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Our space-time is filled with gravitational wave backgrounds that constitute a fluctuating environment

created by astrophysical and cosmological sources. Bounds on these backgrounds are obtained from

cosmological and astrophysical data but also by analysis of ranging and Doppler signals from distant

spacecraft. We propose here a new way to set bounds on those backgrounds by performing clock

comparisons between a ground clock and a remote spacecraft equipped with an ultrastable clock, rather

than only ranging to an on-board transponder. This technique can then be optimized as a function of the

signal to be measured and the dominant noise sources, leading to significant improvements on present

bounds in a promising frequency range where different theoretical models are competing. We illustrate our

approach using the SAGAS project which aims to fly an ultrastable optical clock in the outer solar system.
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I. INTRODUCTION

The basic observables used for synchronizing remote
clocks or ranging to distant events are built up on electro-
magnetic signals exchanged between remote observers and
compared to locally available atomic clocks [1]. This state-
ment applies, for example, to planetary radar ranging [2],
lunar laser ranging [3,4], synchronizing orbiting clocks
with Earth-bound standards [5], or tracking and navigating
probes in deep space [6].

Electromagnetic links feel the gravitational waves (GW)
and this is currently the main route toward GW detection. It
follows that GW affect ranging and Doppler tracking ob-
servables [7,8]. This effect has been thoroughly studied, in
particular, with the Pioneer and Cassini probes [9–11],
leading to constraints on the GW noise spectrum in some
frequency range [12]. These studies constitute one of the
windows on the physics of the stochastic GW backgrounds
which permeate our spatio-temporal environment and have
an astrophysical or cosmological origin [13–17]. Their
results have to be compared with bounds obtained through
different observations [18] (more discussions below).

The aim of the present paper is to show that remote clock
synchronization is also affected by GW and might be used
to set new bounds. Timing is less sensitive than ranging at
distances shorter than the GW wavelength, but this is no
longer the case at large distances. Furthermore, the timing
procedure can be arranged in order to get rid of uncertain-

ties on the motion of the remote clock, which might greatly
improve the bounds on GW at low frequencies. The num-
bers will be discussed below by taking as an example the
SAGAS project which aims at flying ultrastable optical
atomic clocks in the outer solar system [19]. These num-
bers heavily rely on the extremely good accuracy of mod-
ern atomic clocks [20–22].
In the next section, we introduce and compare the basic

observables associated with ranging and timing. We then
discuss their sensitivity to stochastic GW backgrounds as
well as the noise sources involved in their measurement.
We finally deduce the constraints on GW backgrounds
which could be drawn from comparisons between accurate
clocks at large distances from each other in the solar
system.

II. RANGING AND TIMING OBSERVABLES

We study the comparison between an atomic clock on
board a probe and another one co-located with a station on
Earth. The clocks are compared using up as well as down
links. The up-link signal is emitted from ground at posi-
tions ðt1;x1Þ in time and space and received in space at
ðt2;x2Þ. The down-link signal is emitted from space at
ðt3;x3Þ and received on ground at ðt4;x4Þ (see Fig. 1).
The up link is independent from the down link i.e. t3 �
t2 can be chosen to take any value, positive or negative.
The positions of the emission and reception events are

connected by light cones, which may be calculated through
a variety of theoretical methods (see for example [23–25]).
These calculations give solutions which depend on the
motions of Earth station and space probe, as well as on
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the gravitational field described by the metric. As the GW
are weak modifications of the metric, we treat their effect
as a perturbation of the solutions.

These solutions may be written as relations between
clock indications corresponding to proper times elapsed
on ground or space, say �g1 and �s2 for the up link, and �s3
and �g4 for the down link (see Fig. 1). We first define a

ranging observable by

�r � � �s3 � �s2
2

þ �g4 � �g1
2

� �d þ �u
2

�u � �s2 � �g1 ;

�d � �g4 � �s3: (1)

In the general case up and down links are defined
independently from each other, but a specific configuration
of interest is the situation where the links coincide at the
space endpoint (�s2 ¼ �s3 , t2 ¼ t3). Then �r represents a
spatial distance corresponding to half the proper time
elapsed on ground during the roundtrip of the signal to
and from the probe. This special case is the only one
realized in deep space probes so far, which were only
equipped with a transponder that essentially only reflects
the incoming signal. The range observable (1) is unaffected

at lowest order by clock uncertainties in space (when using
t2 ¼ t3) and can even be measured without a good clock on
board.
Another observable of great interest is the combination

of �u and �d defined with the opposite sign

�t � �s3 þ �s2
2

� �g4 þ �g1
2

� ��d þ �u
2

: (2)

This timing observable (2) is unaffected at lowest order by
uncertainties in the motion of the probe (when t2 ¼ t3). For
a probe equipped with a clock and a two-way system, one
can choose to use either (or both) of the observables (1) and
(2) with a free choice of the value of t3 � t2 in order to
optimize the measurement depending on the signal to be
measured and the noise affecting the measurements. This is
not the case for probes equipped only with a transponder,
which are limited to the special case of (1) with t2 ¼ t3.
We also introduce the time derivatives of (1) and (2)

yr � _�r ¼ yd þ yu
2

; yt � _�t ¼ �yd þ yu
2

: (3)

The dot symbol represents here a derivation with respect to
a commonly defined time t, chosen for any convenient
argument. Note that yr is directly related to the Doppler
tracking observable, which has been over the years the
main source of information on the navigation of remote
probes [26]. Meanwhile yt is directly related to the fre-
quency comparison of distant clocks, the so-called synto-
nization observable. The variations of these quantities can
be evaluated in the framework of a linearized approxima-
tion with a reasonably good approximation in the solar
system. A more precise evaluation would be easy by using
available methods [23] and it would not change the quali-
tative discussions presented below.
The variations in (3) are due to the effect of motion of

the probe and ground station and perturbing effects like
atmospheric delays, clock noise, etc. (see Sec. IV) on one
hand, and to the integrated effect of gravity along the
propagation of the electromagnetic link on the other
hand. The latter is given by an integral along the up- or
down-link paths ½u� and ½d�

��u;d ¼ � 1

2c

Z
½u;d�

hTTij
dxiu;d
d�

dxju;d
d�

d�; (4)

hTTij is the metric perturbation (h�� � g�� � ��� with g��

and ��� the metric and Minkowski tensors) in the trans-

verse traceless (TT) gauge; � is the affine parameter along
the path measured as a length, and dx

d� the electromagnetic

wavevector reduced so that its time component is unity.

III. SENSITIVITY TO STOCHASTIC GW
BACKGROUNDS

We now evaluate the effect of stochastic GW back-
grounds as sources of noise on the electromagnetic links.

t

x/c

t2

t 1

t 3

t 4

FIG. 1 (color online). Principle of a general two-way link with
t2 � t3.
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For simplicity, we consider the background to be isotropic
and unpolarized. We first recover well-known results for
the ranging case with t2 ¼ t3 and then discuss the timing
observable and the general case t2 � t3.

To this aim, we introduce a plane wave decomposition of
the GW background with wavevector k ¼ kn (k ¼ !=c
the modulus of k and n its direction; c. c. stands for
complex conjugate)

hTTij ðt;xÞ ¼
Z d3k

ð2�Þ3 h
TT
ij ½kn�e�i!tþik�x þ c:c: (5)

We then write the Fourier component ��½!� of the phase
shifts appearing in Eq. (4). At each frequency !, this
component is an integral over the direction n of GW plane
waves with wavevectors k ¼ ð!=cÞn weighted by sensi-
tivity amplitudes. Considering as an example propagation
along axis 1, we get

��½!� ¼ � !

2�c3

Z d2n

4�

hTT11 ½kn�
1��2

�½kn�: (6)

The sensitivity amplitudes �½kn� depend on the frequency
! and the parameter � � n1, which is the component of n
along the direction of propagation of the electromagnetic
signal (here the axis 1). For a signal emitted at ðt1;x1Þ and
received at ðt2;x2Þ (up link on Fig. 1) the sensitivity
amplitude is given by [27]

�½kn� ¼ 1þ�

�i
ðe�i!t2eik�x2 � e�i!t1eik�x1Þ: (7)

We will consider for simplicity the case of a stationary,
unpolarized, and isotropic background. The background
may thus be characterized by a spectral density SGW½!�
giving the strain noise at a space point x [28]

hhTT11 ðt;xÞhTT11 ð0;xÞi ¼
4

3

Z 1

0

d!

2�
SGW½!� cosð!tÞ: (8)

The fluctuations of � are finally characterized by a noise
spectrum S�½!� such that [28]

h��ðtÞ��ð0Þi ¼
Z 1

0

d!

2�
S�½!� cosð!tÞ;

S�½!� ¼ 5

8!2
b½!�SGW½!�:

(9)

The dimensionless function b is obtained by averaging
j�½kn�j2 over the direction n of the GW wavevector

b½!� � hj�½kn�j2in ¼
Z þ1

�1

d�

2
j�½kn�j2: (10)

A. Up and down links with t2 ¼ t3

We first discuss the special case t2 ¼ t3. The sensitivity
amplitudes for the up and down links are obtained directly
from (7) by fixing the origin of coordinates t2 ¼ t3 ¼ x2 ¼
x3 ¼ 0 yielding

�u ¼ 1þ�

�i
ð1� eið1��Þ!TÞ;

�d ¼ 1��

i
ð1� e�ið1þ�Þ!TÞ:

(11)

We have introduced shorthand notations for the propaga-
tion time T and the cosine � (defined for the up link)

T � t2 � t1 ¼ t4 � t3: (12)

Throughout the paper we assume that the relative motion
of the space probe and the Earth during signal propagation
is negligible (so that t2 � t1 ¼ t4 � t3). More general ex-
pressions for the situation where this is not the case can
also be obtained, but are beyond the scope of this work.
The up- and down-link expressions are exchanged by tak-
ing opposite signs for the cosine�, the propagation time T,
and the global expression.
The resulting b-function is already known [27]

b � bu ¼ bd ¼ 2

�
4

3
þ sinð2!TÞ � 2!T

ð!TÞ3
�
: (13)

For obvious symmetry reasons, it has the same form for up
and down links.
The variation of b versus the dimensionless parameter

x � !T=� is shown as the (red) dotted curve on Fig. 2.
The (blue) solid curve on Fig. 2 represents the covariance
function c which describes the correlation of the up and
down links (� denotes complex conjugation)

c½!� � 1
2h�u½kn���

d½kn� þ �d½kn���
u½kn�in: (14)

The average over n can be evaluated as
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FIG. 2 (color online). b (red, dotted line) and c (blue, solid
line) as functions of x � !T=�.
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c½!� ¼ �4	½!� cosð!TÞ;

	½!� � cosð!TÞ
3

þ cosð!TÞ
ð!TÞ2 � sinð!TÞ

ð!TÞ3 :
(15)

We conclude this section by discussing qualitatively the
shapes of the two curves b and c. We first notice that �u

and �d tend to become identical at the limit of short
distances or low frequencies [�u ’ �d ’ ð1��2Þ!T for
!T � 1], so that b and c show the same behavior
’ 8

15!
2T2. The noise spectrum (9) is thus reduced to the

simple form (corresponding to ��u ’ ��d ’ � T
2 h11)

S�½!� ¼ T2

3
SGW½!�; !T � 1: (16)

At the high frequency or large distance limit !T � 1 in
contrast, b goes to a constant so that

S�½!� ¼ 5

3!2
SGW½!�; !T � 1: (17)

Meanwhile, the correlation c between up and down links
remains sensitive to the distance even at large distances.
This is simply due to the fact that ð�u�

�
d þ �d�

�
uÞ=2

contains a part ð�2 � 1Þð1þ cosð2!TÞÞ which is not
blurred by the integration over �. We also note that c,
which is positive at low frequencies (!T � 1), is negative
at high frequencies (!T > �

2 ).

B. Ranging and timing with t2 ¼ t3

We repeat now the same discussion in terms of the
ranging and timing observables. It is clear from (1) and
(2) that one can write expressions similar to (6) for ��r and
��t with the following sensitivity amplitudes:

�r ¼ �u þ �d

2
; �t ¼ ��u þ �d

2
: (18)

The noise spectra have the same form as (9) with the
sensitivity functions

br½!� ¼ hj�r½kn�j2in; bt½!� ¼ hj�t½kn�j2in; (19)

which can be written in terms of the already discussed
functions b and c

br½!� ¼ b½!� þ c½!�
2

; bt½!� ¼ b½!� � c½!�
2

:

(20)

It also has to be stressed that the correlation between the
ranging and timing variables vanishes, as can be shown
through an explicit calculation. As a matter of fact, the
sensitivity amplitudes can be written as

�r ¼ ðsin!T �� sin�!T � i�ðcos!T � cos�!TÞÞ
� exp�i�!T;

�t ¼ ðsin�!T �� sin!T þ iðcos!T � cos�!TÞÞ
� exp�i�!T;

(21)

and it turns out that ð�r�
�
t þ �t�

�
rÞ=2 is odd in � and

vanishes after the angular integration. Alternatively the
fact that the correlation between ��r and ��t vanishes
can be directly inferred from the already discussed prop-
erty bu ¼ bd, which was attributed to a symmetry between
up and down links. It means that ��r and ��t appear as
intrinsic and independent stochastic fluctuations of the
positions in space-time of the end points.
The explicit expressions of the functions br and bt can

be obtained through an explicit calculation or alternatively
deduced from (13) and (15)

br½!� ¼ 3� cosð2!TÞ
3

� 3þ cosð2!TÞ
ð!TÞ2 þ 2 sinð2!TÞ

ð!TÞ3 ;

bt½!� ¼ 5þ cosð2!TÞ
3

� 1� cosð2!TÞ
ð!TÞ2 : (22)

The associated plots are shown for br (blue, solid line) and
bt (green, dashed line) in Fig. 3.
Since �u and �d tend to become identical at the limit of

short distances or low frequencies, it follows that the GW
affect essentially the ranging observable. We effectively
obtain in the limit !T � 1 a much larger value for br ’
8ð!TÞ2=15 than for bt ’ 2ð!TÞ4=15. This is obviously the
reason why this case has been much more studied than the
timing case. But it is also clear that this is no longer the
case for arbitrary frequencies. In particular we know that c
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FIG. 3 (color online). br (blue, solid line), bt (green. dashed
line) and bopt (red, dotted line, see Sec. III C) as functions of

x � !T=�.
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is negative at frequencies !T > �
2 so that bt is larger than

br in this frequency range. We also notice that the oscil-
lations in br and bt persist at large frequencies or large
distances with simple behaviors br ’ 1� cosð2!TÞ=3 and
bt ’ 5=3þ cosð2!TÞ=3 at !T � 1. While this merely
reflects the discussion already devoted to c it is worth
noting that the oscillations tend to disappear in the sum
of br and bt that is also the single-link expression b.

C. General case t2 � t3

For a spacecraft equipped only with a transponder the
only observable that can be obtained is the ranging �r (or
its derivative yr) for the special case t2 ¼ t3 (cf. Fig. 1). An
on-board clock enables one to use also the timing observ-
able �t, and additionally provides the possibility to freely
choose the ground and on-board measurements, which are
combined to form �r or �t, i.e. to freely choose the value of
t3 � t2. We will show below that this choice can be used to
optimize the sensitivity of the observables to a particular
signal (in the present case the GW background) for a given
measurement noise spectrum.

The general expression (7) for the one-way sensitivity
amplitude can be used directly in (18) and (19), to obtain
the sensitivity functions br;t½!� for an up and down link

separated by T23 � t3 � t2

br½!� ¼ b

2
� 2	 cosð!T23 þ!TÞ;

bt½!� ¼ b

2
þ 2	 cosð!T23 þ!TÞ;

(23)

with b given in (13) and 	 in (15). The special case t2 ¼ t3
[Eqs. (23)] is recovered when setting T23 ¼ 0 in Eq. (23).
These general sensitivity functions can now be used in the
data analysis to choose the optimum value of T23 for each
frequency! as a function of the link noise and signal travel
time T. Figure 3 shows the optimized sensitivity function
bopt, calculated by maximizing either of the Eqs. (23). One

clearly obtains bopt 	 br; bt.

IV. MEASUREMENT NOISE

In the following, we take the SAGAS (Search for
Anomalous Gravity using Atomic Sensors) project [19]
as an example to illustrate the advantages and versatility
provided by missions with an on-board clock and indepen-
dent up and down links. The SAGAS project proposes to
fly a highly stable and accurate optical atomic clock and
atomic accelerometer on an escape orbit in the solar sys-
tem, up to a distance of 50 AU (astronomical units) and
beyond. It will use a continuous optical link for clock
comparison, navigation, and data transfer, together with
an x-band radio link as a backup. Science objectives are
centered on tests of fundamental physics, in particular,
gravity on solar system scales and the exploration of the
outer solar system, in particular, the Kuiper belt.

The optical link uses continuous transmission of a laser
at f0 
 444 THz in both directions (up and down) with
1 W at emission, a 40 cm telescope on board the satellite
and 1.5 m telescopes on the ground. Numerous perturba-
tions on the link (atmospheric and instrumental losses,
received photon flux and shot noise, stray light, etc.) are
discussed in [19], Sec. 3.3.4. The fundamental science
measurements of SAGAS are the frequency difference
between a local laser (optical clock) and an incoming laser
beam at the same nominal frequency f0, both on board (up
link) and on the ground (down link), sampled at 0.01 Hz
(see Fig. 1). The measurements thus correspond to the
observables yu and yd defined in (3). Including only terms
whose noise contribution plays a significant role they can
be expressed as

yu ¼
fsðt2Þ � fgðt1Þ

f0
þNu �

vsðt2Þ � vgðt1Þ
c

þ �ytropoðt1Þ;

yd ¼
fgðt4Þ � fsðt3Þ

f0
þNd �

vsðt3Þ � vgðt4Þ
c

þ �ytropoðt4Þ;
(24)

where fs;g are the frequencies of the space/ground laser

(optical clock), vs;g the associated velocity vectors, Nu;d

the direction vectors of up and down links (Nu �
xsðt2Þ�xgðt1Þ
kxsðt2Þ�xgðt1Þk , Nd � xsðt3Þ�xgðt4Þ

kxsðt3Þ�xgðt4Þk ), and �ytropo the fre-

quency change of the signal due to it crossing the Earth’s
troposphere.
The noise coming from the different terms in (24) can be

described equivalently by a power spectral density (PSD)
SyðfÞ or an Allan variance �yð�Þ. In the following we

consider the simple cases of a white frequency noise (terms
proportional to h0) and of a flicker frequency noise (terms
proportional to h�1) with the translation rule [29]

SyðfÞ ¼ ðh0f0 þ h�1f
�1Þ=Hz;

�2
yð�Þ ¼ h0

2�
þ 2 ln2h�1:

(25)

Here the frequency f is in Hz and the integration time � in s
(we have kept the notations h0 and h�1 used in time and
frequency metrology and which should not be confused
with the metric perturbations hTTij ). We first discuss the

different noise contributions on a single link and then
evaluate the noise on the combined observables yr and yt
defined in (3) for the general case t2 � t3.

A. One-way link measurement noise

The space clock fractional frequency stability, as speci-
fied in [19], corresponds to a white frequency noise

�yð�Þ ¼ 1� 10�14��1=2 and an accuracy of �yð�Þ ¼ 1�
10�17, i.e. a flicker frequency noise at or below that level.
The fractional frequency PSD is then
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SysðfÞ ¼ ð2� 10�28 þ 7:2� 10�35f�1Þ=Hz: (26)

Though the flicker noise is likely to be lower than the
projected accuracy, we use this conservative estimate.

The ground clock stability is likely to be significantly
better than the space clock stability by the time the mission
is launched. Best present stabilities of optical frequency

standards are already below �yð�Þ ¼ 3� 10�15��1=2 [22],

with accuracies at 3� 10�17 [21]. Further rapid improve-
ment of these numbers is expected. We therefore estimate
the ground clock noise by the time of mission operation at

�yð�Þ ¼ 5� 10�16��1=2 with a flicker component at 3�
10�18, so that the PSD is read

SygðfÞ ¼ ð5� 10�31 þ 6:5� 10�36f�1Þ=Hz: (27)

The noise on the spacecraft velocity of SAGAS is de-
termined by the integrated noise of the on-board acceler-
ometer. Although orbit modeling is likely to improve on
the raw accelerometer noise at low frequency, we use that
as our conservative estimate for the purpose of this work.

The accelerometer noise specified in [19] is �að�Þ ¼ 9�
10�10��1=2 m=s2 per axis for 3D measurements and

ffiffiffi
3

p
less when measuring only along the direction of signal
transmission, of interest here. An absolute accelerometer
based on cold atom technology is used to avoid long term
drifts and biases (see [19], Sec. III A for details). The
expected absolute accuracy is 5� 10�12 m=s2 taken again
as the upper limit of the flicker acceleration noise. This
translates into a velocity PSD of

Svs=c ¼ ð1:5� 10�37f�2 þ 5:1� 10�42f�3Þ=Hz: (28)

For radio-frequency Doppler ranging, one of the domi-
nant noise sources at low frequency is the uncorrected
motion of the 34 m DSN (Deep Space Network) antenna
and of the station location itself [30]. For the optical link
ground telescopes the motion of the mirror is likely to
cause less of a problem; however, the site movement plays
a similar role as in the radio-frequency case. At high
frequencies the motion of the ground station can be cor-
rected using gravity measurements, with best presently
achieved measurement noise levels of about 4�
10�18 m2=s4=Hz when using superconducting gravimeters
[31]. Alternatively, positioning using global navigation
systems (GNSS) and/or satellite laser ranging (SLR) and/
or very long baseline interferometry (VLBI) achieve sub-
cm uncertainties [32]. Typically, GNSS positioning shows
flicker noise in position over a wide range of frequencies
[33–35], with best results at present at about SxðfÞ ¼ 1�
10�6f�1 m2=Hz. The noise level shows some dependence
on the number of visible satellites, and therefore further
improvement is expected with upcoming additional GNSS
systems [36]. SLR and VLBI show white positioning noise

[34], but at higher levels than GNSS at the frequencies of
interest here (10�6 � 10�5 Hz). Combining local gravity
measurements with GNSS positioning we obtain as the
minimum noise on ground velocity

Svg=c ¼ 1:1� 10�36 f
�2

Hz
; f > 1:4� 10�5 Hz;

Svg=c ¼ 4:4� 10�22 f

Hz
; f � 1:4� 10�5 Hz:

(29)

In (29) we have assumed that superconducting gravimeters
display white noise down to 10�5 Hz, whereas the spectra
shown in [31] only show white noise down to 10�3 Hz,
with the measurements being dominated by natural gravity
fluctuations (the signal to be measured) at lower frequen-
cies. This has to be considered as a preliminary estimation
of low frequency noise unknown at present.
Typically tropospheric delay models at optical frequen-

cies have millimetric accuracy. Furthermore, mapping
functions that determine the variation of the delay with
elevation (of interest here, the constant part of the delay
playing no role on the frequency measurement) have been
developed to submillimeter accuracy and successfully
tested on SLR data [37]. Assuming that the residuals
from such models show white phase noise at the 1 mm
level at 10 Hz sampling [typical pulse rate of SLR and LLR
(lunar laser ranging) stations] we obtain a frequency PSD
of

SytropoðfÞ ¼ 8:7� 10�23f2=Hz: (30)

Note, that we pessimistically ignore correlations at high
frequencies, which, given the slowmotion of the satellite in
the sky, should lead to decreased high-frequency noise.
Figure 4 summarizes the noise sources on a one way link
discussed above.

FIG. 4 (color online). Power spectral densities of the dominant
noise sources on a one-way link: Sys (magenta, crosses), Syg
(light blue, dashed line), Svs=c (dark blue, solid line), Svg=c (red,

dotted line), Sytropo (green. dashed-dotted line).
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B. Measurement noise on ranging and timing

The noise on the ranging and timing observables defined in (3) is a combination of the noise affecting the individual
links, which are clearly correlated when forming the ranging or timing observables. Taking into account those correlations
for the general case t2 � t3 we obtain

SyrðfÞ ¼ 1
2fð1� cosð2�fT14ÞÞSygðfÞ þ ð1� cosð2�fT23ÞÞSysðfÞ þ ð1þ cosð2�fT23ÞÞSvs=cðfÞ
þ ð1þ cosð2�fT14ÞÞSvg=cðfÞ þ ð1þ cosð2�fT14ÞÞSytropoðfÞg; (31)

SytðfÞ ¼ 1
2fð1þ cosð2�fT14ÞÞSygðfÞ þ ð1þ cosð2�fT23ÞÞSysðfÞ þ ð1� cosð2�fT23ÞÞSvs=cðfÞ
þ ð1� cosð2�fT14ÞÞSvg=cðfÞ þ ð1� cosð2�fT14ÞÞSytropoðfÞg; (32)

where we have defined Tij � tj � ti (cf. Figure 1).
Figure 5 shows the resulting noise PSD of the timing and

ranging observables for the special cases T23 ¼ 0 (coinci-
dence of up and down signals at the satellite) and T14 ¼ 0
(coincidence of up and down signals on the ground). More
generally, (31) and (32) can be used to obtain the noise
spectra of yr and yt for arbitrary values of T23 and T14, with
the constraint T14 � T23 ¼ 2T.

We note that the noise levels are significantly different,
in particular, at low frequency, illustrating the potential
gain one can expect from using the optimal observable. In
particular, the observable yr with T23 ¼ 0 used in ‘‘classi-
cal’’ Doppler ranging shows several orders of magnitude
larger noise at low frequency than the timing observable yt
with T23 ¼ 0. This is due to the cancellation of the on-
board accelerometer noise in (32) leaving only the on-
board clock as the dominant noise contribution at low
frequency. This advantage has to be weighed against the
different sensitivity functions br and bt as shown in Fig. 3
in order to determine the optimal observable as a function
of Fourier frequency, which will be the subject of the
following section.

V. CONSTRAINTS ON GW BACKGROUNDS

The case of ranging or Doppler tracking (yr) has been
discussed in numerous papers with the best bounds given
by Doppler tracking of the Cassini probe [12,30]. One-way
linking has also been studied since it is involved in the
extremely impressive bounds derived from pulsar timing
[38,39]. Here we will focus our attention on the case of
synchronization between remote clocks. As made clear by
the discussion of the preceding section, this points to
experiments with excellent clocks at large distances, and
we will take the SAGAS project as an example. We begin
by discussing a somewhat simplified case illustrating the
advantages of the different observables and combinations,
and then go on to derive limits using the complete SAGAS
noise sources as discussed in Sec. IV.
In order to discuss the attainable performances, we use

the spectra associated with time derivatives of the phase-
shifts induced by GW backgrounds [Eq. (9)]. These have to
be compared to the phase variation induced by the noise
sources discussed in Sec. IV. The equality of the two
provides the obtainable upper limit of SGW

Sy½!� ¼ !2S�½!� ¼ 5

8
b½!�SGW½!� (33)

with Sy and b having different forms for the different

observables [cf. Eqs. (23), (31), and (32)].
For comparison with known bounds [18], we describe

the gravitational noise in terms of the reduced gravitational
energy density�GW commonly used to discuss the cosmic
backgrounds (H0 ’ 71 km s�1 Mpc�1 ’ 2:3� 10�18 Hz
is the Hubble constant)

�GW ¼ 10�2f3

3H2
0

SGW: (34)

Collecting (33) and (34), we deduce the expression of the
bound obtainable on �GW from that of the sensitivity
function b and the noise Sy

�GW ¼ 16�2f3

3H2
0

Sy
b
: (35)

FIG. 5 (color online). PSD of the noise affecting the two
observables yt (upper graph) and yr (lower graph) for the
special cases T23 ¼ 0 (blue, solid line) and T14 ¼ 0 (red, dotted
line), and for a spacecraft to ground distance of 10 AU.

BOUNDS ON GRAVITATIONAL WAVE BACKGROUNDS FROM . . . PHYSICAL REVIEW D 77, 122003 (2008)

122003-7



A. Illustration using a simplified case

To illustrate how the obtainable limits can be optimized
using the available measurements and resulting observ-
ables, we first consider an idealized case where only three
noise sources play a significant role, the on-board clock
and accelerometer, and the ground clock. Furthermore, we
will assume that all three noises consist of only white
noise, at the levels indicated by Eqs. (26)–(28), i.e. we
will only consider the first terms of those equations in the
expressions (31) and (32) for Sy, with all other terms set to

zero.
Figure 6 shows the resulting limits on�GW as a function

of frequency for two satellite to ground distances: 6 AU,
the distance of Cassini when the GW experiment was
carried out [30], and 53 AU, the maximum distance envis-
aged for the SAGAS mission [19]. Limits are shown for
three observables: �r is obtained using the ‘‘classical’’
Doppler ranging observable as defined in (1) with t2 ¼
t3. We recall that this is the only observable available on
space probes equipped only with a transponder (the case of
all probes flown so far). �t is obtained using the timing
observable defined in (2) again with the condition t2 ¼ t3.
�opt is calculated by adjusting T23 in (23), (31), and (32)

for each frequency in order to minimize the obtained limit
on �GW.

In doing so, one can use either the ranging or timing
combination, the obtained optimal limits being identical
(albeit for different values of T23). That property is the
result of the periodic dependence of Eqs. (23), (31), and
(32) on T23, which means that at any given frequency one
can find two values of T23 for which the ranging and timing
combinations yield the same limit on �GW in Eq. (35).
However, the assumption that the up and down travel times
are similar (see Sec. III A) limits the allowed range of T23.
Taking into account the maximum relative probe-Earth
velocity ( 
 50 km=s) we limit T23 in the calculation of
�opt so that the up and down travel times do not differ by

more than 1%. We then choose as�opt the lower of the two

limits obtained from yr and yt with a free choice of T23

within the 1% limit mentioned above.

The graphs in Fig. 6 can be understood qualitatively and
quantitatively when considering the expressions for the
sensitivity functions (23) and the overall noise of the ob-
servables (31) and (32) that enter into the calculation of
�GW in (35). We first discuss�r and�t in the case T23 ¼
0, and then come to �opt.

At the low frequency limit (!T � 1), br / ð!TÞ2 and
bt / ð!TÞ4 (see Sec. III B). The noise at low frequency is
dominated by the space probe motion for Syr and is thus

proportional to !�2, but that contribution is entirely can-
celed in Syt because of the condition T23 ¼ 0 in (32), so

Syt / !0 (clock noise only). This leaves an overall !�1

dependence for both �t and �r, clearly displayed in both
plots of Fig. 6 at low frequency. Also, �r is significantly
lower than�t at 6 AU, while the inverse is true at 53 AU (at
low frequency). This is caused by a tradeoff between the
difference in sensitivity functions and the involved noise
sources. We find more specifically and to leading order

lim
!T�1

�r

�t

¼ 1

4
ð!TÞ2 SvS

SyS
; (36)

where SvS
and SyS are the first terms of (26) and (28),

respectively, i.e. SvS
=SyS ’ 3� 10�8!�2. Thus for large

distances (greater than ’ 20 AU with SAGAS figures) the
low frequency asymptote is lower for timing than for
ranging, leading to the observed inversion of �r and �t

when passing from 6 AU to 53 AU.
At the other end of the spectrum (!T � 1), ranging

outperforms timing (i.e. �r <�t) at both distances. This
can be easily understood when considering only the in-
volved noise sources, as the sensitivity functions show
oscillatory behavior and differ at most by a factor 3 (see
Sec. III B). At high frequency (between 10�4 Hz and
10�3 Hz), Syt is dominated by the space clock, but that

contribution is entirely canceled in Syr because of the

condition T23 ¼ 0 in (31), leaving only a combination of
space probe motion and ground clock noise. As at high
frequency the space clock noise is significantly higher than
that of the space probe motion or the ground clock (see
Fig. 4); this leads to the observed advantage of�r over�t.

FIG. 6 (color online). �GW versus f, for a probe to Earth distance of 6 AU (left) and 53 AU (right). The three curves show the limits
on �r (blue, solid line), �t (green, dashed line), and �opt (red, dotted line).
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Note also the difference in slope between �r and �t at
high frequency, particularly visible at 53 AU, which can be
easily understood from the slopes of the spectra of the
different noise contributions (Syg / f0, SvS=c / f�2).

The lowest limits are obtained in the intermediate region
(!T ’ 1) with very different results for the two distances.
As expected, even when using only the classical ranging
observable (�r in Fig. 6), limits improve with distance by
about the ratio of distances (about an order of magnitude in
the present case). However, it is clearly seen that almost
another order of magnitude can be gained when taking
advantage of the timing observable (�t in Fig. 6), only
available when using space probes equipped with an on-
board clock and a two-way electromagnetic link.

In that case, one can not only choose between yr and yt,
but also adjust the value of T23 in order to optimize the
measurement for any given frequency. The result of such
an optimization, �opt, is shown in Fig. 6. As expected it is

below �r and �t at all frequencies and for both distances.
Although the overall improvement is not spectacular, one
obtains the ‘‘best of both worlds,’’ in particular, at 53 AU
where �opt follows �t at low frequency and �r at high

frequency. We notice a slight improvement on �t at low
frequency and 53 AU, which can be understood by con-
sidering the series expansion of the sensitivity function bt
in (23). Additionally to the term in ð!TÞ4 present in the
case T23 ¼ 0 (see Sec. III B) one now obtains a term
proportional to ð!TÞ2ð!T23Þ2 which can be significantly
larger. However, when T23 � 0, low frequency noise from
the space probe motion is added, the tradeoff between the
two leading to the small improvement of�opt over�t seen

on Fig. 6.
In conclusion, the simplified case used in this section

illustrates the advantages of having an on-board clock and
a two-way link, which allows one to ‘‘fine-tune’’ the data
analysis as a function of the expected signal and the noise
sources affecting the raw measurements. In this example,
the sensitivity to GW backgrounds at large distance
(53 AU) is improved by about an order of magnitude
over the classical case �r by choosing the optimal combi-
nation of the available measurements on ground and on
board the space probe. Similar (up to a factor 20) improve-
ments are observed when taking into account all noise
sources discussed in Sec. IV.

B. SAGAS limits on GW backgrounds

We now repeat the calculations described in the previous
section, using the example of SAGAS including all noise
sources described in Sec. IV. For clarity, we show only the
resulting optimal limits �opt for a range of distances (see

Fig. 7). The big bang nucleosynthesis (BBN) bound, which
corresponds to a flat floor with �BBN � 1:5� 10�5, has
been drawn for comparison.

As expected, the sensitivity to GW is improved by going
to large distances. The frequency at which the lowest limits

are reached is typically in the region where fT � 1 i.e.
decreasing with increasing distance. For SAGAS (pro-
jected distance�53 AU) the lowest obtained limit is about
�GW � 7� 10�6 around 2� 10�5 Hz and essentially de-
termined from the timing observable. It is more than 3
orders of magnitude below the best directly measured
limits in the 10�6 to 10�4 Hz band, obtained from the
Cassini probe [30], and about a factor 2 below the BBN
bound. At larger distances the timing measurement could
even approach the pulsar bound around a few 10�8, but at
significantly higher frequencies (the pulsar bounds are at a
few nHz [38]).

C. Discussion

Existing bounds on stochastic GW backgrounds are
spread over a huge frequency range from 10�18 Hz to
103 Hz, corresponding to cosmological bounds obtained
from measurements of the 3 K microwave background
(COBE) at the lower end, and modern ground based GW
detectors (LIGO, VIRGO) at the upper end (see e.g. Fig. 14
of [18]). This large frequency range is patchily covered,
with COBE limits at 10�18 � 10�16 Hz, pulsar bounds
around 10�9 � 10�8 Hz, spacecraft Doppler ranging cov-
ering 3 orders of magnitude (10�6 � 10�3 Hz), and GW
detectors setting limits around 102 Hz. This is comple-
mented by an indirect upper limit derived from models of
BBN which corresponds to a flat floor of �GW � 1:5�
10�5 at all frequencies 	 10�10 Hz. The latter is already
outperformed by the pulsar limits at low frequency and is
expected to be outperformed at high frequency by LIGO
and VIRGO measurements in the near future.
In this landscape, limits obtained from spacecraft track-

ing play an important role as they fill a large part of the gap
in frequency between the pulsar limits and those obtained
from ground based detectors. Unfortunately, the obtained

FIG. 7 (color online). �opt versus f, for probe to Earth
distances (top to bottom) of 20 AU (light blue), 30 AU (ma-
genta), 53 AU (green), 100 AU (red), and 200 AU (dark blue).
The horizontal black line indicates the BBN bound.
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bounds are presently limited to �GW � 0:025 [30].
Improvements in this band will be particularly useful,
especially when they will approach or surpass the BBN
bound, as would be the case with future missions like
SAGAS. As shown above, we expect that such missions
could provide limits on �GW down to parts in 10�6 for
SAGAS and below for missions at even larger distances.

More generally, it is important to obtain experimental
constraints on �GW at all frequencies, as many of the
models that predict such GW backgrounds are frequency
dependent (e.g. cosmic strings models, pre-big bang mod-
els, etc.) and only poorly constrained in the presence of
frequency gaps. In that respect the future space interfero-
metric GW detector (LISA) plays an important role, as it
should provide extremely low limits (down to �GW �
10�13) in the still largely unconstrained frequency range
of 10�4 Hz to 10�1 Hz. It should even be able to observe
the astrophysical GW background from an ensemble of
galactic binary stars, estimated to be too low for any other
present or planned detector, but within the reach of LISA.

VI. CONCLUSION

Doppler ranging to distant space probes provides the
presently most stringent upper bounds on GW between
10�6 and 10�3 Hz. Those bounds are obtained by ‘‘pas-
sive’’ ranging, where the space probe only serves as a
‘‘reflector’’ of the signal emitted from the ground. We
have shown that the sensitivity can be significantly im-
proved when having a clock on board, so that the up and
down signals are independent (asynchronous link) and can
be combined in an optimal manner adapted to the signal to
be measured and the noise affecting the link. We have
derived explicit expressions for the sensitivity of all pos-
sible link combinations to a GW background. Using the
example of the SAGAS project, we have evaluated the
sensitivity of such a mission to GW backgrounds for
optimal signal combinations and as a function of distance,
with a potential improvement by over 3 orders of magni-
tude on best present limits.

Let us notice the similarities between the calculations of
the present paper and those previously devoted to the effect
of stochastic GW backgrounds on inertial sensors built on
atomic interferometry [28,40]. The sensors of interest in
the present paper are the atomic clocks the indications of
which are compared through electromagnetic links. As
these links cannot be protected against the action of GW
backgrounds, there exists an ultimate noise in clock syn-
chronization due to the presence of this universal fluctuat-
ing environment. It has been shown in the present paper
that timing can be more sensitive to this environment than
ranging, provided that extremely large distances are con-
sidered, as it is the case in the SAGAS project.

In our estimations we have chosen a conservative ap-
proach where the noise on the spacecraft motion is deter-
mined solely by the measurement noise of the on-board
accelerometer. Previous deep space probes, in particular,
the Cassini mission [30], did not have an accelerometer on
board, and all nongravitational accelerations acting on the
probe where determined by fitting acceleration models to
the ranging data. The PSD of the residuals is most likely
dominated by ground station and antenna motion at low
frequency, and, in particular, around the diurnal frequency
and its harmonics (see Fig. 1 of [30]). For a mission like
SAGAS this suggests an analysis strategy based on the
cancellation of the ground station motion rather than that of
the space probe. In frequency regions where ground station
noise is dominant one would use the timing observable (2)
giving rise to SytðfÞ of (32), but with the condition T14 ’ 0

(coincidence of up and down signals at the ground an-
tenna). As can be easily seen from (32), this leads to
cancellation of noise from the ground station motion and
the troposphere, leaving space clock instabilities and space
probe motion as the dominant noise sources (see Fig. 4). To
evaluate the limits obtained in this scenario requires a more
detailed investigation of the space probe motion, the effect
of fitting acceleration models, the improvements in the fits
from in situ acceleration measurements, etc., which are
beyond the scope of this paper. Nonetheless, this alterna-
tive approach well illustrates the versatility of using an
asynchronous link that allows choosing the optimal data
combination strategy, even after launch, and as a function
of the observed noise levels.
Finally, we point out that this data combination strategy

can be adapted and optimized for any signal that is to be
measured. The GW backgrounds discussed in this paper
give rise to sensitivity functions (23) which enter the
parameter �GW in (35) together with the noise (31) and
(32). That parameter is then optimized over a broad fre-
quency range by varying T23 or T14. A similar procedure
can be used for other science objectives (e.g. test of the
gravitational time delay during occultation, measurements
of planetary gravity, trajectory determination during fly by,
etc.) by deriving the appropriate sensitivity functions and
calculating the parameters to be optimized. It is likely to
allow significant improvements in those measurements as
well.
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