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Within the framework of a mathematically well-defined coupled-channel T-matrix model we have

improved the existing multichannel pole-extraction procedure based on the numerical analytic continu-

ation of the channel propagator, and for the first time we present the full set of pole parameters for already

published amplitudes. Standard single-channel pole-extraction method (speed plot) was then applied to

those amplitudes and resulting sets of T-matrix poles were inspected. The anomaly has been established

that in some partial waves the pole values extracted using the standard single-channel methods differ not

only from the values obtained using the analytic continuation method, but also change from one reaction

to another. Inspired by this peculiarity, we have developed a new single-channel pole-extraction method

based solely on the assumption of the partial wave analyticity. Since the speed plot turns out to be the

lowest order term of the proposed method, the anomaly is understood and resolved.

DOI: 10.1103/PhysRevD.77.116007 PACS numbers: 11.55.�m, 14.20.Gk, 25.40.Ny

I. INTRODUCTION

The determination of the scattering matrix (S-matrix)
is considered to be the major objective of both scatter-
ing theory and energy-dependent analysis of scattering
data. The collection of S-matrix poles in the ‘‘unphysical’’
Riemann sheet is related to resonance mass spectrum [1,2]
so obtaining them is the crucial goal of any partial-wave
analysis. There is, however, a long lasting (and yet unre-
solved) controversy on the resonances’ physical properties.
It is not clear whether physical mass and decay width of a
resonance are given by the ‘‘conventional’’ resonance pa-
rameters like Breit-Wigner mass and the decay width, or by
resonance pole parameters—real part and �2� imaginary
part of pole [3,4]. In the case of baryon resonances, the
compromise is achieved in a way that conventional, as well
as pole parameters, are collected in the Review of Particle
Physics (RPP) [5].

In this paper, we present two methods for obtaining the
resonance pole parameters from energy-dependent partial
waves. The first method, built into the Carnegie-Mellon-
Berkeley (CMB) formalism [6], is based on performing the
analytic continuation of a channel propagator. Instead of
using the tabulated values of the two-variable disper-
sion relations as it has been done in Ref. [7], we have
improved the method by using the analytic continuation in
a Pietarinen expansion form [8]. Using this method we
have extracted a set of pole parameters for the partial-wave
amplitudes of Ref. [7] and we show them here for the first
time.

As a self-consistency test, we have applied the standard
speed-plot technique (single-channel) to amplitudes of

Ref. [7] which describe various different channel reactions
and surprisingly obtained values which differed from those
obtained when using the inherent analytic continu-

ation method. In addition, the obtained parameters were
not identical for different channel processes. This anoma-
lous behavior challenged common sense, and the con-

clusion was drawn that either our partial-wave analysis
or the applied pole-extraction methods were incorrect.

The single-channel extraction methods were carefully ex-

amined and those methods were determined to be at fault.

This effort resulted in a new model-independent extraction
method free from this anomaly: the T-matrix regulariza-
tion method. The new procedure is based on eliminating
the simple pole and expanding the obtained regularized
function at the pole energy in a Taylor series over the
values on the real axis. The main quality of this method
is that it is not restricted to CMB formalism, and all of the
required information needed to use the proposed method
lie on the real (physical) axis of the complex-energy
plane—exactly where experiments provide data. When the
newmethod is applied to the test amplitudes of Ref. [7], the
discrepancies have disappeared and the set of poles ob-
tained with the analytic continuation method is repro-
duced. Therefore we recommend this method over the
usual model-independent methods (e.g. speed plot [3])
for obtaining resonance pole parameters.
To our satisfaction and surprise the standard speed-plot

technique turned out to be just the lowest order approxi-
mation of the regularization method, so the root of the
anomaly was found.
In addition, we calculated elastic pole residues and the

obtained values were in quite good agreement with others
published in the RPP [5]. Since there are still no RPP*sasa.ceci@irb.hr
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estimates for elastic residues, this result gives a convenient
tool for creating them.

There is a number of alternative ways in which the pole
parameters are presently extracted from the partial-wave
amplitudes. Since we are focusing our interest on the
quality of single-channel methods, speed plot in particu-
lar, we shall mention them only to acknowledge their
existence.

Other encountered procedures are the N=D method and
Flatté’s method.

The N=D method is a technique in which the dispersion
relations are used to construct the amplitudes in the physi-
cal region using the knowledge of the left-hand cut singu-
larities. The idea is to represent the partial-wave amplitude
as a ratio of two functions, the numerator is represented
with a function NðsÞ which is analytic in the s plane on the
left-hand cut only, and DðsÞ which is analytic on the right-
hand cut only. The poles of the scattering amplitude are
identified with the zeroes of the DðsÞ, and the problem of
extra zeroes is often difficult to solve. The method has been
introduced a long time ago by Ref. [9], and since then it has
been mostly used in meson physics, typically for cases
when the knowledge about the left-hand cut is available
[10,11].

Flatté’s method, introduced in 1976 [12], is based on
recognizing the fact that the partial-wave T-matrix experi-
ences the presence of new channel openings and the effect
is taken into account effectively by modifying the tradi-
tional Breit-Wigner form which is representing the reso-
nant structure with additional, energy-dependent terms
for the resonance width. The amplitude poles are extracted
as the singularities of the modified Breit-Wigner func-
tion. The possible issue with Flatté’s method is that it
assumes that the partial-wave amplitude can be represented
locally with a Breit-Wigner function.

We start our paper with a brief summary of the CMB
formalism. After that, we present the improvement of the
analytic continuation method, demonstrate the anomaly,
introduce the regularization procedure, and finally demon-
strate the disappearance of the single-channel speed-plot
technique anomaly. The last section is devoted to the
results and conclusions.

II. CORE OF THE CMB MODEL

Our current partial-wave analysis [7] is based on the
CMB approach [6]. The most prominent property of this
approach is analyticity of partial waves with respect to
Mandelstam s variable. In every discussion of partial-
wave poles, analyticity plays a crucial role since poles
are situated in a complex plane, away from the physical
region. Any knowledge about the nature of partial-wave
singularities would be impossible to gain if partial waves
were not analytic functions. The ability to calculate pole
positions is not just a benefit of the CMB model’s analy-
ticity but also a necessity for the resonance extraction. In

this approach, the resonance itself is considered to exist if
there is an associated partial-wave pole in the unphysical
sheet.
The central role of the CMB analysis belongs to the

unitary-normalized partial-wave T-matrix TðzÞ [6,7,13].
It is a matrix in channel indices and generic complex
variable z from now on denotes Mandelstam s. The con-
nection between S-matrix and T-matrix is given by SðzÞ ¼
Iþ 2iTðzÞ where I is the unit matrix. Two main ingre-
dients of the model are the channel propagator �ðzÞ (the
diagonal matrix in channel indices which takes care of
channel related singularities) and the bare resonant propa-
gator G0ðzÞ (the diagonal matrix in resonant indices incor-
porating real first-order poles related to resonances [and
background]). Background contribution is given by two
subthreshold poles (another pole may be placed further
above the considered energy region). Dressed resonance
propagator GðzÞ is given by the resolvent (Schwinger-
Dyson) equation G�1ðzÞ ¼ G�1

0 ðzÞ ��ðzÞ, where self-

energy term �ðzÞ is built from the channel propagator as
� ��ðzÞ � �T. The parameter matrix � is a nonsquare
matrix obtained from the least-square fit to experimental
or partial-wave data. In addition to � parameter matrices,
the values of the bare propagator real poles are concur-
rently acquired from the same fit. The partial-wave data are
fitted by the unitary-normalized partial-wave T-matrix
given by the relation

T ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im�ðzÞ

p
� �T �GðzÞ � � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im�ðzÞ

p
: (1)

The channel propagator matrix �ðzÞ is assembled from
channel propagator functions �ðzÞ. The dominant singu-
larity in the resonant region, apart from resonances them-
selves, is the physical (channel opening) branching point
x0. In the CMB approach, contributions from other singu-
larities (left-hand cut, nucleon pole, etc.) are given partly
by the design of the channel propagator imaginary part,
while the rest is taken care of by the background.
Analyticity of the channel propagator function �ðzÞ is

ensured by the once-subtracted dispersion relation

�ðzÞ ¼ z� x0
�

P
Z 1

x0

Im�ðx0Þdx0
ðx0 � zÞðx0 � x0Þ ; (2)

where P stands for Cauchy principal value. The physical
(unitarity) branch cut is, thus, chosen to go from the
branching point x0 to positive infinity. The variable x0 is
used in the integral rather than z0 to indicate the integration
path is on the real axis.
The form of the channel propagator imaginary part is

given as

Im�ðxÞ ¼ ½qðxÞ�2Lþ1ffiffiffi
x

p fQ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

2 þ ½qðxÞ�2
q

g2L
; (3)

where qðxÞ is the standard two-body center-of-mass mo-
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mentum for a particular meson-baryon channel,Q1 andQ2

are the CMB model parameters with values equal to the �
meson (or, in our case [7], the channel meson mass), and L
is the orbital angular momentum number of the given
partial wave.

III. EXTRACTION METHOD ONE:
ANALYTIC CONTINUATION

From Eq. (3) it is evident that �ðzÞ has a square-root
type singularity. Instead of calculating the dispersion in-
tegral (2) for each point in complex plane, we decided to
use the expansion (similar to Pietarinen’s in Ref. [8] or
Ciulli’s [14])

�IðzÞ ¼
XN
n¼0

cnðZIðzÞÞn; (4)

where cn are coefficients of expansion. The new channel
dependent variable is given by its principal branch

ZIðzÞ ¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � z
p

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � z

p ; (5)

with the tuning parameter�. This function is fitted to a data
set consisting of imaginary parts of �ðxÞ from Eq. (3) and
real parts of �ðxÞ calculated from dispersion relation (2),
both of them evaluated at the real axis (hence x). The
general idea is that the �ðzÞ inherits analytic structure
from ZðzÞ. We obtained parameters � and coefficients cn
for each channel and for all analyzed partial waves. The
least-square fit is considered to be good if it meets the
following conditions: (i) small number of coefficients cn

needed (7 or 8, at most); (ii) the function fitted to the part of
the data set, when extrapolated outside of the fitted region,
is consistent with the rest of data; and (iii) fitting just the
imaginary part of �ðxÞ produces real part that is in agree-
ment with values obtained from (2).
The channel propagator given by expansion (4) is ob-

tained quite accurately and works very well in the resonant
region in the vicinity of the physical axis.
Every channel opening is responsible for two Riemann

sheets: the first (physical) sheet with physical partial waves
and the secondary (unphysical) sheet with resonant poles.
To get to the unphysical sheet it is enough to use the second
branch of ZðzÞ

ZIIðzÞ ¼
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � z
p

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � z

p : (6)

Finally, it is evident from Eq. (1) that all poles of each
partial wave must by construction be the same in all
channels and, in fact, equal to the poles of the resolvent
GðzÞ.
In this paper, we use T-matrices obtained in our latest

published partial-wave analysis [7]. We collect all the
poles of GðzÞ obtained by analytic continuation method
as columns three and four in Table I. Since this method
gives poles of partial waves in Mandelstam s variable,
comparison to RPP estimates is made with the square
root of the Mandelstam pole (selecting branch with posi-
tive real part) denoted by �.

TABLE I. The N� resonance pole parameters obtained by the continuation along with RPP [5] estimates. The N/E term is given if a
resonance pole position does not have a RPP estimate, while the Nð?Þ stands for resonances unnamed in the RPP.

Review of Particle Physics [5] pole positions Analytic continuation

N� L2I2J Re� (MeV) �2 Im� (MeV) Re� (MeV) �2 Im� (MeV)

Nð1535Þ S11 1505(10) 170(80) 1517 190

Nð1650Þ S11 1660(20) 160(10) 1642 203

Nð2090Þ S11 N/E N/E 1785 420

Nð1440Þ P11 1365(20) 210(50) 1359 162

Nð1710Þ P11 1720(50) 230(150) 1728 138

Nð?Þ P11 N/E N/E 1708 174

Nð2100Þ P11 N/E N/E 2113 345

Nð1720Þ P13 1700(50) 250(140) 1686 235

Nð1520Þ D13 1510(5) 115(5) 1505 123

Nð1700Þ D13 1680(50) 100(50) 1805 130

Nð2080Þ D13 N/E N/E 1942 476

Nð1675Þ D15 1660(5) 140(15) 1657 134

Nð2200Þ D15 N/E N/E 2133 437

Nð1680Þ F15 1670(5) 120(15) 1664 134

Nð1990Þ F17 N/E N/E 1990 303

Nð?Þ G17 N/E N/E 1740 270

Nð2190Þ G17 2050(100) 450(100) 2060 393
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IV. ANOMALYAPPEARS

To make sure that the simple recipe given by Eq. (6)
provides us with the true pole parameters (i.e. that we are
searching for poles on the correct Riemann sheet
[2,15,16]), we compared the results obtained by Eq. (6)
with the values obtained by using the standard model-
independent pole-extraction method: single-channel speed
plot [3,17,18].

The speed-plot method relies on the following parame-
trization of the T-matrix amplitudes:

TðzÞ ¼ r

�� z|fflffl{zfflffl}
resonant part

þ
�
TðzÞ � r

�� z

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
smooth background

; (7)

where � and r are pole position and pole residue, and the
variable z stands for center-of-mass energy (

ffiffiffi
s

p
).

In the speed-plot method, the resonance poles are in
principle extracted from Eq. (7) with the (erroneous) as-
sumption that the ‘‘speed’’ of the background can be
completely neglected when compared to the speed of the
resonant part. In principle, if one plots modulus of the
speed of T (i.e. jdTðzÞ=dzj), the resonance produces a
peak in this speed plot. In practice, there are known ex-
ceptions to that rule: the Nð1535Þ state, for instance, is
actually hidden ‘‘under the cloak’’ of the �N channel
opening [3].

Using the speed-plot technique we have extracted the
pole parameters from the coupled-channel partial waves of

Ref. [7] for �N ! �N, �N ! �N, and �N ! �N reac-
tions. We summarized the results in Table II and compared
them to the pole parameters of analytic continuation
method. To our surprise, in some partial waves the obtained
pole positions turned out to be different for different re-
actions and shifted with respect to the analytic continuation
method by a few tens of MeV. That is in obvious contra-
diction with the input, because the pole positions are
manifestly identical for all T-matrix elements by the very
construction. Therefore, something was definitely wrong.

V. EXTRACTION METHOD TWO:
REGULARIZATION

To understand and explain the unacceptable, we have
thoroughly investigated the standard single-channel speed-
plot technique and realized that it is not an exact method
but only an approximation to a more general procedure. In
the following, we develop an exact method for extracting
the first-order pole from an arbitrary partial wave starting
only with a very general set of assumptions. We call it the
regularization method because its essence lies in the re-
moval of the singularity and subsequent analysis of the
obtained function. Finally, we compare the results obtained
using the regularization method to results of speed-plot
technique and analytic continuation.
Let there be an analytic function TðzÞ of complex vari-

able z which has a first-order pole at some complex point
�. The function TðzÞ can be any of the T-matrix elements
and variable z can be either Mandelstam s or center-of-

TABLE II. The N� resonance pole parameters obtained by the analytic continuation method and speed plot in various channels. The
Nð?Þ stands for resonances unnamed in the RPP.

Resonance Analytic continuation Speed-plot method

�N ! �N �N ! �N �N ! �N
N� L2I2J Re�

(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Nð1535Þ S11 1517 190 1506 83 1531 388 � � � � � �
Nð1650Þ S11 1642 203 1657 183 1601 208 1632 179

Nð2090Þ S11 1785 420 1764 133 � � � � � � 1917 423

Nð1440Þ P11 1359 162 1355 154 STa STa STa STa

Nð1710Þ P11 1728 138 1722 121 1733 154 1679 151

Nð?Þ P11 1708 174 � � � � � � � � � � � � � � � � � �
Nð2100Þ P11 2113 345 2131 394 2122 357 2116 360

Nð1720Þ P13 1686 235 1706 219 1617 289 1641 252

Nð1520Þ D13 1505 123 1505 129 1527 129 � � � � � �
Nð1700Þ D13 1805 130 1953 290 1809 129 � � � � � �
Nð2080Þ D13 1942 476 1960 270 � � � � � � � � � � � �
Nð1675Þ D15 1657 134 1657 136 1651 149 1620 108

Nð2200Þ D15 2133 439 2134 375 2141 422 2130 401

Nð1680Þ F15 1664 134 1665 135 1665 131 � � � � � �
Nð1990Þ F17 1990 303 1992 236 1979 362 � � � � � �
Nð?Þ G17 1740 270 1740 278 1774 148 � � � � � �
Nð2190Þ G17 2060 393 2051 333 1970 256 � � � � � �
aSubthreshold.
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mass energy
ffiffiffi
s

p
. In order to achieve a full correspondence

with the speed-plot technique, from now on we are going to
use the latter choice. Since all physical processes occur for
real energy values, we are allowed to directly determine
only TðxÞ for x being a real number. To be able to success-
fully continue TðxÞ into complex-energy plane (to search
for its poles), we should regularize this function (i.e.
remove the pole). In that case, any simple expansion of
the regularized function would converge in the proximity
of the removed pole.

The function TðzÞ with a simple pole at � is regularized
by multiplying it with a simple zero at �

fðzÞ ¼ ð�� zÞTðzÞ: (8)

From this definition and Eq. (7), it is evident that the value
of fð�Þ is equal to the residue r of TðzÞ at point �. As we
have the access to the function values on real axis only, the
Taylor expansion of f is performed about some real x to
give the value (residue) at the pole� (where background is
highly suppressed)

fð�Þ ¼ XN
n¼0

fðnÞðxÞ
n!

ð�� xÞn þ RNðx;�Þ: (9)

The expansion is explicitly written to the orderN and the
remainder is designated by RNðx;�Þ. Using the mathemati-
cal induction one can show that the Nth derivative of fðxÞ,
given by Eq. (8), is

fðnÞðxÞ ¼ ð�� xÞTðnÞðxÞ � nTðn�1ÞðxÞ: (10)

Insertion of this derivative into the Taylor expansion con-
veniently cancels all consecutive terms in the sum, except
the last one

fð�Þ ¼ TðNÞðxÞ
N!

ð�� xÞðNþ1Þ þ RNðx;�Þ; (11)

where TðNÞðxÞ is the Nth energy derivative of the T-matrix
element. To simplify the notation, the pole can be written
as a general complex number� ¼ aþ ib. Once the Taylor
series converges the remainder RNðx; �Þ can be disre-
garded and the absolute value of both sides of Eq. (11) is
given as

jfð�Þj ¼ jTðNÞðxÞj
N!

jaþ ib� xjðNþ1Þ: (12)

To keep the form as simple as possible, Eq. (12) is raised to
the power of 2=ðN þ 1Þ. After simple rearrangement of
terms, in which we have collected the information on the
T-matrix values on the right-hand side, and the information
on the pole position and residue on the left-hand side, the
elemental second-order polynomial emerges:

ða� xÞ2 þ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfð�Þj2Nþ1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN!Þ2

jTðNÞðxÞj2
Nþ1

s
: (13)

This equation enables us to directly extract the pole posi-

tion (a ¼ Re�, b ¼ Im�) and the absolute value of the
function residue jfð�Þj from the T-matrix values at the real
axis, namely, from the quantities directly attainable from
the energy-dependent partial-wave analysis and evaluated
at factual energy points x.
What we actually do is the following: we first find the

Nth derivative of the T-matrix and then we calculate the
right-hand side of Eq. (13). Observe that the exact knowl-
edge of the right-hand side of Eq. (13) in only three points
uniquely determines the pole parameters. The problem is
that we must make a choice which particular three points to
select. If points are too far from each other, there can be
other singularities that would influence their values. On the
other hand, if they are too close, numerical problems might
occur. There are basically two ways out: either (i) take
various three-point sets, evaluate the right-hand side of
Eq. (13), solve the equation for pole parameters, and make
a statistical analysis of obtained results; or (ii) fit the right-
hand side of Eq. (13) with the three parameter parabolic
function. We have chosen the latter option, since it is more
straightforward, and have obtained fitting parameters.
Up to now, we have shown how to obtain the real part of

the pole a, the square of the imaginary part b2, and the
magnitude of the residue jfð�Þj. The full complex residue
fð�Þ is obtained from Eq. (11) when convergence is
achieved. At this point, the RN term can be neglected.
Then, fð�Þ is evaluated by setting x ¼ Re�. Because all
resonances have negative imaginary parts, the sign of b is
taken to be negative. If the sign of b is taken to be the
opposite (i.e. positive) the phase of fð�Þ would be chang-
ing by � for running values of N.
In a form consistent with Ref. [5], the magnitudes and

phases of residues are calculated as

jrj ¼ jfð�Þj; tan� ¼ Imfð�Þ=Refð�Þ: (14)

The standard speed-plot method turns out to be the
regularization method in the first-order approximation!
[To get the speed plot, one should reduce the expansion
given by Eq. (9) to N ¼ 1 term.]
As a concluding remark, let us say that we did not have

to make any assumptions on the functional form of the
T-matrix under consideration, as was the case with the
N=D method. In the N=D method, the T-matrix is assumed
to be of Breit-Wigner form in a wider energy range around
the singularity; and only the total width is corrected with
the energy-dependent function in order to account for the
proximity of inelastic channel openings. In the regulariza-
tion method we have not assumed any functional form of
the T-matrix whatsoever but have only eliminated the
simple pole by multiplying the analyzed function with
the simple zero ð�� zÞ.

VI. RESULTS

Using the speed-plot technique we have extracted pole
parameters from the coupled-channel amplitudes of
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Ref. [7]. The obtained pole positions were different for
each process and shifted with respect to analytic continu-
ation method by a few tens of MeV. We claim that this is
unacceptable and demands to be understood, so we repeat a
similar analysis using the regularization method instead.

Despite being mathematically straightforward, the ap-
plication of the regularization method requires additional
explanation when using Eq. (13). Namely, we have to
answer the two major questions: (i) when to stop the

Taylor series expansion in Eq. (9) (to determine N) and
(ii) which energy interval of input data—given by the right-
hand side of Eq. (13)—to fit.
The answer is simple for the ideal case when we have no

additional poles and no channel openings. However, in the
real world we are faced with the situation where we have
more then one resonance per partial wave and numerous
inelastic channel openings. That makes life complicated
and we have to invent the criteria.
Let us illustrate how the method works in principle.

FIG. 1 (color online). A very simplified example: one reso-
nance and one channel opening.

FIG. 2 (color online). The illustration of the regularization
method in the case of Nð1535Þ S11 resonance.

TABLE III. The comparison of N� resonance pole parameters obtained by the analytic continuation method, and the regularization
method for �N, �N ! �N, and �N ! �N processes. Numbers in subscript are the expansion order required to obtain convergent
result.

Resonance Analytic continuation Regularization method

�N ! �N �N ! �N �N ! �N
N� L2I2J Re�

(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Re�
(MeV)

�2 Im�
(MeV)

Nð1535Þ S11 1517 190 1522ð7Þ 146ð7Þ � � � � � � � � � � � �
Nð1650Þ S11 1642 203 1647ð7Þ 203ð7Þ 1645ð10Þ 211ð10Þ � � � � � �
Nð2090Þ S11 1785 420 � � � � � � � � � � � � � � � � � �
Nð1440Þ P11 1359 162 1354ð8Þ 162ð8Þ STa STa STa STa

Nð1710Þ P11 1728 138 1729ð8Þ 150ð8Þ 1733ð5Þ 133ð5Þ 1728ð7Þ 142ð7Þ
Nð?Þ P11 1708 174 � � � � � � � � � � � � � � � � � �
Nð2100Þ P11 2113 345 2120ð6Þ 347ð6Þ 2120ð6Þ 347ð6Þ 2120ð6Þ 347ð6Þ
Nð1720Þ P13 1686 235 1691ð5Þ 235ð5Þ 1691ð5Þ 234ð5Þ 1691ð5Þ 235ð5Þ
Nð1520Þ D13 1505 123 1506ð4Þ 124ð4Þ � � � � � � � � � � � �
Nð1700Þ D13 1805 130 1806ð5Þ 132ð5Þ 1806ð4Þ 130ð4Þ � � � � � �
Nð2080Þ D13 1942 476 � � � � � � � � � � � � � � � � � �
Nð1675Þ D15 1657 134 1658ð5Þ 138ð5Þ 1657ð3Þ 137ð3Þ 1658ð5Þ 138ð5Þ
Nð2200Þ D15 2133 439 2145ð6Þ 439ð6Þ 2144ð4Þ 435ð4Þ 2144ð6Þ 438ð6Þ
Nð1680Þ F15 1664 134 1666ð4Þ 136ð4Þ 1665ð3Þ 136ð3Þ � � � � � �
Nð1990Þ F17 1990 303 2016ð7Þ 318ð7Þ 2015ð6Þ 322ð6Þ � � � � � �
Nð?Þ G17 1740 270 1749ð6Þ 280ð6Þ 1748ð6Þ 281ð6Þ � � � � � �
Nð2190Þ G17 2060 393 2068ð5Þ 389ð5Þ � � � � � � � � � � � �
aSubthreshold.
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Figure 1 shows a very simplified example: we analyze
the case with one resonance and one channel opening. The
channel opening determines (restricts) the radius of con-
vergence of the Taylor expansion, so the input data, i.e. the
right-hand side of Eq. (13), have to be restricted to the
convergence segment. In practice we do the following: we
construct the right-hand side of Eq. (13) for N ¼ 1, select
by ‘‘naked eye’’ a parabola-looking data set. Then we fit
the left-hand side to the data in order to extract the set of
pole parameters a, b, and jfð�Þj. We perform a series of
fits, starting with N ¼ 1, and wait until the resulting pa-
rameter set value stabilizes. Once the stability is achieved,
we declare that we have found the pole.

In reality, we have applied the identical procedure, but
choosing the correct parabola-looking subset of data was
the main source of indetermination.

The data set for the right-hand side of Eq. (13) was
produced from partial-wave amplitudes of Ref. [7].

For all three processes, TðNÞðxÞ was obtained by numeri-
cal differentiation of energy-dependent partial waves. A
2 MeV step size yielded a stable solution. The succession
of fits was performed by increasing the number of Taylor
series terms and the expansion is stopped when the
extracted parameter set settles down. We usually needed
3–8 terms in order to achieve the reasonable convergence
and the higher orders were needed only to confirm the
convergence.

The pole parameters attained in this way, with the sub-
script (N) denoting the number of required Taylor series

terms, are for all three calculated processes (in identical
form as in Table II) given in Table III.
The disagreement of the speed-plot recipe (N ¼ 1 regu-

larization method term) and the values obtained when
using the analytic continuation method is eliminated,
therefore we conclude that the simple recipe given by
Eq. (6) indeed chooses the poles on the correct Riemann
sheet. The explanation of the motivating problem (the
anomaly that the speed-plot technique gives different
results for different reactions) is obvious as well from
Table III: the final result is stable with respect to the choice
of different channel processes. The anomaly was due to the
fact that the speed-plot technique is the first-order approxi-
mation of the regularization method. The full calculation
(regularization method) gives the same answers for all
channels (provided that the result can be obtained using
this method).
The speed-plot technique works fine for relatively iso-

lated poles. When a pole is surrounded by other poles and/
or inelastic channel openings, as is the case for Nð1535Þ
S11 resonance, the first approximation of the regularization
method (speed plot) is not sufficient and one has to take
higher derivatives into consideration. The problem for this
notoriously problematic resonant state is illustrated in
Fig. 2.
Residues and phases for N� resonances are given in

Table IV. Since the RPP [5] does not provide averages
for the residue parameters, values from each residue table
in Ref. [5] were averaged with uniform weight.

TABLE IV. Residues and phases.

Review of Particle Physicsa [5] elastic pole residues Regularization method

N� L2I2J jrj (MeV) � (�) jrj (MeV) � (�)

Nð1535Þ S11 77 15 19 �146
Nð1650Þ S11 56 �56 84 �58
Nð2090Þ S11 40 0

Nð1440Þ P11 43 �101 47 �95
Nð1710Þ P11 11 �176 52 �156
Nð?Þ P11 � � � � � � � � � � � �
Nð2100Þ P11 14 35 31 �59
Nð1720Þ P13 14 �124 19 �112
Nð1520Þ D13 34 �8 36 �14
Nð1700Þ D13 6 0 7 �36
Nð2080Þ D13 20 50 � � � � � �
Nð1675Þ D15 28 �25 25 �20
Nð2200Þ D15 20 �90 22 �71
Nð1680Þ F15 40 �14 45 �26
Nð1990Þ F17 9 �60 8 �25
Nð?Þ G17 � � � � � � 6 �86
Nð2190Þ G17 46 �31 34 �30

aSince RPP does not provide estimates for residues and phases, we averaged published values
with uniform weight.
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VII. CONCLUSIONS

The improved analytic continuation method (Pietarinen-

like expansion of the channel propagator), which has been

developed for the coupled-channel formalism, provides

pole positions quickly and precisely while avoiding prob-

lems with numerical principal value integration and inter-

polation. The obtained pole positions are in accordance

with RPP values.
The developed regularization method represents an im-

provement of contemporary single-channel pole-extraction
methods. We demonstrate that it successfully finds reso-
nance pole parameters from an energy-dependent T-matrix

in a model-independent way, i.e. without having to assume
a specific T-matrix functional form.
Furthermore, the regularization method can be generally

applied to most analytic functions that have a simple pole
and values known on any line segment reasonably close to
the pole.
The single-channel speed-plot recipe is only the first-

order term of the regularization method and it should be
applied with special care.
The elastic pole residues are in accordance with those

given in RPP. Since there are still no elastic residue esti-
mates in RPP, we strongly advocate making them in future
editions.
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