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We calculate the stress tensor, or energy-momentum tensor, form factors of the pion and of axial-vector

mesons in the chiral limit of a hard-wall AdS/conformal-field-theory model of QCD. One (of the two)

pion gravitational form factors is directly related to the second moment of the pion generalized parton

distribution, thus providing a sum rule for the latter. As was also the case for vector mesons, both the pion

and the axial-vector mesons appear strikingly more compact measured by the gravitational form factor

than by the electromagnetic form factor.
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I. INTRODUCTION

In this paper we calculate gravitational form factors,
which are form factors of the stress or energy-momentum
tensor, in the axial sector using a hard-wall model of
AdS/QCD.

The gauge/gravity or AdS/conformal-field-theory (CFT)
correspondence is studied because it offers the possibility
of relating nonperturbative quantities in the-
ories akin to QCD in 4 dimensions to weakly coupled
5-dimensional gravitational theories [1,2]. Some applica-
tions that particularly involve mesons are found in [3–20]
and other works cited therein. The mesons studied are
mainly vector and scalar mesons and topics studied include
masses, decay constants, coupling constants, and electro-
magnetic form factors. Less studied to date are parton
distributions, be they ordinary ones, or transverse mo-
mentum dependent ones, or generalized parton distribu-
tions (GPDs).

The present authors [21] have studied gravitational form
factors and the connection to GPDs for vector mesons,
obtaining sum rules for the GPDs and finding that the
vector meson radius appeared notably smaller when
measured from a gravitational form factor than from the
electromagnetic form factor. We wish to obtain the corre-
sponding results for the pion, a particle for which it may be
easier to obtain experimental information about the GPD
[22] and for which there is already information on the
electromagnetic form factor [23].

Technically, studying the pion is more involved than
studying the vector mesons because there are additional
terms in the action involving the chiral fields. The ground
has been broken by workers who have studied the pion
electromagnetic form factor [24–26]. Our work is similar
in its basic approach to the latter two references, but we
have attempted to make the present paper reasonably self-
contained. Also, as we are studying the axial sector to learn
about the pion, it requires only a small extra effort to also
study the axial-vector mesons a1, and we quote results for
these in the body of the paper. We have limited ourselves to

the chiral limit, where one can obtain analytic results for
many of the quantities of interest.
In general, in AdS/CFT there is a correspondence

between 4-dimensional operators OðxÞ and fields in the
5-dimensional bulk �ðx; zÞ, where z is the fifth coordinate.
The 4D sources used in the 4D generating function Z4D we
will call �0ðxÞ, and

Z4D½�0� ¼
�
exp

�
iS4D þ i

Z
d4xOðxÞ�0ðxÞ

��
: (1)

The correspondence may be written as

Z4D½�0� ¼ eiS5D½�cl�; (2)

where on the right, S½�cl� is the classical action evaluated
for classical solutions �cl to the field equations with
boundary condition

lim
z!0

�clðx; zÞ ¼ z��0ðxÞ: (3)

The constant � depends on the nature of the operator O,
and is zero in simple cases [27].
The original correspondence [1] related a strongly cou-

pled, large Nc, 4D conformal field theory to a weakly
coupled gravity theory on 5D AdS space. In QCD, Nc is
not large, nor is the theory conformal, as evidenced by the
existence of hadrons with definite mass. Nonetheless, re-
sults obtained treating Nc as large work surprisingly well,
and one can argue that QCD behaves approximately con-
formally over wide regions of Q2 [10]. We simulate the
breaking of conformal symmetry, following the so-called
‘‘bottom-up’’ approach as implemented in [7,8], by intro-
ducing a sharp cutoff in AdS space at z ¼ z0. The unper-
turbed AdS space metric is

ds2 ¼ gMNdx
MdxN ¼ 1

z2
�MNdx

MdxN; " < z < z0;

(4)

where �MN ¼ diagð1;�1;�1;�1;�1Þ. The z ¼ " wall,
with "! 0 understood, corresponds to the UV limit of
QCD, and the wall located at z ¼ z0 � 1=�QCD sets the
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scale for the breaking of conformal symmetry of QCD in
the IR region. (Lower case Greek indices will run from 0 to
3, and upper case Latin indices will run over 0, 1, 2, 3, 5.)

The O to � operator correspondences of particular
interest here are [7,8,27]

J
a�
A ðxÞ $ Aa�ðx; zÞ; T��ðxÞ $ h��ðx; zÞ; (5)

where J
a�
A ¼ �q���5t

aq is an axial current with flavor

index a, Aa� is an axial field, T�� is the stress tensor,

and h�� represents variations of the metric tensor,

g��ðx; zÞ ¼ 1

z2
ð��� þ h��ðx; zÞÞ: (6)

We will use h�� in the Randall-Sundrum gauge [28],

wherein h�� is transverse and traceless (TT) and also

satisfies h�z ¼ hzz ¼ 0. Variations of the metric tensor in

a TT gauge will only give us the transverse-traceless part of
the stress tensor. This will determine uniquely one of the
two gravitational form factors of the pion, the one that
enters the momentum sum rule, and correspondingly 4 of
the 6 gravitational form factors for spin-1 particles, includ-
ing the two that enter the momentum and angular momen-
tum sum rules.

Relevant details regarding the pion and axial-vector
mesons, including the wave functions and the two-point
functions, are worked out in Secs. II and III, works out the
three-point functions, and extracts from them the stress
tensor matrix elements. Sum rules and stress tensor form
factor radii are given in Sec. IV and some conclusions are
offered in Sec. V.

II. PION AND AXIAL-VECTOR MESON

A. AdS/QCD model

The action on the 5-dimensional AdS space is [7]

S5D ¼
Z
d5x

ffiffiffi
g

p �
Rþ 12þ Tr

�
jDXj2 þ 3jXj2

� 1

4g25
ðF2

L þ F2
RÞ
�	
: (7)

This action contains the X field, which corresponds to
4D operator �qRqL and, through FMNL;R ¼ @MANL;R �
@NAML;R � i½AML;R; ANL;R�, also contains the AaL� and AaR�
fields, which correspond to operators JaL� ¼ �qL��t

aqL
and JaR� ¼ �qR��t

aqR, respectively. We define AMðx; zÞ ¼
AaMðx; zÞta, where the group generators satisfy TrðtatbÞ ¼
�ab=2. The covariant derivative of the X field is given
by DMX ¼ @MX � iAML X þ iXAMR . Moreover, the X field
can be written in exponential form as Xðx; zÞ ¼ X0ðzÞ�
expð2ita�aÞ. Solving the equation of motion of X0ðzÞ, one
obtains X0 ¼ 1

2 IvðzÞ, where vðzÞ ¼ mqzþ �z3. Using the

AdS/CFT prescription and the fact that �qRqL appears in
the mass term of the QCD Lagrangian, parameter mq can

be identified as the quark mass and parameter � as the

quark condensate h �qqi. In this paper, we will discuss only
the chiral limit of the AdS/QCD model, i.e. m� ¼ 0 case,
or equivalently mq ¼ 0.

The axial-vector and pseudoscalar sector of the action
up to second order is given by [7]

SA ¼
Z
d5x

ffiffiffi
g

p �
vðzÞ2
2

gMNð@M�a � AaMÞð@N�a � AaNÞ

� 1

4g25
gKLgMNFaKMF

a
LN

�
; (8)

where FaKM ¼ @KA
a
M � @MA

a
K, with A ¼ ðAL � ARÞ=2.

B. Equations of motion

Using the unperturbed 5-dimensional AdS space metric,
and taking the variation over AaM of Eq. (8), one obtains the
equations of motion, which are expressed in 4D momen-
tum space as

@z

�
1

z
@zA

a
�?

�
þ q2

z
Aa�? � g25v

2

z3
Aa�? ¼ 0; (9)

@z

�
1

z
@z�

a

�
þ g25v

2

z3
ð�a ��aÞ ¼ 0; (10)

� q2@z�
a þ g25v

2

z2
@z�

a ¼ 0; (11)

where the gauge choice Az ¼ 0 has been imposed.
The � field comes from the longitudinal part of
Aa� ¼ Aa�? þ @��

a.

The fields above can be written conveniently in terms of
bulk-to-boundary propagators as follows:

Aa�ðq; zÞ ¼ Aa0� ðqÞ?Aðq; zÞ þ Aa0� ðqÞ
1
�ðq; zÞ;

�aðq; zÞ ¼ iq�

q2
Aa0� ðqÞ

1
�ðq; zÞ;

where Aa0� ðqÞ? and Aa0� ðqÞ
1
are the Fourier transform of the

source functions of the 4D axial current operators JaA;�ðxÞ?
and JaA;�ðxÞ1, respectively.
The nth Kaluza-Klein-mode axial-vector meson’s wave

func-
tion, denoted by  A;nðzÞ, is the solution of Eq. (9) with

q2 ¼ m2
A;n, and with boundary conditions  ð0Þ ¼ 0 and

@z ðz0Þ ¼ 0. The normalization of  A;n is identical to

that of the 	-meson’s wave function, and is given byRðdz=zÞ A;nðzÞ2 ¼ 1 [7]. On the other hand, the pion’s

wave function, denoted by �ðzÞ or �ðzÞ, is the solution of
the coupled differential equations, i.e., Eqs. (10) and (11),
with q2 ¼ 0 in the limit of massless pion. Furthermore, in
this limit, the boundary conditions for the pion wave
functions are �ð0Þ ¼ 0, �ð0Þ ¼ �1, and @z�ðz0Þ ¼ 0.
[A careful analysis is given in Ref. [7] for m� small.
There, the UV boundary conditions for the scalar wave

ZAINUL ABIDIN AND CARL E. CARLSON PHYSICAL REVIEW D 77, 115021 (2008)

115021-2



functions are �ð0Þ ¼ 0 and �ð0Þ ¼ 0. However, the func-
tion �ðzÞ away from z ¼ 0 approaches �1 rather quickly.
Form� ! 0, the function�ðzÞ equals�1 in essentially the
entire slice of 5D AdS space, 0< z < z0.]

Using Eq. (11) and the UV boundary conditions, one
finds �ðzÞ ¼ �1 for all z. Therefore Eq. (10) can be
rewritten in terms of �ðzÞ ¼ �ðzÞ � �ðzÞ as

@z

�
1

z
@z�

�
� g25v

2

z3
� ¼ 0: (12)

The solution is given by [26]

�ðzÞ ¼ z�½2=3�
�



2

�
1=3

�
I�ð1=3Þð
z3Þ

� I1=3ð
z3Þ
I2=3ð
z30Þ
I�ð2=3Þð
z30Þ

�
; (13)

where 
 ¼ g5�=3, with g5 ¼ 2� as shown in Ref. [7].
Note that �ðzÞ is identical to Að0; zÞ. Parameter z0 ¼
1=�QCD is determined by the experimental value of

	-meson’s mass m	 ¼ 775:5 MeV [29], which corre-

sponds to z0 ¼ 1=ð322 MeVÞ [7].
For the a1’s wave functions, one has to rely on numerical

methods. However, other aspects of the axial-vector me-
sons are analogous to the vector mesons. For instance, the
bulk-to-boundary propagator of a1 can be written in terms
of  A;n as

A ðq; zÞ ¼ X
n

ð1" @z0 A;nð"ÞÞ A;nðzÞ
m2
A;n � q2

; (14)

cf. Eq. (17) of Ref. [21] and Refs. [7,15]. The bulk-to-
boundary propagator Aðq; zÞ satisfies Aðq; "Þ ¼ 1 and
@zAðq; z0Þ ¼ 1.

C. Two-point functions

The completeness relation is given by

X
n

Z d3q

ð2�Þ32q0 jnðqÞihnðqÞj ¼ 1: (15)

The complete set of states includes jAanðq; �Þi, the nth
axial-vector state, as well as j�aðqÞi, the pion state.

By applying the completeness relation into
h0jT J

�
A ðxÞ?J�Að0Þ?j0i and h0jT J

�
A ðxÞ1J�Að0Þ1j0i, then

multiplying q2 �m2
n and taking the limit q2 ! m2

n,
one can extract the following quantities from the
AdS/QCD correspondence [7]:

FA;n ¼ @z A;nðzÞ
g5z









z¼"
; (16)

f2� ¼ �@z�ðzÞ
g25z









z¼�
; (17)

where FA;n is the decay constant of the nth mode of the a1,
and f� is that of the pion. The latter is obtained in the chiral
limit q2 ! m2

� ¼ 0. The decay constants are defined by

h0jJaA;�ð0Þ?jAbnðp; �Þi ¼ FA;n"�ðp; �Þ�ab; (18)

h0jJaA;�ð0Þ1j�bðpÞi ¼ f�p��
ab: (19)

Equations (13) and (17) relate the input parameter � to
the pion decay constant [26]

f2� ¼ 3

4�2

�ð2=3Þ
�ð1=3Þ ð2


2Þ1=3 I2=3ð
z30Þ
I�ð2=3Þð
z30Þ

: (20)

Using the experimental value f� ¼ 92:4 MeV, we
find 
 ¼ 2:28�3

QCD, therefore � ¼ ð332 MeVÞ3. Conse-
quently, other observables can be determined, mA;1 ¼
1376 MeV and F1=2

A;1 ¼ 493 MeV. They are in good agree-

ment with the experimental values mA;1 ¼ 1230 MeV and

F1=2
A;1 ¼ 433 MeV.

III. GRAVITATIONAL FORM FACTORS

The three-point function that includes the stress tensor
follows from

h0jT Ja
A ðxÞT̂��ðyÞJb
A ðwÞj0i

¼ � 2�3S

�Aa0
 ðxÞ�h��0ðyÞ�Ab0
 ðwÞ ; (21)

and the relevant part of the action (7) that contributes to the
3-point function is linear in h�� and quadratic in the non-
gravitational fields,

Sð3ÞA ¼
Z
d5x

�
�vðzÞ2h	�

2z3
ð@	�a � Aa	Þð@��a � Aa�Þ

þ 1

2g25z
h	�½�F�zF	z þ �

F�
F	
�

�
; (22)

where h	� is the metric perturbation defined analogously
to Eq. (6), viz., g	� ¼ z2ð�	� � h	�Þ.
To isolate the pion-to-pion elastic stress tensor matrix

elements from the Fourier transformed 3-point functions
hJ
ð�p2ÞT��ðqÞJ
ðp1Þi, we apply the completeness rela-
tion (15) twice, then multiply by

p
1p


2

1

f2�
; (23)

and take the limit p2
1 ! m2

� ¼ 0 and p2
2 ! m2

� ¼ 0.
We obtain the transverse-traceless part of the stress

tensor matrix elements, for T̂��ð0Þ at the origin in coor-
dinate space,
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h�aðp2ÞjT̂��ð0Þj�bðp1Þi ¼ 2�abA�ðQ2Þ
�
p�p�

þ 1

12
ðq2��� � q�q�Þ

�
; (24)

where p ¼ ðp1 þ p2Þ=2 and q ¼ p2 � p1. The gravita-
tional form factor A� is given by

A�ðQ2Þ ¼
Z
dzH ðQ; zÞ

�ð@z�ðzÞÞ2
g25f

2
�z

þ vðzÞ2�ðzÞ2
f2�z

3

�
:

(25)

Note that, except for the H , this form factor is similar to
the electromagnetic form factor given in [25,26] although
they come from different terms of the action (7). H ðQ; zÞ
is the bulk-to-boundary propagator of the graviton for
spacelike momentum transfer q2 ¼ �Q2 < 0. It is defined
by h��ðq; zÞ ¼ H ðQ; zÞh0��ðqÞ, where h��ðq; zÞ is the

Fourier transform of the metric perturbation h��ðx; zÞ. In
transverse-traceless gauge, q�h�� ¼ 0 and h

�
� ¼ 0, the

linearized Einstein equation becomes

z3@z

�
1

z3
@zh��

�
þ q2h�� ¼ 0; (26)

with boundary conditions hðq; "Þ ¼ 1 and @zhðq; z0Þ ¼ 0.
The solution is given by [21]

H ðQ; zÞ ¼ 1

2
Q2z2

�
K1ðQz0Þ
I1ðQz0Þ I2ðQzÞ þ K2ðQzÞ

�
: (27)

Since H ð0; zÞ ¼ 1, one can check that A�ð0Þ ¼ 1, which
is a correct normalization for A�.

Our procedure obtains the transverse-traceless part of
the stress tensor; the full stress tensor can have a trace,
which means there could be a term 1

3 ð��� � q�q�=q2ÞT,
where T is the trace of T��. In general, there are two
gravitational form factors for spin-0 particles. The expres-
sion for the pion matrix elements written in terms of the
two independent form factors is

h�aðp2ÞjT��ð0Þj�bðp1Þi ¼ �ab½2A�ðQ2Þp�p� þ 1
2C�ðQ2Þ

� ðq2��� � q�q�Þ�; (28)

we have calculated A�ðQ2Þ, but C�ðQ2Þ ¼ A�ðQ2Þ=3þ
~C�ðQ2Þ, where ~C is not determined here.
For a1, the corresponding matrix element is identical

to the 	-meson’s [21]. The only difference is that the
	-meson’s wave function  n is replaced by  A;n, the a1’s
wave function. The A form factor is now given by

Aa1ðQ2Þ ¼
Z dz

z
H ðQ; zÞ A;n A;n: (29)

The other form factors mirror the 	-meson’s form factors
expression.

Both A�ðQ2Þ and Aa1ðQ2Þ are shown in Fig. 1.

IV. CONSEQUENCES

A. Radii

In the limit Qz0 � 1, one can expand H ðQ2; zÞ and
obtain the radius

hr2�igrav � �6
dA�
dQ2









Q2¼0
¼ 6

4

Z
dzz3

�
1� z2

2z20

�
	ðzÞ;

(30)

where

	ðzÞ ¼
�ð@z�ðzÞÞ2
g25f

2
�z

2
þ vðzÞ2�ðzÞ2

f2�z
4

�
: (31)

We find

hr2�igrav ¼ 0:13 ðfmÞ2 ¼ ð0:36 fmÞ2: (32)

Polyakov, in a different model [30], also found a small
gravitational radius for the pion, hr2�igrav ¼ ð0:42 fmÞ2.
The gravitational root-mean square radius is signifi-
cantly smaller than the electromagnetic radius hr2�iC ¼
0:33 ðfmÞ2 ¼ ð0:57 fmÞ2, obtained from the AdS/QCD
model in the chiral limit [26]. Compared to the experimen-
tal result hr2�iC ¼ ð0:67 fmÞ2 [29], the difference is even
more apparent. This shows, as in the 	-meson case, that the
energy distribution of the pion is concentrated in a smaller
volume than the charge distribution.
For a1, the corresponding radius is

hr2a1igrav ¼
6

4

Z
dzz

�
1� z2

2z20

�
 2
A;1 ¼ 0:15 ðfmÞ2

¼ ð0:39 fmÞ2: (33)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

A
a 1

,A
π

Q2( ΛQCD
2)

Gravitational Form Factors

FIG. 1 (color online). Plot of A with momentum transfer
squared in units of �QCD ¼ 1=z0. The red solid line is A�
and the blue dashed line is Aa1 .
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As expected, it is smaller than the charge radius hr2a1iC ¼
0:39 ðfmÞ2 ¼ ð0:62 fmÞ2 calculated from the AdS/QCD
model.

B. High Q2 limit

For high Q2, the form factor A� scales as 1=Q2. The
precise expression is given by

A�ðQ2Þ ¼ 4	ð0Þ
Q2

¼ 16�2f2�
Q2

; (34)

which follows from the fact that at high Q2, the second
term of the function HðQ; zÞ in Eq. (27) dominates. This
term behaves like e�Qz. Therefore, one can allow z0 ! 1
in Eq. (25), and replace 	ðzÞ by its value at the origin, 	ð0Þ,
and then do the integral analytically [14,26].

One can verify, most easily in the Breit frame, that this
scaling agrees with the perturbative QCD prediction. It can
be shown that [31]

hp2j���T��jp1i �Q0; hp2je��ðq; 0ÞT��jp1i �Q0;

(35)

e��ðq; 0Þ gives the helicity-0 component of the spin-2 part

of the stress tensor, with

e��ðq; 0Þ ¼ 1ffiffiffi
6

p ð2��ðq; 0Þ��ðq; 0Þ � ��ðq;þÞ��ðq;�Þ

� ��ðq;�Þ��ðq;þÞÞ: (36)

Here, �ðq; �Þ is the polarization vector of a spin-1 particle
of momentum q. Equation (35) is equivalent to

A�;C� � 1=Q2: (37)

For a1, the high Q
2 behavior of the form factor Aa1 is

Aa1ðQ2Þ ¼ 12j 00
A;nj2

Q4
: (38)

Similarly Ca1 , Da1 � 1=Q4, while Fa1 � 1=Q6, which mir-

ror the scaling results for 	-mesons, with the notation
given in [21].

C. Sum rules for the GPD

The deeply virtual Compton scattering process involves
a target absorbing a virtual photon and subsequently radi-
ating a real photon. The virtual Compton scattering ampli-
tude can be written in terms of an integral involving the
generalized parton distributions (GPD)Hðx; �; Q2Þ [32]. In
a model with quarks, x is the light-cone momentum frac-
tion of the struck quark constituent relative to the total
momentum of the target hadron.

For spin-0 hadrons, there is only one GPD, defined by

Z pþdy�

4�
eixp

þy�=2
�
p2j � q

�
� y

2

�
�þ q

�
y

2

�
jp1

�
yþ¼y?¼0

¼ 2pþHðx; �; Q2Þ; (39)

where qþ ¼ q0 þ q3 ¼ �2�pþ.
There are sum rules connecting this GPD to the gravi-

tational as well as to the electromagnetic form factors.
The well-known sum rule is for the first moment of the
GPD [33],

Z 1

�1
dxHðx; �; Q2Þ ¼ FðQ2Þ; (40)

where Fðq2Þ is the electromagnetic form factor defined by

h�ðp2Þj � qð0Þ�� qð0Þj�ðp1Þi ¼ 2p�FðQ2Þ: (41)

A further sum rule exists because the stress tensor ele-
ment Tþþ can be related to the second moment in x of
the operator whose matrix element defines the GPDs. For
the pion, the result was given in [22] and reads

Z 1

�1
dxxHðx; �; Q2Þ ¼ A�ðQ2Þ � �2C�ðQ2Þ: (42)

Reference [22] also uses a chiral Lagrangian to show that
A�ð0Þ ¼ 1 (the momentum sum rule) and C�ð0Þ ¼ 1=4.
One can set � ¼ 0 in the above equation so that only the
first term, which is known from the AdS/QCD model,
in the right-hand side survives. There are also second-
moment sum rules for the axial-vector meson GPDs, which
precisely parallel the ones given for the 	-mesons in [21].

V. CONCLUSIONS

We have worked out the gravitational form factors of
pions and of axial-vector mesons using the AdS/CFT cor-
respondence, and have given the sum rules connecting the
gravitational form factors, which can also be called stress
tensor or energy-momentum tensor form factors, to the
axial sector GPDs.
A striking numerical result is the smallness of the pion

radius and of the axial-vector meson radius as obtained
from Aðq2Þ, the gravitational form factor that enters the
momentum sum rule. This parallels the results for the
ordinary vector mesons [21]. It suggests that the energy
that makes up the mass of the meson is well concentrated,
with the charge measured by the electromagnetic form
factors spreading more broadly.
Extensions of the present work include considering fla-

vor decompositions [4,6,34] of the stress tensor and the
related topic of considering quarks of differing masses, to
be able to separate contributions with differing internal
quantum number, including strangeness. Further, wewould
like to work on applying the present considerations to
nucleons [9]. We hope to return to these topics, but for
now they lie beyond the scope of this paper.
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