ 1

4

X
l

lðlþ 1Þ 2lþ 1

4�
C��
l (38)

and n � ðlþ pþ qÞ.

V. RESULTS AND DISCUSSION

We illustrate the modification to the equilateral configu-
rations of the bispectrum in Fig. 1, where we plot

l4B�
lll=ð2�Þ2 as a function of the multipole l. The primary

CMB bispectrum assumes fNL ¼ 1 and is calculated with
the full radiation transfer function gTlðkÞ. The lensing
description makes use of the all-sky treatment to calculate

bothC�
l and the lensed bispectrum. The flat-sky expression

gives a result consistent with the all-sky expression at
better than 5% at all multipoles if the all-sky expression

for C�
l is used in both calculations. The difference is at the

level of 10% if the two expression make use of the two

separate calculations of C�
l , as in the case of the angular

power spectrum [3]. In the case of the equilateral configu-
rations of the bispectrum, the lensing effect can be best
described as a smoothing and a decrease of the amplitude
of non-Gaussianity power in the equilateral configuration
of the bispectrum when l < 1500 and a subsequent in-
crease in the bispectrum amplitude at small angular scales.
In Fig. 2, we show two squeezed configurations (l1 �

l3 	 l2) of the bispectrum, with the short length fixed at
either 10 (left panel) or 100 (right panel), as a function of
the multipole l of one side with the third side fixed at either
lþ 10 or lþ 100. Without lensing, a comparison of Fig. 1
and 2 reveals a well-known result in the literature that the
local type of the CMB bispectrum is dominated by
squeezed configurations with one small side and two large
sides for the bispectrum mode shape in the multipole
space. With lensing, the amplitude of the squeezed con-
figurations is significantly reduced when two of the sides
have lengths l > 1200 in the multipole space. This can be
again described as a smoothing effect with lensing by the
intervening large-scale structure; removing or ‘‘washing

0 500 1000 1500 2000 2500 3000
l
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−4
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−3

10
−2

10
−1

10
0

10
1

l4 B
l,l

,l 
/(

2π
)2  (

x1
0−

18
)

Primary (fNL=1)
Lensed

FIG. 1 (color online). The CMB bispectrum for the equilateral
case (l1 ¼ l2 ¼ l3 ¼ l) with (solid line) and without (dashed
line) lensing. Here we plot l4B�

lll=ð2�Þ2 as a function of the

multipole l for one of the sides. We assume fNL ¼ 1. The
lensing effect can be described as a decrease in the amplitude of
the bispectrum when l & 1700 with an increase at higher
multipoles.
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out’’ the primordial non-Gaussian signature in the CMB
map at angular scales below a few arcminutes. Thus, when
lensed by the large-scale structure, the primordial non-
Gaussian CMB sky appears more Gaussian at arcminute
scales when studying the non-Gaussianity at the three-
point level. At same angular scales, however, the CMB
sky appears more non-Gaussian due to lensing at the four-
point level probed by the trispectrum [35].

The removal of the non-Gaussianity is associated with
the squeezed configurations, which dominate the overall
signal-to-noise ratio for the detection of the primary bis-
pectrum without lensing. Although non-Gaussianity is re-
duced for the squeezed configurations, lensing leads to an
increase in the amplitude of the bispectrum for equilateral
configurations where l1 � l2 � l3 > 1500. This increase,
however, is insignificant in terms of the overall signal-to-
noise ratio as the contribution to the cumulative signal-to-
noise coming from these configurations is lower, owing to
the higher variances associated with foregrounds and in-
strumental noise at these angular scales.

To further quantify this statement, we plot, in Fig. 3, the
signal-to-noise ratio calculated as

�
S

N

�
2 ¼ X

l1l2l3

ðB�
l1l2l3

Þ2
6Ctot

l1
Ctot
l2
Ctot
l3

; (39)

where the noise variance calculation involves all contribu-

tions to the angular power spectrum with Ctot
l ¼

~Cl þ Csec
l þ Nl where we include the lensed CMB power

spectrum ( ~Cl), secondary anisotropies (C
sec
l ), and the noise

power spectrum (Nl) for both WMAP and Planck. For
secondaries, we include the SZ power spectrum calculated
with the halo model [37] and make use of the noise
calculations from Ref. [26] for WMAP and Planck. For
the case involving an experiment limited by the cosmic
variance, we set Nl ¼ 0. In the left panel of Fig. 3, we plot
dðS=NÞ2=dl3 as a function of l3, while in the right panel we
plot the cumulative signal-to-noise ratio out to l3 in the x-
axis. In the case where lensing is not included, signal-to-
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FIG. 2 (color online). The squeezed configurations (l1 � l3 	 l2) of the CMB bispectrum with (solid line) and without (dashed line)
lensing. The left panel is for l2 ¼ 10 and right panel is l2 ¼ 100. We vary l ¼ l1 with l3 ¼ lþ l2 in both cases and plot
l4Bl;l2;lþl2=ð2�Þ2 as a function of l. Again, we take fNL ¼ 1. In these configurations, the lensing effect can be described as an overall

decrease in the amplitude of the bispectrum when l & 1200. This suggests that lensing by the intervening large-scale structure leads to
a less non-Gaussianity in the CMB map.
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FIG. 3 (color online). The signal-to-noise ratio for a detection of the CMB bispectrum with (thick lines) and without (thin lines)
lensing. The long-dashed lines show the case for WMAP and dot-dashed lines for Planck. The left panel shows the signal-to-noise ratio
as a function of l3, while the right panel shows the cumulative signal-to-noise ratio below l3 in the x-axis. Note the overall reduction in
the signal-to-noise ratio (when l3 � 1500) in the case of lensing relative to the case where lensing is ignored.
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noise ratio estimates for the bispectrum detection are con-
sistent with previous calculations in the literature [10].

With lensing, however, the signal-to-noise ratios are
changed. As can be seen from the left panel of Fig. 3, there
is an overall reduction in the signal-to-noise ratio when
l3 � 1500. This difference comes from the previously de-
scribed decrease in the amplitude of the non-Gaussianity in
squeezed configurations of the bispectrum with lensing
imposed. To further understand the differences in the
signal-to-noise ratio of the lensed primary bispectrum,
we plot, in Fig. 4, the quantity

dðS=NÞ2
d loglmaxd loglmin

¼ lmaxlmin

Xlmax

l¼lmin

ðB�
lminllmax

Þ2
6Ctot

lmin
Ctot
l Ctot

lmax

; (40)

with two separate estimates for B� and ~B� to estimate this

quantity without and with lensing, respectively. Note that
the overall signal-to-noise ratio comes from integrating
this quantity over the variables lmax and lmin and we include
the factor lmaxlmin to account for the logarithmic scaling. A
comparison of the two panels in Fig. 4 reveals an overall
decrease in the amplitude at l� 103 in the case with the
lensed primary bispectrum relative to the primary bispec-
trum alone.
In Fig. 5, we plot the difference of the two as a contour

plot to show that lensing results in an overall decrease in
the signal-to-noise ratio in the squeezed configurations
when lmax � 103 and lmin < 102, while there is an increase
in the signal-to-noise ratio when lmax � 3� 103 for all
values of lmin. These plots demonstrates the same trends
described with respect to Fig. 2 involving a decrease in the
amplitude of the squeezed configurations of the lensed
bispectrum. While there is a slight increase in the lensed
bispectrum amplitude at l3 > 2000, such small angular
scales are not probed by Planck. Even in the cosmic
variance limit, unfortunately, this small increase is insig-
nificant given that at these same angular scales secondary
anisotropies dominate the bispectrum noise variance. In
terms of the cumulative signal-to-noise ratio values shown
in Fig. 3, the minimum fNL to detect the bispectrum with
Planck and a cosmic variance-limited experiment is in-
creased by about 30% to 40% from fNL � 5 for Planck
to fNL � 7. The cosmic variance-limited detection thresh-
old for fNL is increased from 3 to 5.
While the difference in cumulative signal-to-noise ratio

seems insignificant for an experiment like WMAP, weak
lensing could impact existing measurements of the non-
Gaussianity parameter fNL [13,14]. To understand the
lensing bias introduced to fNL, we follow the discussion

FIG. 4 (color online). Contour plots of
dðS=NÞ2=d loglmaxd loglmin [Eq. (40)] as a function of lmax

and lmin for the primary bispectrum (top panel) and the lensed
primary bispectrum (bottom panel). We take fNL ¼ 1.

FIG. 5 (color online). Contour plot of the difference
d½ðS=NÞ2lensed � ðS=NÞ2unlensedÞ=d loglmaxd loglmin as a function

of lmax and lmin (same as the difference between bottom and
top panels of Fig. 4).

WEAK LENSING OF THE PRIMARY CMB BISPECTRUM PHYSICAL REVIEW D 77, 123006 (2008)

123006-7



in Ref. [28] and note that the current estimators of the non-

Gaussianity parameter use f̂NL ¼ Ŝprim
N [30,38,39], with

Ŝ prim ¼X
pq

B�
l1l2l3

C�1
pq B̂

obs
l0
1
l0
2
l0
3

(41)

where B�
l1l2l3

is the primary bispectrum, and Cpq is the

covariance matrix for bispectrum measurements involving
triplets of p � ðl1l2l3Þ and q � ðl01l02l03Þ. This estimator is

the optimal estimator for non-Gaussianity measurements,
but given the complications associated with estimating the
covariance, existing studies make use of a suboptimal
estimator which approximates the covariance with vari-
ance C�1

��0 � ��2ðl1; l2; l3Þ���0 , and introduces a linear

term to Eq. (41) to minimize the variance of f̂NL [39].
Note that N is the overall normalization factor that can be

calculated from Eq. (41) by replacing B̂obs with B�.
While weak lensing modifies the observed bispectrum

B̂obs
l1l2l3

¼ fNL ~B
�
l1l2l3

, existing measurements make the as-

sumption that B̂obs
l1l2l3

¼ fNLB
�
l1l2l3

. This results in a biased

estimate of f̂NL from the true value of the non-Gaussianity
parameter ftrueNL . The fractional difference of this bias

�f=f̂NL � ðftrueNL � f̂NLÞ=f̂NL can be calculated
through the covariance between the lensed and unlensed

CMB primary bispectrum �f=f̂NL ¼ 1�
½P B�

l1l2l3
��2 ~B�

l1l2l3
=
P

B�
l1l2l3

��2B�
l1l2l3

�, where we have

simply written the variance as ��2. We plot �f=f̂NL as a
function of l to which non-Gaussianity parameter measure-

ments are performed in Fig. 6. Existing measurements with
WMAP data probe out to lmax � 750 and we find that
existing estimates of fNL are biased by �6%. For Planck,
if lensing is ignored, the bias is at the level of 30%.
This bias is not the same fractional difference in the

signal-to-noise ratio that one can infer from Fig. 3 since the
fractional difference in the signal-to-noise ratio with and
without lensing involves a ratio of the form

½P ~B�
l1l2l3

��2 ~B�
l1l2l3

=
P

B�
l1l2l3

��2B�
l1l2l3

�. Note that in fu-

ture an unbiased estimate of fNL can be obtained by
replacing B�

l1l2l3
in Eq. (41) with the lensed bispectrum

~B�
l1l2l3

and recalculating the normalization factor N with

the lensed primary bispectrum. Unfortunately, while with-
out lensing the CMB primary bispectrum of the local
model factorizes into two separate integrals with bLl and

bNLl (described in Sec. II), this factorizability is no longer

preserved when lensed and impacts an easy estimation
of the non-Gaussianity parameter with the existing es-
timator [30]. For Planck and other CMB experiments that
can probe down to small angular scales for primordial
non-Gaussianity measurements, it will be necessary to
implement an estimator that accounts for the lensing effect.
To summarize the main results of this paper, we have

discussed the primary CMB bispectrum generated at the
last scattering surface, but observed today after it is weak
lensed by the intervening large-scale structure.
Unfortunately, as we have found, weak lensing leads to
an overall decrease in the amplitude of non-Gaussianity
with the biggest change on the squeezed configurations of
the bispectrum that dominate the overall signal-to-noise
ratio when studying the primordial non-Gaussianity pa-
rameter. For an experiment such as the Wilkinson
Microwave Anisotropy Probe (WMAP), the modifications
imposed by lensing results in an estimate of fNL of the
local model that is biased low by about 6%. For a high
resolution experiment such as Planck, the lensing modifi-
cation to the bispectrum must be accounted for when
attempting to estimate the primordial non-Gaussianity.
The minimum detectable value of fNL for a cosmic vari-
ance limited experiment is �5.
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