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We construct a symplectic isomorphism h from classical Klein Gordon solutions of mass m on (dþ 1)-

dimensional Lorentzian anti–de Sitter space (equipped with the usual symplectic form) to a certain

symplectic space of functions on its conformal boundary (only) for all integer and half-integer �

( ¼ d
2 þ 1

2 ðd2 þ 4m2Þ1=2). h induces a large family of new examples of Rehren’s algebraic holography

in which the net of local quantum Klein Gordon algebras in AdS is seen to map to a suitably defined net of

local algebras for the (generalized free) scalar conformal field with anomalous dimension � on

d-dimensional Minkowski space (the AdS boundary). Relatedly, we show for these models that Bertola

et al.’s boundary-limit holography becomes a quantum duality (only) if the test functions for boundary

Wightman distributions are restricted in a particular way.
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The conjecture [1] in 1997 of a holography-like corre-
spondence between a certain type of string theory on the
bulk of anti–de Sitter space (AdS) (in 5-dimensions and
producted with a 5-sphere) and a certain limit of a certain
family of conformal field theories (CFT) on its (conformal)
boundary (or between supergravity on the bulk and the
same limit of CFT on the boundary [2,3]) has led to many
new and surprising conjectured interrelationships between
quantum gravity and Minkowskian quantum field theory.
One spinoff of this conjecture was that a number of authors
(see especially [4,5]) began to investigate the related, but
distinct and simpler, question: In what sense can a corre-
spondence be established between an ‘‘ordinary’’ (e.g.
scalar) quantum field theory on a [Lorentzian, (dþ 1)-
dimensional] AdS background and a suitable ‘‘ordinary’’
(conformal) field theory on its conformal boundary? This is
a simpler question because it concerns not full quantum
gravity but quantum field theory in curved spacetime [6].
Two different sorts of answer to this question were pro-
posed, the algebraic holography of Rehren [4] and the
boundary-limit holography of Bertola, Bros, Moschella,
and Schaeffer [5]—both in the context of axiomatic quan-
tum field theory [7].

Rehren’s algebraic holography [4] is formulated in terms
of the algebraic version of axiomatic quantum field theory.
In this framework, the specification of a given quantum
field theory on a given background spacetime is tanta-
mount [6] to the specification of a net of local �-algebras.
In other words, the specification, for each (suitable) region
O of the background spacetime, of a �-algebraAðOÞ—the
collection of the latter algebras being isotonous which
means that when one region sits inside another, then its
algebra is a subalgebra of the algebra of the larger region.

The basic idea of algebraic holography is to map a given
spacelike wedge (defined as in [4]) in AdS to its intersec-
tion with the boundary. As Rehren points out, this sets up a
bijection between the set of all wedges in the bulk and the
set of all double-cones on the boundary which moreover
maps spacelike related bulk wedges to spacelike related
boundary double-cones [8]. If we are then given a net of
local algebras on the bulk (where, in our definition above,
‘‘region’’ is interpreted to mean wedge) then algebraic
holography consists of the definition of a net of local
algebras on the boundary (where, in our definition above,
‘‘region’’ is interpreted to mean double-cone) by identify-
ing the algebra for a given boundary double-cone with the
bulk wedge algebra which restricts to it [8,9].
Bertola et al.’s boundary-limit holography is formulated

in terms of the Wightman version of axiomatic quantum
field theory. In this framework, and assuming the theory
involves only a single scalar field, the specification of a
given quantum field theory on a given background space-
time is tantamount to the specification of a family of
Wightman distributions Wnðf1; . . . ; fnÞ for each integer
n, each of which may roughly be interpreted as the result
of smearing the (singular) n-point ‘‘expectation value’’
h0j�ðx1Þ; . . .�ðxnÞj0i in a suitable ‘‘vacuum state’’ j0i,
with (smooth, compactly supported) test functions
f1 . . . fn. In an oversimplified description, where one
ignores the need to smear, what Bertola et al. show may
be described by saying that, for a given family of
Wightman functions Wððt1; �1;�1Þ; . . . ; ðtn; �n;�nÞÞ in
the bulk of AdS, if one chooses � suitably, then the
limit lim�1;...;�n!�=2ðcos�1 . . . cos�nÞ��Wððt1; �1;�1Þ; . . . ;
ðtn; �n;�nÞÞ will exist and define a family of Wightman
functions Wððt1;�1Þ; . . . ; ðtn;�nÞÞ on the conformal
boundary which belong to a CFT. What they actually
show is that a correct distributional counterpart to this
limiting procedure maps any Wightman theory in the
bulk to a Wightman theory for the appropriate CFT on
the boundary.
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Above, we have used the usual global coordinates in
which theAdSdþ1 metric takes the form ds2 ¼ sec2�dt2 �
sec2�d�2 � tan2�d�2

d�1 with 0 � � � �=2, �1 � t �
1, and � denotes the usual angular coordinates on the
(d� 1)-sphere. In the special case of the Klein Gordon
(KG) equation, ðcos2�@2t � cos2�@2� � ðd� 1Þ�
cot�@� � cot2�r2

Sd�1 þm2Þ�ðt; �;�Þ ¼ 0 quantized on

AdS according to the scheme of Avis, Isham, and Storey
[10] for vanishing boundary conditions, one finds that the
two-point distribution in the bulk has a nontrivial boundary
limit when � takes the value (cf. [3])

� ¼ d

2
þ 1

2
ðd2 þ 4m2Þ1=2 (1)

which, when one identifies the appropriate part of the
boundary (see endnote [8]) with d-dimensional
Minkowski space, turns out to transform to the standard

two-point function Wbðx; x0Þ ¼ ð1=2�d=2Þ½�ð�Þ=�ð��
d=2þ 1Þ�½�ðt� t0 � i�Þ2 þ ðx� x0Þ2��� for a conformal

scalar field �̂�
d of anomalous dimension � (and other

n-point functions will be those of a generalized free field
with this 2-point function).

The work we report here had two interrelated purposes:
to use the bulk KG model to construct examples of alge-
braic holography and to clarify the relation between
boundary-limit and algebraic holography. As we shall see
below, whenever � (1) is an integer or half-integer, we
have found a way to fulfill both of these purposes and we
will show first that, for such �, if one starts with the net of
local algebras for a bulk KG field, then the net of local
algebras defined on the boundary by algebraic holography

coincides with the subnet of local algebras for �̂�
d which

results when one replaces the usual test functions by a
certain smaller family of test functions and ‘‘localizes’’
them in a suitable way as we will explain and discuss
below. Second, we show that, for the same �, if one
restricts the range of the Bertola et al. projection to the

Wightman functions of �̂�
d smeared only with the same

smaller family of test functions, then the resulting quantum
theory is dual (i.e. isomorphic) to the bulk quantum theory.

In order to obtain these results, we import into, and adapt
to this AdS-CFT context, the mathematical formalism (see
[6]) which has been successful in constructing and analyz-
ing the properties of linear quantum fields in other curved
spacetime contexts. The key to everything we do is the
construction, for the KG equation on AdS, whenever � is
an integer or half-integer, of a classical counterpart to
quantum holography, which we call the pre-holography
map h.

To construct this, we first introduce the space S of
smooth classical solutions to KG on AdSdþ1 which vanish
on the conformal boundary. We recall that (for d � 2 [11])
any such classical solution may be expanded [12] as

�ðt; �;�Þ ¼ X

nl ~m

�
�ð1þ nÞ�ð�þ lþ nÞ

�ðlþ d
2 þ nÞ�ð1þ�� d

2 þ nÞ
�
1=2

� sinl�cos��Pðlþðd=2Þ�1;��ðd=2ÞÞ
n ðcos2�Þ

� ðanl ~me�ið�þlþ2nÞtYl ~mð�Þ þ c:c:Þ (2)

where Pð�;�Þ
n ðxÞ are Jacobi polynomials [13], Yl; ~m are the

(L2-normalized) spherical harmonics on the (d� 1)-
sphere and the sum is over n from 0 to 1 and the usual
ranges of l and ~m. We equip S with the (standard

[6]) symplectic form �ð�1; �2Þ ¼
R
t¼constð�1

_�2 �
_�1�2Þg00 ffiffiffi

g
p
ddx ¼ P

nl ~miða1nl ~ma2�nl ~m � a1�nl ~ma
2
nl ~mÞ where

the integral is over any t ¼ const surface. We then define
our pre-holography map h to be the map which sends such
a classical solution to the function on the conformal bound-
ary which has the expansion

�s
bðt;�Þ ¼ X

nl ~m

i�ð�� d
2 þ 1Þ

�

�
�

�ðlþ d
2 þ nÞn!

�ð�þ lþ nÞ�ðnþ�� d
2 þ 1Þ

�
1=2

� ðanl ~me�ið�þlþ2nÞtYl ~mð�Þ � c:c:Þ (3)

and we equip the range of h, which we call F b, with the
antisymmetric bilinear form

�bð�s
b1; �

s
b2Þ ¼

ZZ
dt1dt2

ZZ
d�1d�2Ebðt1;�1; t2;�2Þ

��s
b1ðt1;�1Þ�s

b2ðt2;�2Þ; (4)

FIG. 1. The support (dark shading) of a ‘‘typical’’ classical
solution for the bulk massless scalar field on AdS1þ1 and a
choice (light shading) of chart P for Poincaré coordinates. (See
endnote [11].)
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where the integration is over a choice [8] (it obviously does not matter which) of P b region and Eb is the boundary limit of
the bulk Lichnérowicz (advanced minus retarded) fundamental solution E:

Ebðt1;�1; t2;�2Þ ¼ lim
�1;�2!�=2

ðcos�1 cos�2Þ��Eðt1; �1;�1; t2; �2;�2Þ

¼ 2Im
X

nl ~m

�ð�þ lþ nÞ�ðnþ �� d
2 þ 1Þ

�ðlþ d
2 þ nÞn!�ð�� d

2 þ 1Þ2 e�ið�þlþ2nÞðt1�t2ÞYl ~mð�1ÞY�
l ~mð�2Þ: (5)

We note in passing that iEbðx; x0ÞI ¼ 2iImðW bðx; x0ÞÞ ¼
(when restricted to a P b region [8]) ½�̂�

d ðxÞ; �̂�
d ðx0Þ�.

One can check, for any pair of classical solutions, �1,
�2, in Swith coefficients in their mode expansions denoted
a1nl ~m, a

2
nl ~m, that, defining �

s
b1, �

s
b2 as in Eq. (3), we have,

when (and only when) � is an integer or half-integer,

�bð�s
b1; �

s
b2Þ ¼

X

nl ~m

iða1nl ~ma2�nl ~m � a1�nl ~ma
2
nl ~mÞ ¼ �ð�1; �2Þ

(6)

and thus, by the equality of the first and last expressions
here, we conclude both that �b is nondegenerate, and
hence a symplectic form, and h: S! F b is a symplectic
isomorphism. The origin of the restriction to integer or
half-integer � lies in the calculation which is needed to
show the first equality in (6): As may easily be seen, this
calculation involves integrals of form

R
�
�� expð�iðN þ

2�ÞtÞdt where N is a positive integer and, for the equality
to hold, these integrals have to vanish and therefore 2� has
to be an integer.

We remark that the formula (4) may be written

�bð�s
b1; �

s
b2Þ ¼ h�s

b1jEb ��s
b2i; (7)

where h�j�i denotes the L2 inner product on our choice of
P b region on the conformal boundary and � denotes con-
volution (i.e. smearing Eb in its second argument).

Apropos of �b being nondegenerate, we remark that,
when restricted to a choice of P b, our space F b falls short
[11] of being the set of all smooth functions on P b due to
the incompleteness of the set of modes in terms of which
�s
b is expanded in (3). Concomitantly, if we were to extend

�b (restricted toP b) from the rangeF bjP b
to the full set of

smooth functions on P b, then it would be degenerate since,
due to the incompleteness of the set of modes in terms of
which it is expanded in (5), the operator Eb� has a non-
trivial kernel.

Our purpose next is to exploit our just-defined pre-
holography map h to construct a mathematical object

which corresponds to the quantum boundary limit �̂b of

the quantum bulk field �̂ defined by the formal relation

�̂ bðt;�Þ ¼ lim
�!�=2

ðcos�Þ���̂ðt; �;�Þ: (8)

We know [6] the quantum bulk field �̂ can be defined in

terms of quantities ‘‘ �ð�̂;  Þ’’ which deserve to be con-

sidered the ‘‘quantum bulk field �̂, symplectically smeared

with a classical test solution  ’’ and which satisfy the
commutation relations

½�ð�̂;  1Þ; �ð�̂;  2Þ� ¼ i�ð 1;  2ÞI; (9)

and what we will do is to define, in terms of these �ð�̂;  Þ,
a quantity which deserves to be called ‘‘ h�̂bj sbi’’ for each
 sb in F b. To do this, we first observe that, if we replace �̂
in (8) by a classical solution � and expand � as in (2),
then, by (3) and (5), we have

�b ¼ Eb ��s
b (10)

and hence, for all � 2 S with hð�Þ ¼ �s
b and with

boundary limit �b and for any  2 S with hð Þ ¼  sb,
we have, by (10) and the fact that h is a symplectic
isomorphism, that h�bj sbi ¼ hEb ��s

bj sbi ¼��bð�s
b;  

s
bÞ ¼ ��ð�; Þ, in view of which the appropri-

ate definition is clearly

h�̂bj sbi ¼ ��ð�̂;  Þ: (11)

If we now choose [8] a Poincaré chart P and temporarily
adopt the convention of equating any  sb 2 F b with its

restriction to P b, (11) amounts to saying: The boundary-

limit quantum field �̂b, ‘‘spacetime smeared’’ on P b with
the test function  sb, is equal to minus the ‘‘symplectic

smearing’’ of the bulk quantum field �̂ with the bulk test
solution  .
In view of the fact that h is a symplectic isomorphism,

the algebra Ab of ‘‘smeared boundary fields’’ generated

by the h�̂bj sbi as  sb ranges over F b is isomorphic to the

bulk field algebra AB generated by the �ð�̂;  Þ as  
ranges over S. (For more details, see the definition of the
‘‘minimal field algebra’’ in [6] and note also the options
discussed there for technically different alternatives.)

Moreover, by (7) and (9), we have ½h�̂bj sb1i; h�̂bj sb2i� ¼
ih sb1jEb �  sb2iI and thus [cf. the note after (5)] the sub-

algebra of Ab generated by test functions in F bjP b
may

be naturally identified, when P b is identified with
d-dimensional Minkowski space, as the subalgebra of the

usual field algebraA�
d for the conformal field �̂�

d obtained

by restricting smearing functions from all of C1ðP bÞ to
F b.
Next we notice that, still for our models (i.e. involving

the bulk KG equation and integer or half-integer �) one
can, as usual (cf. [6]), define a subalgebra ABðOÞ of our
bulk field algebra for each open region O of bulk AdS by
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(cf. [6]) taking the algebra generated by the �ð�̂;  Þwhere
 2 S takes the form E � F where F ranges over smooth
functions with compact support in O. So, in particular, we
obtain an algebraABðW Þ for each bulk wedgeW in AdS
(and similarly we obtain an algebra for each bulk double-
cone). Next we observe that, by (11), each such bulk
algebra ABðOÞ is equal to the subalgebra of the boundary
algebra Ab generated by h�̂bj sbi for  sb ¼ h ,  ¼ E �
F, F 2 O. If one makes a choice of Poincaré chart P then,
when O is a wedge W 	 P , we call the latter subalgebra
AbðIÞ where I 	 P b is the double-cone to which W
bijects under the Rehren bijection [8]. In other words,
AbðIÞ coincides with the element labeled by the region
I of the net of local boundary algebras which gets identi-
fied with the element labeled by the regionW of the net of
local bulk algebras by the algebraic holography identifica-
tion mentioned in our introductory paragraphs (and simi-
larly for bulk double-cones in P and the boundary regions
in P b to which they biject [9]). So in this way our models
provide concrete examples of algebraic holography.
Moreover, in view of the above identification of Ab with
A�

d , this net of local boundary algebras may be regarded

as a net of local algebras for the conformal field �̂�
d , but we

emphasize [14] that this differs from the usual net of local
algebras for this theory, not only because the smearing
functions are restricted to elements of F b but also because
these elements are differently ‘‘localized’’.

Turning to the connection with boundary-limit hologra-
phy, if j0i is the Avis et al. [10] ground state for the
bulk theory, i.e. the quasi-free state with symplectically

smeared two-point function h0j�ð�̂;  1Þ�ð�̂;  2Þj0i ¼P
nl ~ma

1�
nl ~ma

2
nl ~m [where a1nl ~m is related to  1 as in (2) etc.]

then one can show by (3) and (11) (again choosing a P and
readopting our convention [see after (11)] and moreover
identifying P b with Minkowski space) that the
‘‘spacetime-smeared 2-point function’’ on the boundary

h0jðh�̂bj sb1ih�̂bj sb2iÞj0i for a pair of test functions,  sb1,
 sb2 2 F b, is equal to Wbð sb1;  sb2Þ and similarly for all

n-point functions.
In view of the fact [6] that the covariantly smeared bulk

field �̂ðFÞ, F 2 C1
0 ðAdSÞ is equal to the symplectically

smeared field �ð�̂; E � FÞ, we conclude from (11) that, in
our KG models and for � an integer or half-integer, the

bulk smeared Wightman function WðF1; . . . ; FnÞ is equal
to the boundary smeared Wightman function Wbðhð�E �
F1Þ; . . . ; hð�E � FnÞÞ. Thus we see that the test function
map F � hð�E � FÞ induces a ‘‘quantum duality’’ be-
tween the sets ofWightman functions in bulk and boundary
which are related by Bertola et al.’s boundary-limit holog-
raphy. But in this duality, the test functions with which one
smears the boundary Wightman functions are restricted to
belong to our family F bð¼ ranðhÞÞ.
Aside from its applications, given in this paper, to pro-

viding examples of algebraic holography and to clarifying
its relationship to boundary-limit holography, we expect
that our pre-holography map will be of use in elucidating
other aspects of the AdS/CFT correspondence, albeit it is
only of immediate relevance to the case of bulk theories
which are linear. Furthermore, there are two specific fur-
ther conclusions which immediately flow from our results
which may be of relevance to less trivial holography mod-
els. First, if one wishes to construct models on the AdS
boundary by requiring them to be related to the bulk theory
by algebraic holography, then this may lead to a more
restricted family of models (in the case of bulk KG, we
found only models with integer or half-integer �) than the
family one would obtain by requiring only that the bound-
ary theory be related to the bulk theory by boundary-limit
holography (which, for our bulk KG, have unrestricted �).
The second conclusion concerns the sometimes-expressed
expectation that it is unlikely there could be a duality
between ‘‘ordinary’’ QFTs in bulk and boundary because
(it is sometimes said) the boundary having lower dimen-
sions, one would expect it only to be able to support ‘‘fewer
degrees of freedom.’’ Surprisingly, we have found that
essentially the opposite to the above expectation holds
true. Indeed we found that our bulk theory (i.e. AdSdþ1

KG for an appropriately tuned mass) is dual to a subtheory

of our boundary theory—i.e. to the theory of �̂�
d after its

test functions have been restricted to the space F b. Our
result thus shows us that there is, in fact, no simple corre-
lation between dimension and ‘‘degrees of freedom.’’
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Phys. Lett. B 493, 383 (2000).
[5] M. Bertola, J. Bros, U. Moschella, and R. Schaeffer, Nucl.

Phys. B587, 619 (2000).
[6] B. S. Kay, Encyclopedia of Mathematical Physics, edited

by J.-P. Françoise, G. Naber, and S. T. Tsou (Academic,

New York, 2006), Vol. 4, p. 202.
[7] R. Haag, Local Quantum Physics (Springer, New York,

1996), 2nd ed..
[8] Actually, what we shall call the Rehren bijection here is

slightly different from the definition in [4]. Reference [4]

BERNARD S. KAYAND PETER LARKIN PHYSICAL REVIEW D 77, 121501(R) (2008)

RAPID COMMUNICATIONS

121501-4



works on the Z2 quotient of wrapped AdS and the defini-
tion of the bijection in [4] is adapted to this spacetime. We
prefer to work on the unwrapped unquotiented AdS (i.e.
the covering space of wrapped unquotiented AdS) because
we do not want to have to get involved with quantum field
theory either on spacetimes with closed timelike curves or
on nonorientable spacetimes and also so as not to preclude
from the outset noninteger �. With this preference, we
find it necessary to alter the definitions slightly and regard
the Rehren bijection as a bijection between bulk wedges
belonging to a single choice of chart P for Poincaré
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