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We report on a relation between the decay constants of �-like JPC ¼ 1�� vector mesons, which arises

solely from the perturbative analysis of the hVVi, hTTi and hVTi correlators atOð�0
sÞ in the large-Nc limit.

We find fTV=fV ¼ 1=
ffiffiffi
2

p
for highly excited states together with a pattern of alternation in sign. Quite

remarkably, recent lattice determinations reported fT�ð�Þ=f� ¼ 0:72ð2Þ at � ¼ 2 GeV, in excellent

agreement with our large-Nc result. This seems to suggest a pattern like fTVn=fVn ¼ ð�1Þn= ffiffiffi
2

p
for the

whole (1��) states. In order to test this conjecture in real QCD we construct a set of spectral sum rules,

which turn out to comply nicely with this scenario.

DOI: 10.1103/PhysRevD.77.116009 PACS numbers: 11.15.Pg, 11.40.Dw, 11.55.Hx

I. INTRODUCTION

QCD in the 1=Nc expansion [1] is still nowadays one of
the most prominent analytical tools to deal with the strong
interactions in the nonperturbative regime. Its success in
providing, already at leading order, a satisfactory explana-
tion for the OZI rule, the suppression of exotics in the
meson spectrum or the dominance of one-particle over
multiparticle states in virtual resonance exchange pro-
cesses is seen as strong indication that the 1=Nc expansion
is capturing the qualitative features of QCD and that its
degree of convergence is faster than naı̈vely expected, at
least for certain observables.

Unfortunately, in spite of numerous efforts, no
Lagrangian formulation of large-Nc QCD below the con-
fining scale is known.1 However, a lot of information about
the theory at leading order can be extracted from a general
analysis of its correlators [3]. Assuming that confinement
persists for arbitrarily large number of colors, planar
Feynman diagrams at the quark-gluon level give rise to a
dual hadron picture.

The emerging picture of large-Nc QCD as a theory of
free, stable, noninteracting mesons seems quite far away
from what we observe in the QCD spectrum. However, the
picture turns out to be very accurate for spacelike mo-
menta. Thanks to this observation [4], in the last decade
large-Nc QCD has been extensively used for the computa-
tion of electroweak observables, such as ðg� 2Þ� or BK
[5].

Despite its successes in explaining many patterns of
QCD, the understanding of the theory, even in the strict
large-Nc limit, is still rather limited. For instance, even
though the analytic structure of the correlators is known to
consist of an array of single pole singularities, the location
of the poles (i.e. the resonance masses) and their residues

(decay constants) cannot be computed. One usually as-
sumes that their values cannot differ much from the ex-
perimentally measured ones, allowing for a naı̈ve
systematic 30% uncertainty.
In this work we want to report on a quantitative predic-

tion of the large-Nc limit in the sector of light-flavored
vector mesons. In particular, we will show that perturbative
QCD alone sets a relation between the couplings of vector
mesons to the vector ( �q��q) and tensor current ( �q���q).

This power of prediction is due to the exceptional status
of the two-point correlators �VV , �TT and �VT (to be
defined in the next section). JPC ¼ 1�� �-like mesons are
exchanged in the three correlators, a situation that strongly
constrains and, as we will show, sets a distinct pattern for
the decay constants of vector mesons in the large-Nc limit.
To the best of our knowledge, no similar self-constrained
set of correlators exists for particles other than vector
mesons. This system of correlators and the need to consider
them simultaneously was first discussed in Ref. [6] in the
context of QCD sum rules.
Obviously, it is an interesting issue to find out how stable

our prediction is when one moves to real QCD. The
quantity fT�=f� was computed recently in lattice QCD

[7–9]. Interestingly, the value reported is in excellent
agreement with our prediction in the large-Nc limit.
Therefore, the possibility that fTVn=fVn be approximately

constant in the QCD spectrum is very suggestive and is
investigated in the second part of the paper, where we will
show that sum rules are indeed compatible with this
scenario.
This paper is organized as follows: in Sec. II we set our

notation and define the relevant correlators. Their expres-
sions at large-Nc are worked out in Sec. III. In Sec. IV we
derive the prediction on the ratio of decay rates fTVn=fVn.
This prediction is then tested at low energies by using a set
of finite energy sum rules. This is done in Sec. V. Finally,
Sec. VI contains our conclusions and outlook for future
work.

1For certain phenomenological applications, the formulation
of [2] has proven very successful, but one has to truncate the
spectrum and assume lowest meson dominance.
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II. DEFINITIONS

Let us begin by defining the following set of two-point
correlators

�VV
��ðqÞ ¼ i

Z
d4xeiq�xh0jTfV�ðxÞVy

� ð0Þgj0i;

�VT
�;��ðqÞ ¼ i

Z
d4xeiq�xh0jTfV�ðxÞTy

��ð0Þgj0i;

�TT
��;��ðqÞ ¼ i

Z
d4xeiq�xh0jTfT��ðxÞTy

��ð0Þgj0i;

(1)

where V�ðxÞ and T��ðxÞ stand for the QCD color singlet

currents

T��ðxÞ ¼ : �uðxÞ���dðxÞ:; V�ðxÞ ¼ : �uðxÞ��dðxÞ:;
(2)

and ��� ¼ i=2½��; ���. Since the vector current is con-
served in the chiral limit, it can be shown that it does not
need renormalization (even for finite quark masses, in a
mass-independent scheme) and therefore its anomalous
dimension vanishes. In contrast, the tensor current is not
conserved and develops a nonvanishing anomalous
dimension.

In the chiral limit, vector current conservation, Lorentz
symmetry, parity conservation and the antisymmetry of the
tensor indices imply the following kinematical structures:

�
��
VVðqÞ ¼ ðq�q� � q2g��Þ�VVðq2Þ;

�
�;��
VT ðqÞ ¼ iðq�g�� � q�g��Þ�VTðq2Þ;

(3)

such that each Green function can be expressed in terms of
a single form factor. In contrast, there are two independent
kinematical structures for the tensor correlator:

���;��
TT ðqÞ ¼ ��

TTðq2ÞF��;��� þ�þ
TTðq2ÞF��;��þ : (4)

For phenomenological purposes it is convenient to project
the form factors in combinations with well-defined parity,

��
TT . F

��;��� and F
��;��
þ are Lorentz tensors given by

F��;��� ¼ q�q�g�� þ q�q�g�� � q�q�g�� � q�q�g��;

F��;��þ ¼ �"����"����g��q�q�
¼ F��;��� þ q2ðg��g�� � g��g��Þ; (5)

which project onto the different parity-even and parity-odd
sectors of the correlator. It is easy to verify that they are
idempotent and orthogonal,

F���;��F
��;��
� ¼ 0;

F���;��F
��
��� ¼ �2q2F���;��;

(6)

with the normalization

F���;��F
��;��
� ¼ 12q4: (7)

III. CORRELATORS AT LARGE-Nc

We start by listing the analytic properties of the corre-
lators. Two-point correlators are known to be analytic
functions in the entire complex q2 plane except on the
physical axis. Use of the Cauchy theorem then leads to
the so-called Kallen-Lehman representation

�ðq2Þ ¼
Z 1

0

dt

t� q2
1

	
Im�ðtÞ þ P ðq2Þ; (8)

where P ðq2Þ is a polynomial whose degree (number of
subtractions) is determined by the behavior of the correla-
tors at large spacelike momenta.
In the case of �TT special care must be exercised. The

low energy expansion of this correlator can be shown to
develop a singularity as q2 ! 0 whose residue is �3,
according to the conventions of Ref. [10]. The pervading
problem with tensor sources is that they are not accessible
experimentally. Therefore, �3 can only be reliably esti-
mated using lattice QCD. We know that the �3-term
cannot be interpreted as a particle, because the singularity
is present in both �þ

TT and ��
TT , which have opposite

parity. However, we do not know of any a priori reason
why �3 should vanish. Thus, apart form the physical cut,
the correlator has in principle an isolated singularity at the
origin that modifies slightly its dispersion relation. This
subtlety was ignored in all previous sum rule analyses, e.g.,
Ref. [6]. The remaining two-point correlators are free from
such singularities.
For large and negative q2, �VV and �TT are given, to

first order in �s, by [11]

�OPE
VV ðq2Þ ¼ � Nc

12	2
log

��q2
�2

�
þ 1

12	

h�sG��G��i
q4

þO
�
1

q6

�
;

ð��
TTÞOPEðq2Þ ¼ � Nc

24	2
log

��q2
�2

�
� 1

24	

h�sG��G��i
q4

þO
�
1

q6

�
; (9)

where the first line on each equation is the leading pertur-
bative contribution, whereas the second shows the leading
condensate of the operator product expansion (OPE). For
�VT the perturbative contribution cancels to all orders and
we are left with a pure OPE, the first terms of which are
[12]

�OPE
VT ðq2Þ ¼ 2h �  i

q2
þ 2gs

3

h � ���G�� i
q4

þO
�
1

q6

�
: (10)

The explicit �-dependence of Eqs. (9) is an indication that
a subtraction is needed. Note that in order to be sensitive to
the running of the tensor currrent, the next order in the
strong coupling would be required (see, for instance, [11]).
Similarly, the tensor anomalous dimension in Eq. (10)
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would be manifest if �s corrections to the condensates
were included. Our analysis however will be restricted to
the leading order in �s. Some considerations on the effect
of next-to-leading order corrections will be made in Sec. V.

In view of Eqs. (9) and (10), it is straightforward to
conclude that �VV and �TT obey a once-subtracted dis-
persion relation,

�VVðq2Þ ¼
Z 1

0

dt

t� q2
1

	
Im�VVðtÞ þ aV;

��
TTðq2Þ ¼

Z 1

0

dt

t� q2
1

	
Im��

TTðtÞ �
�3

q2
þ a�T ;

(11)

where in the last equation we have included the singularity
generated by the �3-term, while �VT satisfies an unsub-
tracted one, namely

�VTðq2Þ ¼
Z 1

0

dt

t� q2
1

	
Im�VTðtÞ: (12)

In the strict large-Nc limit, two-point functions are satu-
rated by the single-particle exchange of an infinite number
of stable mesons. Therefore, the spectral functions above
take the simple forms

1

	
Im�VVðtÞ ¼

X1
n

f2Vn
ðt�m2
VnÞ;

1

	
Im�þ

TTðtÞ ¼
X1
n

f2Bn
ðt�m2
BnÞ;

1

	
Im��

TTðtÞ ¼
X1
n

ðfTVnÞ2
ðt�m2
VnÞ;

1

	
Im�VTðtÞ ¼

X1
n

fVnf
T
VnmVn
ðt�m2

VnÞ;

(13)

where the particle content is fixed by quantum numbers.
Thus, mVn refers to the JPC ¼ 1�� vector mesons, whose
first representative is the �ð770Þ, while mBn corresponds to
the JPC ¼ 1þ� mesons, such as b1ð1230Þ and its radial
excitations. Note that indeed the resonances exchanged by
�þ
TT and�

�
TT are parity-even and parity-odd, respectively.

The following conventions have been adopted for the
one-particle to vacuum matrix elements ("0123 ¼ þ1):

h0jV�ð0Þj�nðp; �Þi _¼fVnmVn�
ð�Þ
� ;

h0jT��ð0Þj�nðp; �Þi _¼ifTVnð�ð�Þ� p� � �ð�Þ� p�Þ;
h0jT��ð0ÞjBnðp; �Þi _¼ifTBn"������ð�Þp�:

(14)

While fVn is renormalization group invariant, fBn and
fTVn depend on the QCD scale�, their running being that of
the tensor source, which, at least in perturbation theory, is
presently known up to three-loop accuracy [13,14]. At

leading order in the 1=Nc expansion, these decay constants
are already sensitive to the tensor anomalous dimension.
However, as we have already emphasized, we will restrict
our matching analysis to the leading order in�s. Therefore,
even though the decay constants are in principle scale-
dependent, in our analysis they will appear scale-blind.
Obviously, the scale dependence would be manifest should
next-to-leading order corrections in �s be included in
Eqs. (9) and (10).
For future convenience we introduce the parameter n,

defined as

n ¼ fTVn
fVn

: (15)

If we plug Eqs. (13) into the dispersion relations above, we
find

�VVðq2Þ ¼
X1
n

f2Vn
�q2 þm2

Vn

;

�þ
TTðq2Þ ¼

X1
n

f2Bn
�q2 þm2

Bn

þ�3

q2
;

��
TTðq2Þ ¼

X1
n

2n
f2Vn

�q2 þm2
Vn

��3

q2
;

�VTðq2Þ ¼
X1
n

n
f2VnmVn

�q2 þm2
Vn

;

(16)

up to subtractions. The previous equations would provide
the solution to QCD in the large-Nc limit, should decay
constants and masses be determined. However, thus far no
attempt to solve the theory has been successful. Therefore,
Eqs. (16) contain an infinite number of undetermined
parameters, and apparently one is forced to resort to ap-
proximations to have some predictive power. The purpose
of this paper is to show that Eqs. (16) are so strongly
correlated that even without solving large-Nc QCD exact
predictions can be extracted.

IV. A LARGE-Nc PREDICTION FOR fT
V=fV

In order to derive our result, we will only assume that
QCD at large-Nc undergoes a confining phase, such that
the quark-gluon picture at large-Nc is dual to a theory of
mesons. Note that this is the same assumption adopted in
deriving the general features of the theory [3]. Therefore,
in some sense our paper provides an example of a set of
correlators in which large-Nc predictions can be made
quantitative for hadronic parameters.
One of the key results of QCD in the large-Nc limit is

that the theory contains an infinite number of stable states.
Therefore, we can trade the infinite sums above for inte-
grals over the resonance counting index n with the use of
Euler-Maclaurin theorem
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XN
n¼0

fðnÞ ¼
Z Nþ1

0
fðnÞdnþ 1

2
ffð0Þ � fðN þ 1Þg

þ X1
n¼1

B2n

ð2nÞ! ff
ð2n�1ÞðN þ 1Þ � fð2n�1Þð0Þg;

(17)

where the cutoffN will be eventually sent to infinity. Let us
apply the previous formula to �VV and ��

TT :

�VVðq2Þ ¼
Z Nþ1

n�

dn
f2Vn

�q2 þm2
Vn

þ � � � ;

��
TTðq2Þ ¼

Z Nþ1

n�

dn
ðfTVnÞ2

�q2 þm2
Vn

þ � � � :
(18)

We will be interested in performing a large q2 expansion.
By using n� we have split the integrals keeping the con-
tribution that will match the parton model logarithm of
perturbative QCD [cf. Eqs. (9)].2 The remaining piece,
together with the omitted terms, only contribute as inverse
powers of q2. Their contribution determines the OPE con-
densates and is in general model dependent.

By looking at Eqs. (18) one concludes that for highly

excited resonances fðTÞ2Vn ¼ AðTÞ2
V

d
dnm

2
Vn for both vector and

tensor decay constants. Actually this is the only possibility
if we want to ensure the right high energy behavior. In
other words, fVn and fTVn have the same asymptotic
n-scaling, regardless of the specific scaling the masses
may take. Notice that this is only possible because �VV

and ��
TT are both saturated by the exchange of (1��)

vector mesons.
The scaling of the vector and tensor decay constants

makes it possible to convert the integrals in Eqs. (18) over
the radial excitation number n into integrals over the mass.
The integration is performed straightforwardly, yielding:

AðTÞ2
V

Z m2
Nþ1

m2
n�

dm2 m2

m2 � q2
¼ AðTÞ2

V log

�
m2
Nþ1 � q2

m2
n� � q2

�
: (19)

It is important to stress that the limits N ! 1 and q2 ! 1
above do not commute. The former must be taken in the
first place, and together with the requirement limn!1mn ¼
1 the parton model logarithm is reproduced. Moreover,
imposing that the quark-gluon picture is dual to the had-
ronic one, we obtain

A2
V ¼ 2AT2V ¼ Nc

12	2
; (20)

and therefore

lim
n!1

2
n ¼ AT2V

A2
V

¼ 1

2
; (21)

where the constant is the ratio of the parton model coef-
ficients for �VV and ��

TT .
Incidentally, note that in the previous result no use was

made of the b1 mesons entering �þ
TT . In order to relate

both parity sectors in �TT , additional assumptions on the
spectrum would have to be made. For instance, if some
relation between mVn and mBn were specified, a prediction
for fTVn=fBn would then follow.
We now turn our attention to the crossed-correlator�VT .

In this case, the Euler-Maclaurin theorem takes the form

�VTðq2Þ ¼
Z Nþ1

n�

dnn
f2VnmVn

�q2 þm2
Vn

þ � � � : (22)

With the help of our previous combined analysis of �VV

and��
TT , one concludes that the integrand diverges with an

extra power of mVn. In a similar fashion as before, we can
transform Eq. (22) into an integral over the mass. Taking
the cutoff to infinity, we would naı̈vely obtain

�VTðq2Þ ¼ � Nc

12
ffiffiffi
2

p
	

ffiffiffiffiffiffiffiffiffiffi
�q2

q
þ � � � : (23)

However, in order to comply with the short distance be-
havior of Eq. (10), it should converge as q�2. The only
possibility left is to allow for an alternate series, with n
showing a pattern of alternation in sign.3 Notice that this
does not pose any problem: only the magnitude of n was
determined in Eq. (21). Note also that, unlike �VV and
��
TT , �VT is not positive definite and in principle it can

contain both positive and negative contributions.
The most general situation that complies with QCD is

the presence of some cancellations for high-resonance
contributions, no matter how they are arranged. The sim-
plest (and most natural) scenario consists of a regular
pattern of sign-alternating contributions. For this particular
scenario, consistency with perturbative QCD leads to the
prediction

n ¼ ð�1Þnjnj; jnj ¼ 1ffiffiffi
2

p ’ 0:71; (24)

for highly excited �-like vector meson resonances.
Interestingly, � has been recently computed in the lattice

[7–9]. Quite remarkably, the value reported is
�ð2 GeVÞ ¼ 0:72ð2Þ, in excellent agreement with our

asymptotic large-Nc result.
4

This result is extremely interesting, suggesting that n
may be a constant independent of the resonance excitation

2Recall that we are working at leading order in the strong
coupling constant and, consequently, we are dismissing the fact
that �TT has a nonvanishing anomalous dimension.

3Note that n is a real number because fV and fTV are defined
to be real, so this is indeed the only possible scenario. To the best
of our knowledge, the first instance of alternating contributions
in the hadronic spectrum was found in Ref. [15] in the context of
eþe� ! hadrons.

4In a recent paper [16] this ratio was also determined for � ¼
1 GeV, the value reported being � ¼ 0:75ð14Þ. Sum rules also
obtain similar results [17,18]. Incidentally, in the ENJL model
[19] one also finds � ¼ 1=

ffiffiffi
2

p
.
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number. Therefore, one would like to assess what is the
range of validity of the pattern shown in Eq. (24).
Incidentally, one would also like to identify the specific
realization of opposite-sign contributions. It would cer-
tainly look odd if the alternation started at some energy
scale ��m� �n

, but it cannot be ruled out. However, if this

were the case, some triggering dynamical mechanism at
this scale should be invoked. The natural thing to expect is
that a regular pattern of sign-flipping contributions be a
feature of the whole meson tower.

So far we have been dealing with large-Nc QCD. Amore
ambitious and interesting issue is to check whether the
result of Eq. (24) and the conjectured opposite-sign pattern
we advocate as its most natural realization has anything to
do with QCD. In the following section we will see that
QCD finite energy sum rules nicely comply with this
picture.

V. COMPARISON WITH QCD SPECTRAL SUM
RULES

In order to test the ideas of the previous section, we will
consider a set of sum rules. We will start with the�VV and
��
TT correlators and afterwards consider �VT .
We choose as hadronic ansätze the following functions,

1

	
Im�VVðtÞ ¼ f2�
ðt�m2

�Þ þ f2�0
ðt�m2
�0Þ

þ 4

3

Nc
ð4	Þ2 �V�ðt� s0Þ;

1

	
Im��

TTðtÞ ¼ 2�f
2
�
ðt�m2

�Þ þ 2�0f2�0
ðt�m2
�0Þ

þ 2

3

Nc
ð4	Þ2 �T�ðt� �s0Þ;

(25)

consisting of two isolated single poles, corresponding to
the �ð770Þ and �ð1450Þ plus a continuum, whose onset is
determined by the parameters s0 and �s0, which in general
are different. The factors in front of the theta terms have
been chosen so as to match the parton model logarithms of
Eqs. (9). The parameters �T , �V are given by

�Tð�Þ ¼ 1þ �sð�Þ
3	

�
7

3
þ 2 log

t

�2

�
;

�V ¼ 1þ �sð�Þ
	

:

(26)

They represent the first-order �s correction to the pertur-
bative contribution, the former also accounting for the fact
that the tensor current has a nonvanishing anomalous
dimension.

Using the dispersion relations of Eqs. (11), expanding
the result in inverse powers of momenta and matching onto
the short distance results of Eqs. (9), one finds

f2�þf2�0 �4

3

Nc
ð4	Þ2�Vs0 ¼ 0;

2�f
2
�þ2�0f2�0 þ�3�2

3

Nc
ð4	Þ2�2 �s0 ¼ 0;

f2�m
2
�þf2�0m2

�0 �2

3

Nc
ð4	Þ2�Vs

2
0 ¼� 1

12	
h�sG��G��i;

2�f
2
�m

2
�þ2�0f2�0m2

�0 �1

3

Nc
ð4	Þ2�4 �s

2
0 ¼

1

24	
h�sG��G��i;

(27)

where �2 and �4 are given by

�2ð�s0Þ ¼ 1þ 1

9

�sð ffiffiffiffiffi
�s0

p Þ
	

;

�4ð�s0Þ ¼ 1þ 4

9

�sð ffiffiffiffiffi
�s0

p Þ
	

:

(28)

Notice that above the renormalization point was chosen to
be �2 ¼ �s0.
As already noticed in Ref. [20], �s corrections in the

vector channel induce at most a 8% change in the decay
constants and will be dismissed. For the tensor channel, the
equations above show that the �s correction in the sum
rules is extremely small. For instance, at �s0 ¼ 1:5 GeV2,
they represent less than 2% for �2 and about 6% for �4.
Therefore, the perturbative corrections in �s can be safely
neglected.
For the numerical analysis, we will take as inputs the

masses, m� ¼ 770 MeV and m�0 ¼ 1440 MeV, and the

gluon condensate. Because of the existing uncertainty,
we will choose it to lay in the range h�sG��G��i ¼
ð0:001� 0:021Þ	 GeV4, which includes both the values
extracted from charmonium sum rules and � decays [21].

Additionally, we will use the relation f� ¼ ffiffiffi
2

p
f	, which

comes from assuming unsubtracted dispersion relations for
both the pion electromagnetic form factor and the axial
form factor in radiative pion decay [2] and has been shown
to be satisfied in sum rule analysis of vector and axial
channels. With f	 ¼ 131 MeV, one obtains f� ¼
185 MeV. Finally, we will further impose 2� ¼ 0:5, in

accord with the lattice determination. Notice that in the
sum rules we have included the�3 term. However, lacking
any estimate of the parameter, for our numerical analysis
we will set�3 ¼ 0, as commonly assumed in the literature.
Solving Eqs. (27) for f�0, s0, �s0 and �0, one finds

ffiffiffiffiffi
s0

p ¼ ð1:64� 0:02Þ GeV;ffiffiffiffiffi
�s0

p ¼ ð1:59� 0:02Þ GeV;
f�0 ¼ ð182� 5Þ MeV;

�0 ¼ ð0:95� 0:05Þ�;

(29)

where the errors quoted are due to the variation of the gluon
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condensate. Note that both s0 and �s0 yield reasonable
values, i.e., they satisfy m�ð1440Þ <

ffiffiffiffiffi
s0

p � ffiffiffiffiffi
�s0

p
<m�ð1750Þ.

The following comments are in order:
(i) Lower values of the gluon condensate, typical in

analysis of � decays, favor �0 � �. In particular,

notice that a vanishing gluon condensate, not ex-
cluded by � decay analyses, implies �0 ¼ � (to-

gether with s0 ¼ �s0).
(ii) Equations (27) provide a solution only for the nar-

row range 178 MeV � f� � 188 MeV. Inter-

estingly, the range complies with the relation f2� ’
2f2	.

In order to test our conjectured pattern of signs we have
to consider�VT . Our spectral ansatz will be the following:

1

	
Im�VTðtÞ ¼ �f

2
�m�
ðt�m2

�Þ þ �0f2�0m�0
ðt�m2
�0Þ:

(30)

Inserting the last expression and the OPE of Eq. (10) into
the dispersion relation and equating powers of q2 on both
sides we get

�2h �  i ¼ �f
2
�m� þ �0f2�0m�0;

� 2gs
3

h � ���G�� i ¼ �f
2
�m

3
� þ �0f2�0m3

�0:
(31)

Upon solving these equations for � and �0 we find

�0 ¼
2h �  im2

�

f2�0m�0ðm2
�0 �m2

�Þ
�
1� �

m2
�

�
;

� ¼ � 2h �  im2
�0

f2�m�ðm2
�0 �m2

�Þ
�
1� �

m2
�0

�
;

(32)

where

� ¼ gs
3

h � ���G�� i
h �  i ; (33)

is the ratio between the mixed and the quark condensate. In
view of Eqs. (32) there are three possible scenarios, de-
pending on the magnitude of � (recall that the quark
condensate is negative):

(i) � <m2
�, leading to alternation in sign, with positive

�;

(ii) m2
� < � <m2

�0, where both � and �0 are positive;
(iii) � >m2

�0, leading to alternation in sign but with a

negative �.

The last possibility is in clear contradiction with the lattice
result and can be readily excluded. Independent sum rule

analyses indeed concluded that [22]

�� 0:22 GeV2 <m2
�; (34)

so that the mixed condensate is small enough and leads to
alternation in sign.5 Note that the small value of the mixed
condensate in the second equation forces the alternation in
sign, whereas the quark condensate fixes the contribution
of the �ð770Þ to be positive.
More sophisticated sum rules have confirmed the pattern

of alternating contributions in �VT [12]. However, a word
of caution should be issued on the quantitative values of the
parameters extracted from such sum rules. We already
pointed out in the previous section that the presence of a
mass factor multiplying each resonance contribution in
Eq. (30) spoils the convergence of the series. As a result,
the sum rules are not stable under addition of new reso-
nance states in the spectral function. However, Eqs. (32)
distinctly show that there has to be some negative contri-
bution in the spectrum of �VT to outweigh the �ð770Þ
contribution.

VI. DISCUSSION

A remarkable property of QCD in the large-Nc limit is
that the qualitative characteristics of hadrons emerge natu-
rally from imposing quark-hadron duality consistency con-
ditions on the correlators of the theory. This very general
analysis does not rely on the particular flavor or Dirac
structure of the correlators. Therefore, any relation be-
tween a certain subset of correlators may turn out to yield
additional useful constraints on the spectrum of large-Nc
QCD.
In this paper we have shown that, for the set of correla-

tors�VV ,�
�
TT and�VT , even quantitative predictions can

be extracted. From a combined analysis we concluded that,
for highly excited states, fTVn=fVn � ð�1ÞnjfTVn=fVnj,
where jfTVn=fVnj ¼ 1=

ffiffiffi
2

p
. The ratio of decay constants is

fixed by the Dirac structure of the currents and equals the
ratio of the leading perturbative terms of �VV and �TT ,
while the alternation in sign is required to ensure the
convergence of �VT .
We find this result particularly beautiful. It is a really

striking prediction which relies only on the simultaneous
high-energy consistency of the correlators. In this sense,
the previous result can be rendered as a high energy
theorem of large-Nc QCD. Our analysis was restricted to
light-flavor vector mesons, but similar predictions should
be obtained for mesons with heavy flavors.
A natural issue to address at this point is whether this

pattern, valid for highly excited mesons in the large-Nc
limit, resembles QCD. The lattice recently computed the
ratio of the �ð770Þ decay constants, with the result
fT�ð�Þ=f� ¼ 0:72ð2Þ at � ¼ 2 GeV. The agreement is

5Incidentally, notice that arbitrarily large negative values of �
would have also led to this scenario.
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certainly impressive, and it seems suggestive to entertain
the scenario of n-independent decay constant ratios for the
�-meson radial excitations. We tested this possibility with
QCD sum rules and the pattern is reproduced to a remark-
able degree, especially for low values of the gluon
condensate.

In this paper we have concentrated on the high energy
behavior of the ‘‘bootstrap’’ correlators. It would be very
interesting to investigate the consequences that our results
shed at low energies. In a recent paper we already worked
out the low energy effective field theory of chirally-
symmetric operators coupled to tensor sources [10]. An
interesting issue one can now address is the impact of
Eqs. (24) on the predictions for the low energy chiral
couplings.
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