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Minimal Pati-Salam model from string theory unification
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We provide what we believe is the minimal three family N° = 1 SUSY and conformal Pati-Salam
model from type IIB superstring theory. This Z; orbifolded AdS ® S°> model has long lived protons and
has potential phenomenological consequences for LHC (Large Hadron Collider).
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There is presently a myriad of apparent routes from
string theory to regions of parameter space that resemble
the standard model of particle physics, and it is easy to get
lost in the landscape of these possibilities. Perhaps the
most sensible alternative to exploring all possible routes
is to seek out and explore routes of ‘“minimal length.”
While it may be difficult to describe precisely what is
meant by minimal length, what we attempt to do is travel
the least circuitous route from strings to the standard model
while carrying the least amount of superfluous baggage.
Hence, success according to this philosophy is measured in
a way similar to success in a game of golf. Rather than
exploring as much of the landscape as possible, one tries to
reach a particular local minimum quickly while avoiding
the many hazards along the way.

The Pati-Salam model, based on the gauge group
SU4) X SU((2) X SU(2), is to SO(10) what trinification,
based on the gauge group SU(3) X SU(3) X SU(3), is to
Es. They are both maximal subgroup models of the cover-
ing grand unified theory (GUT) and both have the same
number of massless chiral fermions as there are in the
fermion families of the corresponding covering GUT.

Recall that the AdS/CFT correspondence for AdS ® S°
yields a conformal, N = 4 supersymmetric, SU(N) gauge
theory [1] which is nonchiral. In the Pati-Salam model the
three chiral families are

3[(4,2, 1) + (4, 1,2)].

If we wish to reach a three family Pati-Salam model from
AdS ® $°, we can do this by orbifolding. Starting from
AdS ® S°/I" where I' is the orbifolding group, we have two
sensible options: (i) Start with a non-Abelian I" that has p
one- and ¢ two-dimensional [2] irreducible representations
(irreps), choose N = 2 and get a gauge group SU?(2) X
SU%(4). Next choose a nontrivial embedding of I" in the
initial SU(4) R-symmetry of the N = 4 AdS ® S° theory
to break the supersymmetry to either N =0 or N =1
and generate the corresponding scalar and fermion matter
content for the theory. Next one proceeds to break the
gauge symmetry from SU(4) X SU(2) X SU(2) to the
standard model gauge group SU(3) X SU(2) X Uy(1)
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such that three fermion families remain chiral. This can
be accomplished, but the requirement of three fermion
families makes the first realistic choice I' = Qg, the dicy-
clic group of order 12 [3,4]. (ii) The other minimal route to
a Pati-Salam model is to choose I" to be an Abelian group
[16—-20] of order n, where we set N = 4 to arrive at a
gauge group SU"(4), and then break the symmetry to the
Pati-Salam group and then to the standard model, while at
the same time preserving three chiral families by judicious
choice of embedding. We will show that this is possible for
a remarkably simple choice for I'.

With our preamble complete, we are ready to present the
model. We choose n = 3,i.e.,I" = Z5,and N = 4 with the
orbifold group embedding 4 = (1, @, a, «). This yields an
N =1 theory with chiral supermultiplet fields in the
following bifundamental and adjoint representations of
the gauge group SU3(4):

3[4,4,1)+ (1,4 4) + (4, 1,4)]
and
(15,1, 1)+ (1,15 1) + (1,1, 15).

We assume supersymmetry (SUSY) is softly broken at the
SU3(4) unification scale and begin the chain of spontane-
ous symmetry breaking toward the Pati-Salam model with
a vacuum expectation value (VEV) for the ((1,4,4)).
Choosing
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breaks the symmetry to SU(4) X SU(3) X SU3) X U(1),.
(The phenomenology of SU(4) X SU(3) X SU(3) has been
studied in detail in [5,6].) Under this group the bifunda-
mental scalars (in the following tables we only list scalars
but one should keep in mind that the fermion content exists
in identical representations of each group) of SU3(4) be-
come

Scalars of SU(4) X SU(3) X SU3) X U(1),
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This group is then broken to SU(4) X SU;(2) X SUR(2) X Uu(1) X Uy (1) by a VEV
0 0 0
((1,3,3))21}'(0 0 0).
0 0 1

Under SU-(4) X SU;(2) X SUR(2) X U,(1) X Uy (1) the entire scalar content [scalars that originated as bifundamentals
as well as adjoints of SU3(4)] is given by

Scalars of SUc(4) X SUL(2) X SUR(2) X Uy(1) X Uy(1)

3(1, 2, 2)0,0
2(1’ 2» 1)0,*3/2
2(1, L, D) a3
3(4,1, 1)1,0
34,1, 1)1,0
(1r ]r 1)0,0

(1) L, 1)—4/3,1
(1, 1,2)g 32
(1,1, 1)gp

(1» 1, l)*4/3,1
(1,2, 1)g,-3/2
(15,1, 1)0,0

2(1, 1, 1)0,0

2(1, 1, 1)0,0

2(1, 1, Day3 -1
34, L Dy
3(4, L, Dy3,
(1r 1, ])4/3,*1

(1, L,2) a1/
(1, 1,2)g32

(1, L, Dyyz

(1r 2, l)*4/3,*1/2
(1,2, Dg32

2(1,1,2)932

2(11 2’ 1)*4/3,*]/2
2(1, L, Dayz 12
34,2, Dz
3(4, 1,2) 1512
(11 1’ 2)4/3,]/2

(1) 1: 1)0,0

(1’ 1) 3)0,0

(1,2, Dasz12

(1’ 1’ 1)(),0

(1’ 3) 1)0,0

The unification into SU3(4) happens at a high scale ~10'5 GeV, so if the VEVs that break to the standard model are
given at a high enough scale, the proton is sufficiently stable to avoid the present bound on its lifetime.
Breaking the SU(4)c — SU@3)c X U(1)p and SU(2)g — U(1)g (using a 4, 1, 2), see below) and defining the normal-

izations

and

gives the following content under SU(3), X SUQ2);, X U(1)y X U(1)g_; X U(1)4 X U(1) 4

B—L=-D

— 1 1
Y=-lD-1E

(D

2

Scalars of SU3), X SUQR), X U(1)y X U(1)g_; X U(1)4 X U(1) 4

31,2, D1 2000

3(1’ 1» 1)71/2,(),0,3/2
3(1,2, Voo, —a/3-172
2(1, 1, Doga/3.1/2
3(LL, Doy 11731
33,2, Diss1/3.1/3.1/2
3G, L Doyje—1/3-1/31
33, L Dyjs—1/3-1/3-1/2
(1L, LD 120273172
(L1, Dijpo-4/3-1/2
(1,2, Dooassi/2

(8,1, Doo00

3(1, 2, D12000

3(1, 1, 1)1 2003/2
4(1, 1, 1)()‘(),—4/3,1
3(L,LDoyp—110
33,1 Disei/ai/3-1
33, L, Doy/s—1/310
3(L1L,2)im0,-1/31
3(L 1, Doy—1/3-172
(1, L, Dyya04/31/2
(1L, LD _1200-3/2
(1,2, Doo03/2

9(1, 1, D000

4(1,2, 140,032

41, 1, 10,473, -1
33,1, Dyje1/310
3(L2, Doip 1173172
3(1) 1’ 1)1/2,1,1,0

33, L, Dogyz—1/31/31,2
3(L L Dy —1/3-1/2
(1L, LD _y00-4/3-12
(1, L, D1/200,-3/2
(1,3, Doo,00

Now, the VEVs (1, 1, 1)(4/3)—1 and (1, 1, 1)4/3)(1/2) break
U,(1) and U, (1) completely, and we arrive at the standard
model gauge group. Of the initial fermions, only the
3[(4,2,1) + (4, 1,2)] remain chiral. The remainder are
vectorlike so can pair up to become heavy at the Pati-
Salam scale. Once a VEV for a (4, 1, 2)g breaks the sym-
metry to the standard model [7], only three standard fam-
ilies remain massless. The three right-handed neutrinos

become massive at this stage, and are available for use in
the seesaw mechanism. Finally we identify a (1,2),/,
scalar with the Higgs doublet. Giving it a VEV completes
the chain of spontaneous symmetry breaking.

Finally, we must discuss SUSY and conformal symmetry
breaking. Orbifolded string theories produce quiver gauge
theories [8] that are known to contain U(1) gauge symme-
tries. The U(1)s are generic and usually anomalous at the

115008-2



MINIMAL PATI-SALAM MODEL FROM STRING THEORY ..

Uy

U,

Uy

FIG. 1. Anomalous U,(1)U,(1)* triangle diagram. Only the
bifundamental fermions contribute to the loop integral.

level of the quiver gauge theories. However, the underlying
string theory must be anomaly free [9]. This implies that
higher order terms arise in the gauge theories [9], or
counter terms [10] can be added to the theories, to cancel
these anomalies, and such is indeed the case. The U(1)s
have further relevance, as they can be useful in detailed
model building. The U(1) symmetries are typically un-
stable (tachyonic) but lead to the development of VEVs
[11] at finite values in appropriate order parameters (mod-
uli). Furthermore, if the quiver theory is supersymmetric,
the U(1)s can come to our aid in breaking SUSY. Fayet-
Iliopoulos D-terms [12] naturally arise [9,13—15] that pro-
vide a mechanism to mediate supersymmetry breaking.
Hence, the vector supermultiplets from the U(1)s in orbi-
folded strings are key ingredients in quiver model building,
as they serve multiple simultaneous purposes. Finally,
conformal invariance is also broken by the tacyonic insta-
bilities [11]. This is again a positive result for model
building where mass scales are required. We now apply
this knowledge to the model at hand.

Let us begin with an analysis of the U(1) anomalies, see
Fig. 1. They are of the type U (1)U, (1)* or U,(1)SU,,(4)?,
(or 13 and 142 for short) where p, g = 1,2,3 and p # q.
The bifundamental fermions contribute, but the adjoint
(self-bifundamental) fermions do not. Because of the sym-
metry of the quiver for our Pati-Salam model, all the 13
anomalies have equal coefficients. For example the
U,(1)U,(1)? anomaly coefficient is

AVCIAA D+ (L4 D + (G 1L4) =3 0,03
= 3[4(1)(—1)* + 4(0)(1)* + 4(-1)(0)*] = 12.  (3)

Likewise the 14% anomaly coefficients all have equal mag-
nitudes, so, for example, the U,(1)SU,(4)> anomaly coef-
ficient is
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AMGI4 D) + (14D + G 1,4) = Y OTHAA)

4

= 3[4(D(=1)* + 40)(1)* +4(=DO1] = 12. (5

We have normalized the anomaly coefficients such that
As(4) =1, and the U(1) charges with Q(4) = —Q(4) =
—1.

Since we have found the U(1)s to be anomalous at the
quiver gauge theory level, they must be canceled via terms
from string loops [9]. Also, since our orbifold compactifi-
cation generated these U(1)s they can be used to break
SUSY through the generation of Fayet-Iliopoulos D-terms
in the Lagrangian of the form Ly = kD, where D, is the
auxiliary field in the vector superfield corresponding to
U,(1). The full D-term contribution to the scalar potential
is then

1
V = Z(KPDP - ED% - gDquzl¢1|>
p i
We assume the U(1)s are broken via terms of the form
D (my ¢y + A, ¢5)
P

generated at the string loop level, and so we do arrive at a
three family string theory generated supersymmetric Pati-
Salam that naturally breaks to the non-SUSY standard
model at the electroweak scale.

To conclude, we have shown that a very modest list of
initial assumptions about string compactification via orbi-
folding can lead to a three family Pati-Salam model with
all the scalar fields needed for several stages of symmetry
breaking to reach the standard model. U(1) anomalies at
the quiver gauge theory level are canceled by string loop
terms. The U(1)s are broken and also lead to Fayet-
lliopoulos terms that provide a SUSY breaking mecha-
nism. We find this model to be simple, elegant, and ‘““mini-
mal,” but at the same time, some of the symmetry breaking
scales could be low enough to provide thresholds for new
reactions and particle production at the LHC (Large
Hadron Collider).

This work was supported by U.S. DOE Grant No. DE-
FGO05-85ER40226.

[1] The gauge groups are U(N)s here and below. We discuss
only the SU(N) pieces here, but the U(1l) factors will
become important later when we examine SUSY breaking.

[2] We could of course choose a I" with higher dimensional
irreps too, but this would go counter to our minimal length
philosophy.
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