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Spontaneous breaking of rotational symmetry in rotating solitons: A toy model of excited nucleons
with high angular momentum
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We study the phenomenon of spontaneous breaking of rotational symmetry in the rotating solutions of
two types of baby Skyrme models. In the first, the domain is a two-sphere, and in the other, the Skyrmions
are confined to the interior of a unit disk. Numerical full-field results show that when the angular
momentum of the Skyrmions increases above a certain critical value, the rotational symmetry of the
solutions is broken and the minimal-energy configurations become less symmetric. We propose a possible
mechanism as to why spontaneous breaking of rotational symmetry is present in the rotating solutions of
these models, while it is not observed in the “usual” baby Skyrme model. Our results might be relevant
for a qualitative understanding of the nonspherical deformation of excited nucleons with high orbital

angular momentum.
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I. INTRODUCTION

The phenomenon of spontaneous breaking of rotational
symmetry (SBRS) in rotating systems relates to occur-
rences in which physical systems which rotate fast enough
deform in a manner which breaks their rotational symme-
try, a symmetry which is present when these systems are
static or rotating slowly. The recognition that rotating
physical systems can yield solutions with less symmetry
than the governing equations is not new. One famous
example which dates back to 1834 is that of the equilibrium
configurations of a rotating fluid mass. It was Jacobi who
was first to discover that, if rotated fast enough, a self-
gravitating fluid mass can have equilibrium configurations
lacking rotational symmetry. In modern terminology,
Jacobi’s asymmetric equilibria appear through a
symmetry-breaking bifurcation from a family of symmet-
ric equilibria as the angular momentum of the system
increases above a critical value (a ‘“‘bifurcation point™)
[1,2]. Above this critical value, rotationally symmetric
configurations are no longer stable, and configurations
with a broken rotational symmetry become energetically
favorable.

By now it is widely recognized that symmetry-breaking
bifurcations in rotating systems are of frequent occurrence
and that this is in fact a very general phenomenon, appear-
ing in a variety of physical settings among which are fluid
dynamics, star formation, heavy nuclei, chemical reac-
tions, plasmas, and biological systems, to mention some
diverse examples.

Recently, SBRS has also been observed in self-
gravitating N-body systems [3,4], where the equilibrium
configurations of an N-body self-gravitating system en-
closed in a finite three-dimensional spherical volume
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have been investigated using a mean-field approach. It
was shown that when the ratio of the angular momentum
of the system to its energy is high, spontaneous breaking of
rotational symmetry occurs, manifesting itself in the for-
mation of double-cluster structures. These results have also
been confirmed with direct numerical simulations [5].

It is well known that a large number of phenomena
exhibited by many-body systems have their counterparts
and parallels in field theory, which in some sense is a
limiting case of N-body systems in the limit N — oo.
Since the closest analogies to a lump of matter in field
theories are solitons, the presence of SBRS in self-
gravitating N-body systems has led us to expect that it
may also be present in solitonic field theories.

Our main motivation towards studying SBRS in solitons
is that in hadronic physics Skyrme-type solitons [6] often
provide a fairly good qualitative description of nucleon
properties. In particular, it is interesting to ask what hap-
pens when such solitons rotate quickly, because this might
shed some light on the nonspherical deformation of excited
nucleons with high orbital angular momentum, a subject
which is now of considerable interest. We address this
issue in more detail in the concluding section of this
manuscript.

In what follows, we study SBRS in one of the simplest
and well-known field theoretic models admitting stable
rotating solitonic solutions, namely, the baby Skyrme
model [7,8]. First, we give a brief account for the occur-
rence of SBRS in physical systems in general, and then use
the insights gained from this discussion to infer the con-
ditions under which SBRS might appear in solitonic mod-
els and, in that context, study its appearance in baby
Skyrme models. Specifically, we shall show that SBRS
emerges if the domain manifold of the model is a two-
sphere or a disk, while if the domain is R2, SBRS does not
occur.
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I1. SBRS FROM A DYNAMICAL POINT OF VIEW

The onset of SBRS may be qualitatively understood as
resulting from a competition between the static energy of a
system and its moment of inertia. To see this, let us con-
sider a system described by a set of degrees of freedom ¢,
and assume that the dynamics of the system is governed by
a Lagrangian which is invariant under spatial rotations.
When the system is static, its equilibrium configuration is
obtained by minimizing its static energy E,;. With respect
to its degrees of freedom ¢,

6E
<7 =0 where E = Estallc(¢) (1)

6¢
Usually, if Eg,;.(¢) does not include terms which mani-
festly break rotational symmetry, the solution to (1) is
rotationally symmetric (with the exception of degenerate
spontaneously broken vacua, which are not of our concern
here). If the system rotates with a given angular momentum
J = JZ, its configuration is naturally deformed. Assuming
that the Lagrangian of the system is quadratic in the time
derivatives, stable rotating configurations (if such exist) are
obtained by minimizing its total energy E;,
OFE J?
5(; 0 where EJ stanc(‘ﬁ) 2I(¢)

where I(¢) is the ratio between the angular momentum of
the system and its angular velocity @ = wZ (which for
simplicity we assume is oriented in the direction of the
angular momentum). I(¢) is the (scalar) moment of inertia
of the system.

The energy functional (2) consists of two terms. The
first, Egic, increases with the asymmetry. This is simply a
manifestation of the minimal-energy configuration in the
static case being rotationally symmetric. The second term
J? /21, having the moment of inertia in the denominator,
decreases with the asymmetry. At low values of angular
momentum, the E;. term dominates, and thus asymmetry
is not energetically favorable, but as the value of angular
momentum increases, it is the second term which becomes
dominant, thus giving rise to a possible breaking of rota-
tional symmetry.

2

A. The self-gravitating ellipsoid

As an illustration of the above reasoning, let us consider
the simple problem of a self-gravitating ellipsoid of liquid
mass M [9]. The density of the ellipsoid p is assumed to be
constant but its shape is allowed to deform. The boundary
of the ellipsoid may be parametrized by

4wp  sin’6
0, = 204 —- —— —
10, ) = (nieostt + 10 S0
1/2
X (1+ € — ZECOSZQD)) , 3)

with 6 € [0, 7] being the polar angle and ¢ € [0, 277) the
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azimuthal angle. Here, the ellipsoid has 2 degrees of free-
dom, ¢ = (n, €), with a third degree of freedom elimi-
nated by the constraint of constant volume, and a nonzero
value of € indicates breaking of rotational symmetry. The
static energy of the ellipsoid is due to self-gravitation and
is given by

Euin. ) = = 156M? [ (@ + wlas + 0
X (a3 + u))~"/2du, 4)
where a 211‘47;75, =?47;ﬁ,and a; = 1/9% [1].

The minimal-energy configuration of the static self-
gravitating ellipsoid is obtained by minimizing (4) with
respect to the parameters 1 and e, giving

. (47Tp>1/ 3
imMm)
This means that the configuration that minimizes E; is a

sphere. When the ellipsoid is rotated with angular momen-
tum J = JZ, the expression for its energy becomes

e=0—r0¢)=1/n. (5

2

E; = Egye(m, € + =, 6
J slatlc(n E) 21(11’ 6) ( )
where I(7, €) is the moment of inertia of the ellipsoid
3M’n 1+ €
I(n, e) = 7
&) =T0mp T= & ™

Note that both Eg,;.(n, €) and I(n, €) are monotonically
increasing functions of the symmetry-breaking parameter
€, as discussed earlier. It is the “‘competition” between
these two expressions in the minimization of (6) that
determines whether and when SBRS occurs.

A (numerical) minimization of the energy functional (6)
for different values of J with respect to the parameters 7
and € (the constants of the problem are taken to be
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0.6 ¢ T 0.6
w 0371 103
0 0
0 0.5 1.0 1.5
J

FIG. 1. The self-gravitating ellipsoid (M = 577 p =1, and
GM? = 5/3): the “symmetry-breaking” parameter e for the
minimal-energy configuration as a function of the angular mo-
mentum J, showing the existence of a critical angular momen-
tum J; = 0.8 above which the ellipsoid is no longer axially
symmetric. The line is to guide the eye.
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M=%m, p=1, and GM? =5/3) indeed reveals the
presence of SBRS. Below a critical value of angular mo-
mentum J;, (which here is J;; = 0.8), axially symmetric
configurations are energetically more favorable, and € = 0
minimizes the energy; the ellipsoid boundary is an oblate
spheroid. Above J_;, however, the energy functional is no
longer minimized by € = 0 and bifurcation occurs; the
minimal-energy configurations become ellipsoids with
three unequal axes. These results are summarized in Fig. 1.

III. SBRS IN BABY SKYRME MODELS

In what follows, we show that the above mechanism of
SBRS is present in solitonic field theories as well, specifi-
cally in certain types of baby Skyrme models.

The baby Skyrme model is a nonlinear theory in (2 + 1)
dimensions which has several applications in condensed-
matter physics [10]. The target manifold is a three-
dimensional vector ¢b with the constraint ¢b - ¢p = 1. The
Lagrangian density is given by

K2
L=, 0nd— [0, 0mpP
(0, 0,0) (0 0B)] ~ 21— by). (®)

equipped with a Minkowski metric. The first term in the
Lagrangian is the usual kinetic term known from o models.
The second term is fourth order in derivatives and is the
analogue of the Skyrme term in the (3 + 1)D Skyrme
model [11,12]. The last term is a potential term, which is
introduced to ensure the stability of the solutions [13].
Henceforth, we shall refer to this model as the ‘“‘usual”
or “original” baby Skyrme model.

The existence of stable solutions in this model is a
consequence of the nontrivial topology of the mapping
M of the physical space into the field space at a given
time, M: R? — S2, where the physical space R? is com-
pactified to S? by requiring the spatial infinity to be equiva-
lent in each direction. The topology which stems from this
one-point compactification allows the classification of
maps into equivalence classes, each of which has a unique
conserved quantity called the topological charge.

The static solutions of the baby Skyrme model (8) have
rotationally symmetric energy and charge distributions in
the charge-one and charge-two sectors [7]. The charge-one
Skyrmion has an energy peak at its center which drops
down exponentially. The energy distribution of the charge-
two Skyrmion has a ringlike peak around its center at some
characteristic distance. The rotating solutions of the model
have also been previously studied [8,14]. It has been found
that rotation at low angular velocities slightly deforms the
Skyrmion, but it remains rotationally symmetric. For larger
values of angular velocity, the rotationally symmetric con-
figuration becomes unstable, but in this case the Skyrmion
does not undergo symmetry breaking. Its stability is re-
stored through a different mechanism, namely, that of
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radiation. The Skyrmion radiates out the excessive energy
and angular momentum and, as a result, begins slowing
down until it reaches equilibrium at some constant angular
velocity, its core remaining rotationally symmetric.
Moreover, if the Skyrme fields are restricted to a rotation-
ally symmetric (hedgehog) form, the critical angular ve-
locity above which the Skyrmion radiates can be obtained
analytically. It is simply the coefficient of the potential
term wg; = o [8]. Numerical full-field simulations we
have conducted show that the Skyrmion actually begins
radiating well below w,;, as radiation itself may be non-
rotationally symmetric. The Skyrmion’s core, however,
remains rotationally symmetric for every angular velocity.

The stabilizing effect of the radiation on the solutions of
the model has led us to believe that models in which
radiation is somehow inhibited may turn out to be good
candidates for the occurrence of SBRS. In the present
paper we study two such baby Skyrme models. In these
models energy and angular momentum are not allowed to
escape to infinity through radiation, and for high enough
angular momentum the mechanism responsible for SBRS
discussed in the previous section takes over, revealing
solutions with spontaneously broken rotational symmetry.

The first model we discuss is a baby Skyrme model in
which the physical space R” is replaced by a unit two-
sphere, and in the second model Skyrmions are confined to
the inside of a unit circle in R?. We compute the minimal-
energy configurations of the rotating solutions of both
models by applying a full-field relaxation method with
which exact numerical solutions are obtained. For the
baby Skyrme model on the two-sphere we also take a
more analytical approach using rational maps. We discuss
these models and the minimization method in more detail
in the next section.

IV. THE BABY SKYRME MODEL ON THE
TWO-SPHERE

The first baby Skyrme model we investigate which ex-
hibits SBRS is the one for which both the domain and
target manifolds are unit two-spheres. This model may be
thought of as Skyrme’s original 3D model once the radial
coordinate is integrated out [15]. As in the usual baby
Skyrme model, the Lagrangian density is simply

K2
L= 0.0t~ S0, )
(b 0,4 ")) ©

with the metric ds> = d*> — d§? — sin’6d¢?, where 0 is
the polar angle € [0, 77] and ¢ is the azimuthal angle &
[0, 27). In this model a potential term is not necessary for
the stability of the solutions [15] and thus is omitted. The
Lagrangian of this model is invariant under rotations in
both the domain and the target spaces, possessing an
0(3)domain X 0(3)targel symmetry.
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As in the original baby Skyrme model, the relevant
homotopy group here is 7,(5%) = Z, implying that each
field configuration is characterized by an integer topologi-
cal charge B, the topological degree of the map ¢, which in
spherical coordinates is given by

1 & - (99 X 9,¢)
B_E[dﬂ sinf :

where d() = sinfdfd¢. Static solutions within each topo-
logical sector are obtained by minimizing the energy func-
tional

, (10)

1 1 1 1
Eipic =—— | dQ[(=(0 24+ d 2
static 47B [ (2( 0¢) 2 sin20( ¢¢)

+ K_2 (aﬁ(ﬁ X a¢¢)2),

2 sin%6

(In

where the (47B)™! factor has been inserted for conve-
nience. The static solutions of the model were studied in
detail in [15] up to charge B = 14. These which are rota-
tionally symmetric are the charge-one Skyrmion which has
an analytic “hedgehog” solution with spherically symmet-
ric energy and charge distributions, and the charge-two
solution which has an axially symmetric ringlike solution.
In order to find the stable rotating solutions of the model,
we assume for simplicity that any stable solution would
rotate around the axis of angular momentum (which is
taken to be the z direction) with some angular velocity
w. The rotating solutions thus take the form ¢ (6, ¢, 1) =
(0, ¢ — wt). The energy functional to be minimized is

J2
E= Estatic + ﬂ’ (12)
where [ is the ratio of the angular momentum of the
Skyrmion to its angular velocity, or its ‘““moment of iner-

tia,” given by

- fdQ((6¢¢)2 T K209 X 9,00 (13)

A. The numerical procedure

Since the Euler-Lagrange equations derived from the
energy functional (12) are nonlinear partial differential
equations, in general the minimal-energy configurations
can only be obtained with the aid of numerical techniques.
In what follows, we obtain the minimal-energy configura-
tions which correspond to rotating Skyrmion solutions,
using a full-field relaxation method, in which the domain
S§? is discretized to a spherical grid—100 grid points for 6
and 100 points for ¢. The relaxation process begins by
initializing the field triplet ¢ to a rotationally symmetric
configuration,

@ iniiial = (sind cosB e, sinf sinB g, cosb), (14)
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where B is the topological charge of the Skyrmion in
question. The energy of the baby Skyrmion is then mini-
mized by repeating the following steps: a point (8,,, ¢,,) on
the grid is chosen at random, along with one of the three
components of the field ¢(6,,, ¢,,). The chosen component
is then shifted by a value 04 chosen uniformly from the
segment [—Ay, A,] where A, = 0.1 initially. The field
triplet is then normalized and the change in energy is
calculated. If the energy decreases, the modification of
the field is accepted and otherwise it is discarded. The
procedure is repeated while the value of A, is gradually
decreased throughout the procedure. This is done until no
further decrease in energy is observed.

One undesired feature of this minimization scheme is
that it can get stuck at a local minimum. This problem can
be resolved by using the “‘simulated annealing” algorithm
[16,17], which in fact has been successfully implemented
before, in obtaining the minimal-energy configurations of
static two- and three-dimensional Skyrmions [18]. The
algorithm is comprised of repeated applications of a
Metropolis algorithm with a gradually decreasing tempera-
ture, based on the fact that when a physical system is
slowly cooled down, reaching thermal equilibrium at
each temperature, it will end up in its ground state. This
algorithm, however, is much more expensive in terms of
computer time. We therefore employ it only on a repre-
sentative sample of the parameter space, just as a check on
our results, which correspond to a Metropolis algorithm of
zero temperature.

B. Results

In what follows we present the results obtained by the
minimization scheme described in the previous section to
the rotating solutions of the model in the charge-one and
charge-two sectors, which as mentioned above are rota-
tionally symmetric. For simplicity, we fix the parameter «
at k> = 0.01, although other « values were tested as well,
yielding qualitatively similar solutions.

1. Rotating charge-one solutions

In perfect analogy with the self-gravitating ellipsoid
discussed in the Introduction, the rotating charge-one
Skyrmion, which has spherically symmetric energy and
charge distributions in the static limit [Fig. 2(a)], was
found to exhibit SBRS. When rotated slowly, its symmetry
is reduced to O(2), with the axis of symmetry coinciding
with the axis of rotation [Fig. 2(b)]. At some critical value
of angular momentum (which in the current settings is
Jeie = 0.2), the axial symmetry is further broken, yielding
an ellipsoidal energy distribution with three unequal axes
[Fig. 2(c)]. Any further increase in angular momentum
results in the elongation of the Skyrmion in one horizontal
direction and its shortening in the perpendicular one. The
results are very similar to those of the rotating self-
gravitating ellipsoid.
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(c) J =0.26

FIG. 2. Baby Skyrmions on the two-sphere (x> = 0.01): the charge distribution B(6, ¢) of the charge-one Skyrmion for different
angular momenta. In the figure, the vector B(6, ¢)F is plotted for the various 6 and ¢ values.

2. Rotating charge-two solutions

SBRS is also observed in rotating charge-two
Skyrmions. The static charge-two Skyrmion has only axial

symmetry [Fig. 3(a)], with its symmetry axis having no
preferred direction. Nonzero angular momentum aligns the
axis of symmetry with the axis of rotation. For small values

11114}

(b) J =0.55

(e) J =0.75

FIG. 3. Baby Skyrmions on the two-sphere (x> = 0.01): the charge distribution B(6, ¢) of the charge-two Skyrmion for different
angular momenta. In the figure, the vector B(6, ¢)F is plotted for the various 6 and ¢ values.
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of angular momentum, the Skyrmion is slightly deformed
but remains axially symmetric [Fig. 3(b)]. Above J ; =
0.55, however, its rotational symmetry is broken, and it
starts splitting to its “‘constituent” charge-one Skyrmions
[Figs. 3(c) and 3(d)]. As the angular momentum is further
increased, the splitting becomes more evident, and the
Skyrmion assumes a stringlike shape. This is somewhat
reminiscent of the well-known elongation, familiar from
high-spin hadrons which are also known to assume a
stringlike shape with the constituent quarks taking position
at the ends of the string [19,20].

A quantitative measure for the deviation from rotational
symmetry of the rotating solutions may be obtained by
evaluating the expression

2
A? = f(% /fB(@, ®) sianH) czl—j; -1, (15)

where B(6, ¢) is the charge density of the Skyrmion. For
rotationally symmetric configurations A = 0. In Fig. 4, A
is plotted against the angular momentum J, for both the
charge-one and the charge-two solutions. The qualitative
similarity to the bifurcation occurring in the rotating liquid
mass system shown in Fig. 1 is clear.

C. The rational map ansatz

A somewhat more analytical analysis of this system may
be achieved by the use of the rational maps approximation
scheme [21], which is known to provide quite accurate
results for the static solutions of the model [15]. In this
approximation, points on the base sphere are expressed by
the Riemann coordinate z = tang ¢'¢, and the ansatz for the
field triplet is

o <R+R "R—R 1—|R|2)
= s 1 s s
1+|RI*> 1+ |RI* 1+ |RI?

(16)

where the complex-valued function R(z) is a rational map
of degree B between Riemann spheres,

0 0.5 1.0

105

1.0

FIG. 4. The deviation from rotational symmetry A of the
rotating charge-one (denoted by X) and charge-two (denoted
by o) Skyrmions for different values of angular momentum. The
lines are to guide the eye.
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q(2)’ {an
Here, p(z) and ¢(z) are polynomials in z, such that
max[deg(p), deg(g)] = B, and p and g have no common
factors. Rational maps of degree B correspond to field
configurations with charge B.

In its implementation here, we have simplified matters
even more and reduced the degrees of freedom of the maps
by a restriction only to those maps which exhibit the
symmetries observed in the rotating full-field solutions.
This allowed the isolation of those parameters which are
the most critical for the minimization of the energy
functional.

As shown in Fig. 2, the charge and energy densities of
the charge-one Skyrmion exhibit progressively lower sym-
metries as J is increased. The static solution has an O(3)
symmetry, while the slowly rotating solution has an O(2)
symmetry. Above a certain critical J, the O(2) symmetry is
further broken and only an ellipsoidal symmetry survives.
Rational maps of degree one, however, cannot produce
charge densities which have all the discrete symmetries
of an ellipsoid with three unequal axes. Nonetheless, ap-
proximate solutions with only a reflection symmetry
through the xy plane (the plane perpendicular to the axis
of rotation) and a reflection through one horizontal axis
may be generated by the following one-parametric family
of rational maps:

Cosa

R(z) = ———, 18
(2) z + sina (18)
which has the charge density
cosa 2
B0, o) = - - . 19
. ¢) (1 + sina sinf cosgo) (19

Here, @ € [—m, 7] is the parameter of the map, with a =
0 corresponding to a spherically symmetric solution and a
nonzero value of « corresponding to a nonrotationally
symmetric solution. Results of a numerical minimization
of the energy functional (12) for fields constructed from
(18) for different values of angular momentum J are shown
in Fig. 5(a). While for angular momentum less than J; =
0.1, @ = 0 minimizes the energy functional (a spherically
symmetric solution), above this critical value bifurcation
occurs and @ = 0 is no longer a minimum; the rotational
symmetry of the charge-one Skyrmion is broken and it
becomes nonrotationally symmetric.

A similar analysis of the charge-two rotating solution
yields the one-parametric map

sina + 72 cosa

R(z) = ——, 20
@ cosa + 7% sina (20)
with corresponding charge density
2 cos2a sinf 2
3(0,¢)=( — ) (1)
2 + sin“f(sin2a cos2¢ — 1)
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FIG. 5. Spontaneous breaking of rotational symmetry in the
restricted rational maps approximation for the baby Skyrmions
on the two-sphere: the parameter « as a function of the angular
momentum J, for the charge-one (top panel) and the charge-two
(bottom panel) solutions. The lines are to guide the eye.

In this case, @ = 0 corresponds to a toroidal configuration,
and a nonzero value of « yields solutions very similar to
those shown in Fig. 3, having the proper discrete symme-
tries. The results in this case are summarized in Fig. 5(b),
indicating that above J; = 0.57 the minimal-energy con-
figuration is no longer axially symmetric.

The discrepancies in the critical angular momenta J_;
between the full-field method (0.2 for charge-one and 0.55
for charge-two) and the rational maps scheme (0.1 for
charge-one and 0.57 for charge-two) are of course ex-
pected, as in the latter method the solutions have only 1
degree of freedom. Nonetheless, the qualitative similarity
in the behavior of the solutions in both cases is strong.

V. THE BABY SKYRME MODEL ON A DISK

A second model in which SBRS is observed is a baby
Skyrme model for which radiation is inhibited by confining
the Skyrmion to the inside of a unit circle. The domain R>
of the usual baby Skyrme model is replaced by the unit disk

D?>={x e R |x|>* = 1}. (22)

To recover the topology necessary for the existence of
nontrivial solutions, we require that the fields are the
same in each direction on the bounding unit circle. This
results in the domain D? becoming topologically equiva-
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lent to a two-sphere, and the topological charge is now
given by the expression

1
B = in sz drdee - (0,¢p X 9,¢), (23)

where r and ¢ are the usual polar coordinates. As in the
usual baby Skyrme model, the static solutions are found by
minimizing the static energy functional

1 1 1
Estatic = 477_73 [Dz }"d}"dg0<§ (ard’ ' ar¢ + ﬁagod) ' 6¢¢)

L0 Xzam)z N

. wi-g) e

where the integration is over the unit disk, and the rotating

solutions are equivalently obtained by minimizing the

functional

J2

E ’

where as before / is the moment of inertia:

i rdrdf(9 ,¢ - 9, + k>0, X 3 ,P)?).
(26)

The numerical minimization of the energy functional has
been carried out using the relaxation method discussed
earlier in the case of the baby Skyrme model on the two-
sphere, and the parameters of the model were fixed at > =
1 and «* = 0.01 for simplicity.

Here we focused our attention on the charge-one and
charge-two Skyrmions, as in the static limit these are found
to be rotationally symmetric with the form

& (r, 0) = (sinf(r) cosBe, sinf(r) sinBe, cosf(r)), (27)

where the profile function f(r) satisfies the boundary con-
ditions f(0) = 7 and f(1) = 0. Figure 6 shows the profile
function obtained for each of the charges.

As in the baby Skyrme model on the two-sphere, spon-
taneous breaking of rotational symmetry is observed in this

EJ = Estatic + (25)

1
= ——
47TB D

f(r)
TR

ISEE

. .
0.5 1

FIG. 6. The baby Skyrme model on a disk (u? = 1and «?> =
0.01): profile functions of the static charge-one (solid line) and
charge-two (dotted line) Skyrmions.
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Charge density

0.101

0.05 ‘ ‘ ‘ ‘
(@ J=0 (b)J=0.01 (c)J=0.04 (d)J=0.07

FIG. 7 (color online). Top: The charge density of the charge-
one Skyrmion for different values of the angular momentum.
Bottom: Corresponding contour plots ranging from violet (low
density) to red (high density). Above J = (.03, the minimal-
energy configurations are no longer rotationally symmetric; the
center of mass of the Skyrmion is slightly shifted towards the
bounding circle.

model as well. In the charge-one sector, below J = 0.03
the stable solutions are rotationally symmetric with only
slight deformations from the static shape. Above this value
SBRS appears; the Skyrmion’s center of mass shifts to-
wards the bounding circle. This is summarized in Fig. 7. A
similar situation occurs for the charge-two Skyrmions. The
critical value there is J = 0.14 as illustrated in Fig. 8. The
behavior of the rotating solutions may be understood as
follows: by moving away from the center of the circle, the
moment of inertia of the Skyrmion increases as dictated by
Steiner’s theorem. Since its shape remains more or less the
same, its “‘self-energy” stays relatively unaffected (this is
more evident in the charge-one case).

Charge density
0.08

0.04

(ay J =0

(b) J=0.1 (¢c)J=0.12 (d)J=0.19
FIG. 8 (color online). Top: The charge density of the charge-
two Skyrmion for different values of the angular momentum.
Bottom: Corresponding contour plots ranging from violet (low
density) to red (high density). Above J = (.11, the minimal-

energy configurations are no longer rotationally symmetric.
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FIG. 9. The baby Skyrme model on a disk: the symmetry-
breaking measure A as a function of the angular momentum
for the charge-one (denoted by X) and the charge-two (denoted
by o) Skyrmions.

As with the baby Skyrmions on the two-sphere, the
deviation from rotational symmetry is measured by

A2 = /(% ffB(r, go)rdr)zczl—i -1, (28)

with B(r, ¢) being the charge density of the Skyrmion. In
Fig. 9, A is plotted as a function of the angular momentum,
showing the emergence of SBRS as bifurcation points at
the critical values of angular momentum.

VI. SUMMARY AND FURTHER REMARKS

In this work we have studied SBRS in two solitonic
models whose solutions exhibit SBRS when the angular
momentum is sufficiently high. We have shown that the
emergence of SBRS in these models can be directly linked
to its appearance in classical mechanical systems, such as
the rotating liquid mass, and that this linkage originates
from general principles, and hence points out the universal-
ity of this phenomenon.

We believe that the results obtained in the present work
may, at least to some extent, also be linked to recent
advances in understanding the nonsphericity of excited
nucleons with large orbital momentum. Nonspherical de-
formation of the nucleon shape is now a focus of consid-
erable interest, both experimentally [22,23] and
theoretically [24-26]. As Skyrmions are known to provide
a good qualitative description of many nucleon properties,
we hope that the results presented here will provide some
corroboration to recent results on this subject, e.g., [26],
although a more detailed analysis of this analogy is in
order. We hope to be able to report on these matters in
forthcoming publications.
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