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We examine the eigenvalues and eigenvectors of the staggered Dirac operator on thermal ensembles

created in QCD with two flavors of staggered quarks. We see that across the phase transition a gap opens

in the spectrum. For finite volume lattices in the low-temperature phase the eigenvectors are extended, but

generic field configurations in the high temperature phase give rise to localized eigenstates. We examine

measures of the stability of such localization and find that at finite volumes localization occurs through

Mott’s mechanism of the formation of mobility edges. However, the band gap between the localized and

extended states seem to scale to zero in the limit of large volume.
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I. INTRODUCTION

Any fermionic operator can be written in the spectral
form

Ô ¼ X
��

O��j�ih�j; (1)

where j�i is an eigenvector of the Dirac operator with
eigenvalue �, evaluated separately on each configuration.
Typical operators of interest contain quark loops with
various insertions, i.e., O ¼ TrðA1ðDþmÞ�1A2ðDþ
mÞ�1 � � �AnðDþmÞ�1Þ. As a result,

O ¼ X
�1����n

h�1jA1j�2ih�2jA2j�3i � � � h�njA2j�1iQ
n
i¼1ðmþ �iÞ ; (2)

where we use the symbol D to refer to the massless Dirac
operator. If the Ai commute with D, then the matrix ele-
ments in the numerator are diagonal, and all questions
about the operator reduce to the simultaneous eigenvalues
of the Ai and the Dirac operator. This happens, for ex-
ample, in the chiral sector of the theory, where one deals
with questions about n-point functions of pions. Since
�5D�5 ¼ Dy, most questions about the chiral sector can
be answered if the eigenvalues are known. As a result, the
thrust of many previous studies of QCD to date has been on
the spectrum of eigenvalues, particularly on comparisons
with random matrix theory [1]. This focus is due to the fact
that random matrix theory is known to be equivalent to
chiral perturbation theory in some limits [2].

However, at finite temperature, especially above Tc,
chiral perturbation theory is not the appropriate long-
distance effective theory. Furthermore, there are interesting

questions at many different length scales and one may need
to build different effective theories to answer these ques-
tions. Several questions involve fermionic loops with in-
sertions of operators which do not commute with D. An
example is the vector susceptibility,

�V ¼ X
�1;�2

jh�1j��j�2ij2
ðmþ �1Þðmþ �2Þ ; (3)

which includes quark number susceptibilities. Deeper
understanding of such quantities need the study of the
eigenvectors [3].

II. EIGENVALUES

We analyzed configurations generated in the study of
QCD with two flavors of dynamical staggered quarks at a
lattice spacing a ¼ 1=ð4TÞ [4]. The scale fixing yielded
Tc=m� ¼ 0:186� 0:006. As T varied between 0:75Tc and

2Tc, the renormalized quark mass was kept constant. The
physical box size, L ¼ Nsa where Ns is the box size in
units of the lattice spacing. The aspect ratio was varied in
the range 2 � LT � 6.
We investigated the eigenvalues, �, and eigenvectors,

j�i, of the massless Dirac operator, D, in typical thermal
ensembles picked from these simulations. We used five
configurations separated by two autocorrelation times at all
temperatures and volumes except at 1:05Tc where we
verified the results using 20 configurations. Eigenvalues
and eigenvectors were computed with the ARPACK subrou-
tines [5]. For convergence, the tolerance is chosen so that

jrj2 < �; where r ¼ ðD� �Þ �; (4)

where � is an eigenvalue and  � is the corresponding
eigenvector. We report results with � ¼ 2� 10�13.
The lowest staggered Dirac eigenvalue, �0, evolves as

shown in Fig. 1. There is a clear crossover from low to high
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temperature behavior evidenced by an increase in the low-
est eigenvalue by 3 orders of magnitude in the neighbor-
hood of Tc. This becomes sharper in the neighborhood of
Tc with increasing spatial size of the lattice.

It is also worth noting that at 2Tc there seems to be little
remaining volume dependence. It is interesting that this
large volume behavior sets in at a minimum L given by
L�0 � 0:8. Consistent with this observation, at 1:5Tc the
lattice sizes which satisfy this condition also give results
which are almost volume independent.

In Fig. 1 we further show the lowest eigenvalue of the
free Dirac operator on a lattice of the same coarseness. In

the limit of zero lattice spacing this would correspond to
the Matsubara frequency,� ¼ �T. The full QCD configu-
rations can be seen to lie very far from the free field theory
(ideal gas) limit at all temperatures up to 2Tc. This is
consistent with another observation at the same lattice
spacing that the pseudoscalar screening correlator con-
structed with staggered Dirac quarks yields a screening
mass far below that expected from the free theory [6]. It
would be interesting to see whether this correlation, related
to the chiral behavior, changes in the same way due to
various improvements in the gauge and fermion actions
and in the continuum limit.
The Banks-Casher formula [7] relates the density of

Dirac eigenvalues at zero with the chiral condensate. In
order to utilize this formula we expand the cumulative
distribution of the eigenvalues in the form

IðxÞ ¼
Z x

0
d��ð�Þ ¼ X

n�1

anx
n;

from which �ðxÞ ¼ X
n�1

nanx
n�1;

(5)

where the �5-Hermiticity of the staggered Dirac operator
as well as its anti-Hermitean nature have been used.
Together they imply that the eigenvalues are paired and
imaginary, �i�. The integration above is over the positive
� values. Note that the reflection symmetry in � permits
the existence of an a2 term (even n, in general) only if the
�ð�Þ is nonanalytic at the origin.
The cumulative distribution was constructed numeri-

cally and fitted to the form in Eq. (5) for configurations
above and below Tc. Indicative results are shown in
Tables I and II. The tables are arranged in increasing order
of N, the number of eigenvalues included, and n of Eq. (5).

FIG. 1 (color online). The lowest Dirac eigenvalues as a func-
tion of T for different spatial lattices. In all cases the lattice
spacing a ¼ 1=ð4TÞ. Also shown in the lowest Matsubara
frequency expected at this cutoff, i.e., the expectation for free
fermions.

TABLE I. Fits of the cumulative density for � ¼ 5:26, i.e., T=Tc ¼ 0:90� 0:01.

Lattice Cutoff N points �2=N a1 a2 a3

4� 163 0.01 189 0.77 0.153(3)

0.06 1147 0.37 0.153(2)

0.20 0.152(2) 0.050(50)

0.17 0.152(2) 0.8(1.0)

0.15 0.153(2) �0:08ð5Þ 1.9(1.0)

4� 123 0.02 153 1.00 0.147(2)

0.06 469 0.69 0.148(2)

0.14 1176 5.17 0.153(2)

0.27 0.144(2) 0.116(26)

0.20 0.147(2) 0.79(23)

0.16 0.146(2) 0.046(26) 0.49(23)

4� 83 0.06 128 0.17 0.135(11)

0.08 172 0.16 0.136(10)

0.10 222 0.23 0.138(10)

0.375 1150 6.80 0.175(7)

0.04 0.126(7) 0.196(26)

0.28 0.144(7) 0.43(8)

0.03 0.128(7) 0.175(25) 0.05(8)
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Note that below Tc one gets a good determination of a1 for
cutoffs of the order of 0.1 or so. In fact, the values of a1 do
not depend on n or N. With increasing lattice size, L, the
estimate of a1 increases marginally. On the larger lattices
a2 is compatible with zero, indicating that the distribution
is analytic.

Above Tc, a2 is clearly nonzero for all cutoffs while a1
drops with increasing L. This behavior, shown in Table II,
implies that a nonanalyticity develops in the spectral den-
sity. This nonanalyticity is due to the formation of a gap—
the spectral density is exactly zero up to the gap, and then
becomes nonzero. Another way to test this would be to
introduce a gap explicitly in Eq. (5),

�ðxÞ ¼ X
n�1

nanðx� x0Þn�1: (6)

Indeed, when one does that, a nonzero value of the gap, x0,
is observed for those temperatures where a2 is nonzero by
the other method.

III. EIGENVECTORS AND MEASURES OF
LOCALIZATION

The eigenvectors of the Dirac equation,  , are often
investigated through the localized moments

P�n ð�Þ ¼ Vn�1
X
r

jp�ðr;�Þjn;

where p�ðr;�Þ ¼ h�j�j�i; and P1
1 ¼ 1;

(7)

� is a matrix in Dirac space [8], the inner product in the
definition of p�ðr;�Þ involves a sum over spin-flavor and

color indices, the explicit sum is over all V lattice sites r,
and the normalization of the eigenvectors, P1

1 involves the
density where the Dirac matrix is identity. For staggered
quarks one has the identity P1

n ¼ P�5
n . The second moment,

n ¼ 2 is called the inverse participation ratio (IPR). The
moments P1

n have the interesting property that for constant

 ¼ 1=
ffiffiffiffi
V

p
, one finds P1

n ¼ 1, whereas for the localized
 ðrÞ ¼ 	r;r0 , one has P

1
n ¼ Vn�1.

Histograms of IPR against � are shown in Fig. 2. There
is a very clear difference between the IPR observed below
and above Tc. Below Tc the IPRs are close to unity, without
any clear dependence on the eigenvalues. In contrast, the
situation is dramatically different above Tc; several eigen-
vectors have very large values of IPR. There is correlation
between the eigenvalue and IPR, with larger eigenvalues
coming with substantially smaller IPR.
Below Tc there is little sign of volume dependence of the

IPR, consistent with the small values seen there. Above Tc
the smaller IPR values seen for large � are also volume
independent. However, as shown in Fig. 2, larger values of

TABLE II. Fits of the cumulative density for � ¼ 5:30, i.e., T=Tc ¼ 1:05� 0:01.

Lattice Cutoff N points �2=N a1 a2 a3

4� 243 0.0025 33 0.20 0.030(3)

0.01 140 0.22 0.032(3)

0.031 535 0.04 0.030(3) 0.41(5)

0.031 535 0.03 0.031(3) 0.25(10) 5(2)

4� 163 0.01 22 0.38 0.0148(36)

0.06 323 5.35 0.0317(36)

1.89 0.81(9)

0.03 0.0125(37) 0.53(9)

0.12 1077 0.03 0.0136(33) 0.503(37)

1.27 0.029(3) 3.4(0.4)

0.01 0.0118(32) 0.57(4) �0:5ð4Þ
4� 123 0.02 20 0.57 0.0135(45)

0.06 130 4.06 0.0291

0.05 0.0060(46) 0.62(11)

0.20 1068 31.2 0.0767

0.13 0.0147(39) 0.45(3)

2.18 0.039(4) 1.77(16)

0.01 0.008(4) 0.581(26) �0:55ð16Þ
4� 83 0.01 9 0.09 0.047(25)

0.02 19 0.11 0.053(24)

0.06 68 0.16 0.064(18)

0.03 0.048(18) 0.414

0.20 373 0.01 0.052(11) 0.348(26)

0.415 1160 0.05 0.062(7) 0.29(2)

0.003 0.051(7) 0.38(2) �0:16ð6Þ
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IPR are volume dependent. A test of scaling shows that the
lattice size dependence is consistent with a power behavior,
L
, with 2:5 � 
 � 3:5. Again, this is not unexpected,
since IPR is constructed to be proportional to the volume
for localized eigenvectors.

In [3] the transition from volume dependent to indepen-
dent values of IPR is used to locate the ‘‘mobility edge.’’
By this identification one would have a mobility edge at
� ’ 1:25Tc for a temperature of 2Tc. However, the notion
of a mobility edge contains more physics and we shall
examine it more critically in a later section.

The eigenvalues and eigenvectors of the Dirac operator
are clearly dependent on the gauge field backgrounds.
However, thermodynamic quantities constructed from
these have fluctuations which decrease rapidly with in-
creasing lattice size. The IPR is not such a variable: its
fluctuations are comparable to the average, as can be seen
in Fig. 3. The ratio of the variance and mean of P1

2, as a

function of � at 2Tc, is of order unity [9]. The localization
properties of Dirac eigenfunctions can therefore serve to
classify the ensemble of gauge configurations which give
important contributions to the thermal path integral. This is

an obvious statement for overlap quarks, where localized
chiral eigenvectors of the overlap Dirac operator are
closely connected to localized gauge field configurations
which are taken to be the lattice analogue of instantons. It
is interesting that localization using staggered quarks,
where the connection to topology is obscure, can also be
used as a tool for analysis of gauge configurations.
The notion of localization has been closely examined in

[10]. Since p1ðrÞ is non-negative and normalized to unity
one can construct a measure of localization in the follow-
ing way. Take a value pf and find the fraction of the lattice

sites, fðpfÞ, containing values p1ðrÞ>pf. Clearly fðpfÞ
lies between 0 and 1, and is a decreasing function of pf.

The integral of p1ðrÞ over these sites, CðpfÞ, lies between 0
and 1, and is another decreasing function of pf.

Eliminating pf between these two, one obtains Horvath’s

localization function fðCÞ. Clearly fðC ¼ 0Þ ¼ 0, fðC ¼
1Þ ¼ 1 and the function is nondecreasing.
If p1ðrÞ is highly peaked, then CðpfÞ increases rapidly as

pf decreases, whereas fðpfÞ increases slowly. As a result,
fðCÞ is small over most of the range of C as increases very
rapidly to unity near the end of the range. If, on the other
hand, p1ðrÞ is fairly uniform, then both CðpfÞ and fðpfÞ
increase fairly abruptly over a small range of pf. The

function fðCÞ then increases very rapidly towards unity at
small C. In Fig. 4 we show the behavior of several models
of p1ðrÞ:
(1) Some periodic functions, cos2ðk � rÞ, normalized to

unity on two lattices; these have P1
2 ¼ 1:5.

(2) Random uncorrelated function values on sites,
drawn from the uniform distribution in ½0; 1�, nor-
malized to unity; these have P1

2 ¼ 1:66.
(3) Two Dirac eigenvectors obtained from the same

gauge configuration at 2Tc, one with P1
2 < 2 and

the other with P1
2 > 100.

FIG. 3 (color online). The relative fluctuations in the IPR, i.e.,
the ratio of the variance and the mean, at 2Tc as a function of the
staggered Dirac eigenvalue, �.

FIG. 2 (color online). The IPR, P1
2, above and below Tc as a

function of the staggered Dirac eigenvalue �.
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The localization function fðCÞ clearly contains more
information than the single number P1

2, i.e., the IPR.
However, the IPR is statistically compatible with state-
ments obtained from the more detailed measurement of
fðCÞ. We demonstrate this by the following correspon-
dence. Choose any arbitrary value, C	, the function value
fðC	Þ is strongly correlated with the IPR, as we show in
Fig. 5. For a wide range of C	 we find fðC	Þ / 1=P1

2.
We give an example of a question which can be easily

answered through the use of the localization function. If
the eigenvector is localized, then how does it fall off away
from the peak? Exponential fall,  ðrÞ ’ expð�
RÞ, where
R is the distance from the peak, would imply C ’
1� gðRÞ expð�R2Þ and f ’ Rd, in d dimensions. Thus,
exponential falloff of a localized eigenvector would give
rise to the relation � logð1� CÞ / ffiffiffi

f
p

, for both C and f

close to unity. In Fig. 6, we show that this is true of
staggered Dirac eigenvectors with P1

2 > 40 but those with
P1
2 < 2 have completely different behavior.
A model for eigenvectors with small IPR is that of a

function p1ðrÞ with random uncorrelated values. We call
this the site percolation model for the following reason. As
we trace out the level curves of this function by choosing
pf, we pick sites independently with a probability given

exactly by f. Each site belongs to an unique cluster,
defined as the collection of all neighboring sites on the
lattice which are picked [11]. When f is small, we find
small localized clusters, but above some critical value, we
have percolating clusters. Each realization of the random

FIG. 5 (color online). The strong correlation between IPR, P1
2,

and the value of the localization function for two values of C
shows that the latter contains all the information available in the
former.

FIG. 6 (color online). Scaling of the localization function in
the vicinity of f ¼ C ¼ 1 shows that staggered Dirac eigenvec-
tors with IPR larger than 40 fall exponentially far from the peak,
whereas those with IPR less than 2 have drastically different
behavior.

FIG. 7 (color online). The number of clusters, Nc, normalized
by the lattice volume for uncorrelated site percolation and for
those eigenvectors of the staggered Dirac operator at 2Tc which
have IPR smaller than 2.

FIG. 4 (color online). Examples of the localization function,
fðCÞ, for different models of localization, compared with two
examples from QCD.
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function is a realization of the percolation problem for all
possible probabilities.

As we fill a larger and larger fraction of the lattice, the
number of clusters, Nc, grows until the percolation thresh-
old is reached, after which the number of clusters begins to
decrease. The clusters are ramified, and, near the critical
percolation probability, have a fractal dimension related to
the critical indices of the percolation problem. Above the
critical probability, the clusters have canonical dimension,
as a result of which the holes are filled in rapidly, and Nc
decreases.

In Fig. 7 we compare the average cluster size as a
function of f for the site percolation problem and those
eigenvectors in QCD at 2Tc which have IPR greater than 2.
The fact that QCD has more clusters at larger f than site
percolation implies that the percolating cluster constructed
from P1

2 have larger holes inside them where isolated
clusters can exist.

IV. STABILITY OF LOCALIZATION

One of the paradigms in the analysis of Dirac eigenvec-
tors is that of Mott localization and the existence of a
mobility edge. In a metallic crystal with random impuri-
ties, localization of electron wave functions can be ob-
served. Mott argued that if there exists a localized and an
extended state arbitrarily close in energy, then they will
mix under any small perturbation of the Hamiltonian (in-
duced, for example, by the movement of one of the impu-
rities) hence destroying localization. He argued that, as a
result, localization is robust only when localized and ex-
tended states are separated in energy. It is well-known that
this argument could fail if the extended states have support
in regions with holes, since the lack of overlap can then be
arranged in space rather than in energy.

The mobility edges are the band edges of localized
states. On a finite lattice where the eigenvalue spectrum
is discrete, the identification of a mobility edge is not
straightforward. As a result, it is hard to test Mott’s picture
of localization directly. It is interesting to build another
measure of stability. We do this next.

Assume that the Dirac operator is perturbed by a change
in the gauge fields, DðUþ 	UÞ ¼ DðUÞ þ 	D. Then, first
order perturbation theory tells us that the change in an
eigenvector is

	j�i ¼ X
�0
C��0 j�0i; where C��0 ¼ h�0j	Dj�i

�0 � �
: (8)

Under a random change of the gauge fields, the phase
information in the matrix element above is randomized.
Hence, for a study of average properties of the perturba-
tions over ensembles of random changes of gauge field, it
would suffice to study C	U instead, where

C�� ¼
P
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðr;�Þp1ðr;�Þ

p

j���j : (9)

This matrix can be extracted purely from the knowledge of
the eigenvalues and eigenvectors of the staggered Dirac
operator. Note also that the mixing involves both a spatial
part, which is the numerator, and a part in energy, which is
the denominator. A small mixing can be a result of either.
A perturbing field of 	U ’ 1=C�� would change j�i by

adding to it a significant part of j�i. As a result, the state
j�i is only as stable as the largest value of C��. The least

stable eigenvector is that for which this measure of stability
is minimized. The stability of the localization of Dirac
eigenvectors in a given gauge field configuration depends
on the least stable localized eigenvector. Hence the stabil-
ity can be defined to be the quantity

S ¼ max�2locS�; where S� ¼ max�2extC��; (10)

such that the maxima are over states j�i which are local-
ized and states j�i which are extended. The inverse, 1=S�,
for a localized state j�i, is a measure of the minimum field
strength which causes significant mixing with an extended
state. This measure is eminently suited to a lattice where
the spectrum is discrete. If indeed there is stable localiza-
tion, then examination of the particular element of the
mixing matrix which gives S can help us to identify
whether localization is achieved through Mott’s mecha-
nism and the formation of mobility edges, or through
spatial segregation of the support of localized and extended
states.
A numerical implementation of Eq. (10) requires speci-

fication of which eigenvectors are localized. We use a
definition in terms of the IPR, taking all eigenvectors
with P1

2 > P	
2 are localized and those with P1

2 <P	
2 are

deemed to be extended. When changing this definition in
the range 2 � P	

2 � 10 we found no significant change in
the quantities reported below. The data shown in the figures
are obtained with P	

2 ¼ 8.
In Fig. 8, we show stability of the most localized states at

2Tc as a function of P1
2. The quantity plotted is a dimen-

sionless measure of the minimum change in the gauge field
required to mix a given localized state with any extended
state— 1=ð4TS�Þ. As shown in the first panel, there is a
tendency for 1=ð4TS�Þ at a given P1

2 to decrease as the
lattice size increases. Scaling the data by a power of the
lattice size one finds an optimum scaling as the point where
the Fisher’s linear discriminant is least able to separate the
data for different lattice sizes. In the second panel of the
figure we exhibit the resultant scaling with the lattice size,
1=ð4TS�Þ / ðLTÞ�2 at fixed P1

2. If this scaling persists at
larger lattice sizes, then it would imply that in the thermo-
dynamic limit an arbitrarily small change in the gauge field
can destabilize the localized eigenvalues.
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The scatter in the data does not allow us to measure the
scaling exponent more precisely. One could argue that
since we are examining localized states, the factor of p1

in Eq. (9) does not scale with volume. In that case one is
forced to the conclusion that the observed volume depen-
dence comes from the energy differences in the denomi-
nator of Eq. (9) scale as L2. Such a scaling is open to clear
tests, and we perform this next.

Since a lattice allows only discrete eigenvalues of the
Dirac operator, the origin of localization on the lattice is
not a mystery. Nevertheless, one could try to probe the
origin in more detail. In order to do this we construct two
matrices

F�� ¼ X
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðr;�Þp1ðr;�Þ

q
; and G�� ¼ 1

j���j ;

(11)

one of which, F, looks only at the spatial overlap, and the

other, G, only at the overlap in energy. Using these we can
define the notions of stability, F � ¼ max�2extF�� and

G� ¼ max�2extG��.

We found that S� is strongly correlated to both F � and
G�. As expected from the earlier argument, F � shows no
scaling with L. As a result, it requires no scaling when
plotted against the scaled quantity L2=S�. On the other
hand, G� scales with the same exponent as S�. As a result,
when plotted against the scaled quantity L2=S�, one re-
quires the scaling L2=G� in order for the measurements to
be universal. These correlations are shown in Fig. 9. From
the figures it is clear that the stability of the localization
phenomenon seen at finite lattice spacing is controlled by
the energy level differences. The situation seems to pro-
duce a curious version of Mott’s argument. In this case we
have localized states whose spatial overlap with extended
states is finite. Thus there is no segregation of the spatial
support of localized and extended states. Localization is
seen at any finite volume, and is realized through the

FIG. 9 (color online). Correlation between the measures of
stability of the localization of staggered Dirac eigenvectors,
with two flavors of dynamical quarks in QCD at 2Tc. Note
the common scaling of the stability measure S� with the
eigenvalue difference G�.

FIG. 8 (color online). The stability of localization of staggered
Dirac eigenvectors with 2 flavors of dynamical quarks in QCD at
2Tc. The first panel shows that stability decreases with increas-
ing spatial size. The second shows that the data supports scaling
as 1=L2.
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formation of a mobility edge. However the gap between the
localized and extended eigenvalues seems to disappear as a
power of the lattice volume. As a result there could be no
localization in the thermodynamic limit.

One can cross-check this conclusion also by computing
the minimum of the mobility gap; i.e., the difference
between the maximum energy level among the localized
states and the minimum energy level between the extended
states. This mobility gap scales to zero as 1=ðLTÞ3, and the
scaling is not sensitive to the choice of P	

2 used to separate

localized and extended states in the range 2 � P	
2 � 10.

V. CONCLUSIONS

In this paper we have examined the eigenvalues and
eigenvectors of the staggered Dirac operator evaluated on
thermalized configurations obtained in simulations of
QCD with two flavors of dynamical staggered quarks at
temperatures between 0:75Tc and 2Tc with a lattice spac-
ing of a ¼ 1=4T. The spectrum develops a gap as one
crosses Tc, although in the high temperature phase the
gap remains substantially smaller than that in free field
theory. It would be interesting to study the gap formation in
the transition region to check whether this way one can
obtain additional insight on the crucial question of the
order of the phase transition.

The smallest eigenvalues have eigenvectors which are
localized. We investigated different quantities, the IPR and
the localization function, which measure the degree of
localization, and found good agreement between them.

We investigated the stability of localization properties of
the staggered Dirac eigenvectors with respect to changes in
the gauge field background. We showed that localization
properties are not stable as one takes the thermodynamic
limit. In fact, the scaling of the data shows that in that limit
localization of staggered Dirac eigenvectors is not ex-
pected to be of thermodynamic importance.
We developed measures of stability which distinguish

between stability due to spatial and energy separation of
the eigenfunctions. QCD with staggered quarks seems to
contain a curious reversal of Mott’s argument. The support
of localized wave functions is not spatially separated from
that of extended wave functions, and this persists into the
thermodynamic limit. As a result, if localization were to be
obtained, it would be through the formation of a mobility
edge. Indeed, at each volume, one does seem to observe the
formation of a mobility edge.
However, localization is spoilt by the fact that the energy

denominators can become arbitrarily small, scaling as a
power of the spatial volume in the thermodynamic limit
where L! 1. It would be interesting to extend this work
to the overlap Dirac operator, whose exact zero modes are
related to localized topological features of gauge field
configurations [3].
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