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We discuss the properties of 't Hooft vertices in partially quenched and rooted versions of QCD in the
continuum. These theories have a physical subspace, equivalent to ordinary QCD, that is contained within
a larger space that includes many unphysical correlation functions. We find that the ’t Hooft vertices in the
physical subspace have the expected form, despite the presence of unphysical 't Hooft vertices appearing
in correlation functions that have an excess of valence quarks (or ghost quarks). We also show that, due to
the singular behavior of unphysical correlation functions as the massless limit is approached, order
parameters for nonanomalous symmetries can be nonvanishing in finite volume if these symmetries act
outside of the physical subspace. Using these results, we demonstrate that arguments recently given by
Creutz—claiming to disprove the validity of rooted staggered QCD—are incorrect. In particular, the
unphysical "t Hooft vertices do not present an obstacle to the recovery of taste symmetry in the continuum

limit.
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L. INTRODUCTION

Staggered fermions are a relatively inexpensive method
for putting quarks on the lattice, and have led to a growing
number of precise QCD predictions that can be compared
with experiment. There is, however, a theoretical issue that
needs to be understood in detail in order to be confident
that there are no hidden systematic errors, i.e., errors that,
because their nature is not understood, are not being taken
into account.

If one uses a staggered fermion field for each (light)
physical flavor, then the continuum limit of QCD with
staggered fermions has too many quark degrees of free-
dom. Proceeding naively, each staggered fermion yields
four degenerate Dirac fermions in the continuum limit. As
has become customary, we will refer to this extra multi-
plicity as “‘taste.” In the continuum limit the quark fields
carry a taste index, and correspondingly, have an SU(4)
taste symmetry. On the lattice the SU(4) taste symmetry is
explicitly broken, but the effects of this breaking are con-
trolled by the lattice spacing a. In particular, taste breaking
leads to order a” effects in physical quantities, provided
that none of the quark masses vanishes.

In order to reduce the four-fold multiplicity, for each
physical flavor one takes the fourth root of the determinant
of the staggered Dirac operator inside the lattice path
integral that defines the theory. This “fourth root trick”
has been used extensively in practice. At the level of lattice
perturbation theory, it is straightforward to see that this
indeed removes the extra degeneracy of each closed fer-
mion loop, thus restoring the correct number of sea quarks
[1,2]. The key question is whether the use of “rooted”
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staggered QCD is legitimate also at the nonperturbative
level.

This question has received much attention recently (see
Refs. [3-29]), and there is mounting evidence, both ana-
lytical and numerical, that the continuum limit of rooted
staggered QCD is in the correct universality class.! For
details, we refer the reader to the original literature as well
as to the review articles Refs. [2,30,31]. In a nutshell, the
combined effect of lattice taste-breaking and the fourth
root trick makes rooted staggered QCD a nonlocal lattice
theory. In a careful treatment of the continuum limit, in
which all assumptions have been spelled out, these effects
have been argued to vanish, with the conclusion that the set
of physical correlation functions of the rooted theory is
reproduced by a nonperturbatively well-defined, local the-
ory, provided that the continuum limit is taken before the
chiral limit. The chiral effective theory that reproduces the
light pseudoscalar sector of rooted staggered QCD, includ-
ing its nonlocal discretization effects, has been shown to be
staggered chiral perturbation theory with the replica trick.
These arguments imply that SU(4) taste symmetry is re-
stored in the continuum limit.

The corresponding continuum theory therefore has four
copies (“tastes”) of each flavor, but with the 1/4 power of
the determinant appearing in the functional integral. We
call such a rooted theory with exact taste symmetry a
“rooted continuum theory”” (RCT). It is easy to see [18]
that the physical subspace of the RCT reproduces the
correlation functions of QCD. The relevant discussion

'The concerns raised in Ref. [17] have been answered in

Ref. [18]. The additional concerns brought up in Refs. [24,26]
are answered here.
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from Ref. [18] is summarized below. We emphasize here
that the equivalence between QCD and the physical sub-
space of the RCT is rigorously established (as long as the
quark masses are positive). What is less certain (though
very likely, we believe, based on Refs. [2,16,23,27]) is that
the rooted staggered theory on the lattice becomes this
RCTas a — 0.

Despite having a physical subspace equivalent to QCD,
the RCT is not identical to QCD. The presence of four
tastes for each physical flavor allows one to construct
additional, unphysical, correlation functions beyond the
physical set of correlations that occur in QCD. When taste
symmetry is exact, the fourth root removes three of the four
tastes from the quark sea for each physical flavor, and there
is thus an “oversupply” of valence quarks. This can be
restated: a rooted theory with exact taste symmetry is
precisely equivalent to a partially quenched theory
[1,2,16], with four normal-statistics quarks (the four tastes)
and three opposite-statistics quarks, or ghost quarks, for
each flavor.

The question then is what type of projection or averag-
ing should be used in order to construct correlation func-
tions that correspond to the physical subsector of the
partially quenched theory. We emphasize that this question
is of practical importance. In order to extract the physical
observables of QCD we need to know which correlation
functions in the rooted lattice theory become, in the con-
tinuum limit, equal to correlation functions in the physical
subsector. The resolution of this ‘““valence” problem of the
RCT is much simpler than the question of whether the
rooted staggered theory has the expected continuum limit
in the first place. It is in fact possible to solve the valence
problem completely, and a general analysis has already
been given in Refs. .

Here, we will revisit the valence problem, focusing on
the role of ’t Hooft vertices in rooted and/or partially
quenched versions of QCD. More precisely, we consider
QCD with one flavor, where the issues are particularly
acute. The conclusions generalize straightforwardly to
multiple flavors. Although our discussion is an application
of the general analysis of Refs. [2,18], we think it useful to
describe it explicitly as it brings out several unusual fea-
tures of partially quenched theories. Furthermore, a recent
article by Creutz claims to show that rooting fails using
arguments based on 't Hooft vertices [26]. One application
of our discussion here is to show that the arguments of
Ref. [26] are incorrect. Indeed, Creutz’s main arguments
apply to the assumed continuum-limit theory with exact
taste symmetry, the RCT. Therefore it is possible to give a
complete resolution of the apparent paradoxes that he
finds.

The paper is organized as follows. In Sec. II we review in
some detail the RCT of one-flavor rooted staggered QCD.
We show how the exact taste symmetry allows one to
establish rigorously (for positive quark mass) that a rooted
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theory with four tastes has a physical subspace identical to
that of standard one-flavor QCD. We also write the RCT as
an unrooted, but partially quenched, theory, which will be
particularly useful for discussing the 't Hooft vertices. We
discuss how one projects onto the physical subsector of that
theory. We focus on the method of projection that is most
useful for the subsequent discussion, namely, that based on
picking out a single taste. In Sec. III we study 't Hooft
vertices in the RCT, showing that infrared divergences are
present in unphysical, but never in physical, correlation
functions. In Sec. IV we resolve an apparent inconsistency
between the anomalous U(1) chiral symmetry of the one-
flavor theory and the existence of nonanomalous chiral
symmetries that act on the enlarged set of correlation
functions of the partially quenched theory. As an applica-
tion, we show, in Sec. V, how the arguments about ’t Hooft
vertices in Ref. [26] fail. We also discuss claims by Creutz
that the RCT cannot be the limit of the lattice theory,
because (1) the tastes of the lattice theory have *“cancel-
ing” chiralities, while the tastes of the RCT do not, and
(2) the eigenvalue flow is an obstruction to the restoration
of taste symmetry. We show that both these claims are
false, and are based on a misunderstanding of the nature of
chiral symmetry on the lattice. We conclude in Sec. VI.

An appendix describes how the same conclusions can be
reached using the alternative method of projecting onto
physical mesonic correlation functions used in our earlier
paper [18]. The method does not invoke the partially
quenched framework.

We close the introduction by emphasizing five points so
as to avoid later confusion. The first is that all the partially
quenched theories that we discuss have equal valence and
sea-quark masses. For such theories one can project onto
the physical subsector using valence quarks alone (since
valence and sea quarks are interchangeable). By contrast,
most applications of partial quenching have differing va-
lence and sea-quark masses. For such theories, all correla-
tion functions composed of valence quarks are unphysical,
exhibiting, for example, double poles.

The second point concerns the order of the chiral and
continuum limits. All the arguments for the correctness of
the universality class of rooted staggered QCD are predi-
cated on sending a — 0 for fixed, positive, nonvanishing
quark mass.? The chiral limit can be taken only after taking
the continuum limit. Taking the limits in the other order
leads to incorrect answers (e.g., the vanishing of the con-
densate in one-flavor QCD). This point has been discussed
in our earlier paper [18] and elsewhere [2,3,19,23,30,32].
We assume throughout this paper that the order of limits
has been taken correctly, so that the RCT has positive
quark mass, which may only be taken to zero as a final step.

>The analytic continuation to Minkowski space must also be
postponed until after the continuum limit.
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Third, a claim in Ref. [26] is that 't Hooft vertices
obstruct the recovery of taste symmetry because they
lead to a nonperturbative coupling between different tastes
that survives in the continuum limit. One might therefore
worry that we are bypassing the main issue by basing our
discussion on the RCT, which has exact vector taste sym-
metry from the outset. This is not a problem because the
arguments of Ref. [26] about 't Hooft vertices in fact
respect taste symmetry, and can be considered equally
well in the RCT (or in its equivalent partially quenched
version). Put differently, we show, in the RCT, that the
nonperturbative couplings between different tastes do not
lead to any violations of vector taste symmetry or to
disagreement with QCD in the physical sector; if the argu-
ments of Ref. [26] were correct, we would not be able to
show this. For a rooted staggered theory at nonzero lattice
spacing, there will be unphysical effects in all sectors, but
since these vanish in the physical sector of the RCT, they
will be of order a? in quantities whose continuum limit is in
that sector.

Fourth, we note that the RCT can be obtained in a
rigorous way by regulating the rooted theory in a taste
and chirally invariant fashion—for example, by starting
with four identical copies of overlap quarks—and then
taking the continuum limit.

Finally, we stress that showing the arguments of
Ref. [26] to be incorrect does not imply that the rooted
staggered theory at nonzero lattice spacing has the correct
limit as @ — 0. It only shows that the assumed limiting
theory (the RCT) is not inconsistent, and has a physical
subspace equivalent to QCD. Whether the RCT is actually
obtained from the lattice theory as a — 0 is a different
issue, the status of which we reviewed briefly above.

II. ROOTED CORRELATION FUNCTIONS IN THE
CONTINUUM LIMIT

We begin with a review of relevant aspects of the valence
problem as discussed, in particular, in Appendix B of
Ref. [2] and Sec. 3 of Ref. [18]. We restrict the discussion
to the one-flavor theory, where the lattice path integral
contains the positive fourth root of the determinant of a
single staggered Dirac operator Dy, + mg,,. The corre-
sponding RCT has, by fiat, exact taste symmetry, so its
Dirac operator is given by

where D + m is the continuum single-quark Dirac opera-
tor, and 1 is the 4 X 4 unit matrix in taste space. We assume
a strictly positive quark mass, m > 0. In the continuum, the
determinant of D + m is then (formally) positive; the
determinant is rigorously positive for overlap quarks.3

3Since the staggered mass my,, is multiplicatively renormal-
ized [33], a positive continuum mass m will result from a
positive myg,,. For a negative quark mass, see Refs. [18,19].
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det H(Dycr + M) = [det(D + m)]'/* = det(D + m).
(2.2)

Note that the positivity of the determinant on the right-
hand side is crucial here, since the positive fourth root is
always taken on the left-hand side.

The generating functional for quark correlation func-
tions in the RCT is thus given by

2. 7) = [ DAE S det*Dycr + M)

4
X CXP{ Z 7{(Drer + M)i;lnj} (2.3a)
ij=1

=f@ﬂf%mw+m

4
X exp{z 7,(D + m)~! 77,-}. (2.3b)

i=1
Here S, is the gauge action, and we have introduced
sources 7; and 7); for all tastes. For rooted staggered quarks
on the lattice, Drcr + M in Eq. (2.3a) can just be replaced
by the staggered Dirac operator in the taste representation.
Once the taste symmetry is restored, however, we have the
option of working with the much simpler expression (2.3b).

The generating functional (2.3) is also equal to that of an
SU(4|3) partially quenched theory [1]:

Z(n, ) = [ DAeS: [ DyDIDDE
4
X exp{— Z(‘/_/i(l) +m); + i + i)
i=1

3
—z@w+w@} (2.4)
Jj=1

Here ¢; and ¢;[ are three bosonic (ghost) quarks whose
functional integral gives the required inverse powers of
det(D + m). The ghost-quark path integral converges be-
cause m > (. Note that the valence, sea and ghost quarks
all have the same mass.

The generating functional Z(%, 7) exhibits the valence
problem alluded to in the Introduction: Because we can
have all four valence quarks on external lines, the set of
correlation functions defined by Eq. (2.3) is much larger
than the set of physical correlation functions of a one-
flavor theory.

The resolution of the valence problem is obvious [2]:
Thinking of, for example, the quarks with taste index 2, 3,
4 as valence quarks, and pairing them with the three ghost
quarks, makes the quark with taste index 1 the physical
quark. The set of all physical correlation functions will
thus be generated by operators that depend on #, and i,
only, or, equivalently, by taking derivatives with respect to
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7, and 7, with all other sources set to zero. Indeed, upon
setting 1,34 = 1234 = 0, one immediately sees that the
generating functional of the partially quenched theory
reduces to the generating functional of the physical one-
flavor theory:

Z) favor(m1, M) = Z((1,,0,0,0), (7, 0,0, 0))
= fI)ﬂle‘Sx det(D + m)
X exp{7;(D + m)~"'n,}
- [Dﬂe-%f@q@q

X exp{—q(D + m)q + 919 + g},
(2.5)

where ¢ is the field of the one-flavor theory.

Relaxing the restriction on the sources, many more
correlation functions can be generated by taking deriva-
tives of Z(n, 17) with respect to all n; and 7;. The full set
thus contains many unphysical correlation functions.
Indeed, as we demonstrate in the next section, some of
these diverge in the massless limit. This is, in fact, a
generic feature of partially quenched theories, but is fully
compatible with the existence of a physical subspace, as
long as valence and sea-quark masses are equal, as they are
here.

Away from the continuum limit (i.e., in actual simula-
tions), one has only the lattice staggered field at one’s
disposal, and mixing between different tastes is unavoid-
able. One method to obtain correlation functions that be-
come physical in the continuum limit is to choose sources
that project onto a single taste in the continuum limit. This
is straightforward, given the known relation between the
lattice and continuum symmetry groups [33].

It will be useful for the next section to extend the
representation (2.4) to include sources coupled to ghosts,
so as to utilize fully the symmetries of the partially
quenched theory. We collect quarks and ghosts into a single
field with seven components:

¥ = ('7le’ '7[l2’ '7[l3) '7[l4) d)l) ¢2) ¢3)’

and extend the index on the sources to run from 1 to 7, with
157 commuting. The generalized generating functional is
then

(2.6)

Z(n, 7) = f DAe S f DYDY
7 —_ —_
X exp{— Z(‘PI(D + m)\I’l + ﬁi’\lfi + \Plnl)}
i=1

2.7

If one is interested in mesonic observables only, another
projection onto the physical sector of the RCT is available,
which was discussed in detail previously [16,18]. In the
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Appendix, we use this projection to study the effects of
’t Hooft vertices on mesonic correlation functions, arriving
at the same final conclusions, namely, that the physical
sector of the RCT correctly reproduces one-flavor QCD.

III.°T HOOFT VERTICES

In one-flavor QCD, instantons induce a bilinear 't Hooft
vertex [34]. Let us first recall what this statement means. In
an instanton background, D has a left-handed zero-mode
Yo = Py Taking the center of the instanton to be at the
origin, the quark propagator is

(D4 m) 10,20 = O+ B ) + O(m)
(3.1

where the m-independent term A(x,y) satisfies
{A(x, y), s} = 0. When we perform a Wick contraction
in the fermion path integral, this gets multiplied by
det(D + m) = m(det' (D) + O(m)) where the prime indi-
cates the determinant with the contribution from the zero-
mode removed. Hence, one has (with spinor indices im-
plicit and not contracted)

(G(x)q()r = —det' (D) () (y) + O(m),

where the subscript F indicates that only the fermionic
functional integral has been performed. This correlator is
nonvanishing in the limit m — 0. For distances |x — y|
much larger than the instanton size, the instanton’s contri-
bution, together with a similar contribution coming from
an anti-instanton, can be reproduced by an insertion of an
effective chiral-symmetry breaking vertex, the 't Hooft
vertex. In the one-flavor theory it is a fermion bilinear
proportional to gq.

In the partially quenched representation of the RCT,
Eq. (2.7), this result is reproduced as follows. In view of
Eq. (2.2), the fermion determinant in the one-instanton
sector is the same as in the one-flavor theory:

(3.2)

det /*[(D + m) ® 1] = m(det'(D) + O(m)).  (3.3)

The general bilinear expectation value in a fixed back-
ground gauge field becomes

(U;(0)W,(0)r = —€:8,;det! (D)l (x) o (y) + O(m),
3.4

where the subscript F now indicates integration over
quarks and ghosts. The factor of

p— +17
Ej: _1’

arises from the different statistics of quarks and ghosts.
Finally, projecting onto the physical subspace by setting
i=j=1, one recovers the one-flavor QCD result
Eq. (3.2).

if 1 =j=4 (valence quarks);

if5=j=7 (ghosts). 3.5)
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We next consider correlation functions containing two
fermions (or ghosts in the partially quenched theory) and
two antifermions (or antighosts). In the one-flavor theory,
no quadrilinear 't Hooft vertices appear. The reason is
simple. In the one-instanton sector, any contribution in
which all four fermion operators are saturated by the
(single) zero-mode will vanish by Fermi statistics.
Moreover, because A(x, y) anticommutes with 7ys, in the
massless limit all correlation functions must violate axial
charge conservation precisely by two units, as required by
the anomalous divergence of the axial current or, equiv-
alently, by the index theorem.

The situation in the RCT is quite different. It is simple to
see that, in a single instanton (or arbitrary topological
charge *1) background,

(W00, V()W (W)

_ %det'wwg o (@) ro(w)

X (Eiek5i]~5k1 - 6i5i18kj) + 0(1) (36)

Thus there is, in general, a quadrilinear effective vertex,
and its coefficient diverges like 1/m in the chiral limit. If
we project onto the physical sector by setting i = j = k =
[ =1, then the infrared-singular contribution from zero-
modes vanishes. This is just the cancellation between the
two fermion contractions dictated by Fermi statistics, and
reproduces the result in one-flavor QCD. However, in
unphysical correlation functions we can set the indices to
different values. With i = j # k = [, for example, there
will be a contribution only from one of the contractions,
and the cancellation cannot occur. Thus there are addi-
tional vertices in the rooted theory, with coefficients that
diverge in the chiral limit.

In fact, this is an example of a phenomenon present in
any partially quenched theory. Infrared-singular contribu-
tions, coming from the propagators, may not be canceled
by the positive powers of the quark mass, coming from the
determinants, because there is no fermion determinant
associated with any of the valence quarks. Indeed, singu-
larities of arbitrarily high order can occur since, unlike for
fermions, there is no limit to the number of ghost zero-
modes that can contribute. The key point, however, is that
this pathological infrared behavior cannot take place in the
physical sector of the partially quenched theory, because
this sector does not know about the valence quarks and
ghosts. In the case of the rooted one-flavor theory, project-
ing onto a single taste avoids all the singular vertices.

IV. WARD IDENTITIES

While the one-flavor theory and the partially quenched
theory (2.4) share the same physical (sub)space, they differ
in their symmetries. In the one-flavor theory, the single
chiral symmetry is anomalous. But when the one-flavor
theory is embedded into the partially quenched theory, the
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fermion condensate (gq) transforms under some of the
nonanomalous chiral symmetries of this extended theory.
We have already demonstrated that the fermion condensate
in the partially quenched theory, (i (y)#,(y)), takes the
same, nonzero, value as that in one-flavor QCD. In this
section we explain how this result is reconciled with the
chiral symmetries of the partially quenched theory.
Throughout this section we work in finite (though arbi-
trarily large) volume so that the topological charge is well
defined (and takes integer values).

For m > 0, the anomalous U(1), Ward identity of the
one-flavor theory takes the form

(50) = (55,0) — AQ0)
—om f 4G 75g(X)0) — 2Q0),  (@.1)

where Sy is the fermion action, and the topological charge
Q = (167>~ [ d*xtr(FF) arises from the variation of the
measure.

The Ward identity (4.1) is in fact valid after the integra-
tion over the fermions only. This can be used to recover the
index theorem [35]. Let us consider a fixed gauge-field
background and choose O = 1, in which case the left-hand
side of Eq. (4.1) is zero. For a fixed background field and
for any m > 0, the fermion determinant is a nonzero com-
mon factor that may be divided out. The index theorem
then follows by taking the massless limit of Eq. (4.1):

Ind (D) = li_%[d4x Tr(mys(D + m)~!(x, x)) = — Q.
“4.2)

This expression receives contributions from zero-modes
only (as follows in the case of a single instanton from
Eq. (3.1)). It is an important reminder that the massless
limit must be taken carefully in order to reproduce the
index theorem.

Returning to Eq. (4.1), we choose @ = G(y)ys5q(y) and
take the limit m — 0. The first term on the right-hand side
then drops out, since it has two factors of m in the numera-
tor, one coming from 65y, and the other from the fermion
determinant. (By Fermi statistics, saturating all four fer-
mion operators with zero-modes to obtain two powers m in
the denominator is not possible—see Sec. III.) We thus
obtain

(@)q() = —(Qq(y)ysq(y)).

This is the expected result, with (Grq; ) ({(GLqg)) receiving
a nonzero contribution from the one-instanton (one anti-
instanton) sector only. We stress that the contribution is
nonvanishing in the chiral limit, even though we are in
finite volume.

We next examine the expectation value of ,(y)i,(y) in
the partially quenched theory, and show how a nonvanish-
ing expectation value is consistent with the Ward identities
for the chiral symmetries of this theory. As a concrete

4.3)
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example we consider the symmetry generated by ys ® Es,
where E5 denotes a nonsinglet taste generator that we may
choose as

2s = diag(1, 1, —1, —1). (4.4)

Since ghost fields do not transform, we revert to the nota-
tion in which indices run from 1 to 4. This symmetry is of
particular interest, since it remains valid for valence stag-
gered fermions even away from the continuum limit (up to
breaking by the mass term). It is known as the U(1),
symmetry in the staggered theory, and we keep that no-
menclature here.

Instead of Eq. (4.1), the general U(1), Ward identity is

4
00) =2m Y. [ dGi(ys ® Zs()0). @5)
i=1

Notice the absence of a “Q” term, because the U(1),
symmetry is not anomalous. We now choose O =

() s (), leading to
4
GO =m 3. [ ata(i
i=1

X (ys ® Es i) i) () ysi (). (4.6)

As for Eq. (4.3), only |Q| = 1 sectors can contribute to the
right-hand side in the massless limit. For there to be a
nonzero contribution in this limit all four fields must be
saturated by zero-modes, as in the leading term on the
right-hand side of Eq. (3.6). Using this result, we see that
the contribution from i = 1 vanishes, while that from i =
2—4 does not. Furthermore, the latter contribution comes
only from the contraction of i;(x) with ¢;(x) (and ¢,(y)
with ¢, (y)), so that the integration over x is proportional to
the index, as in (4.2). The final result is that, in the massless
limit,

4
W) () = = Es;:{(Ind(D)ifr; (y)yst (»))
i=2
= Q¢ () Y5 (), 4.7
where we have used Y'7_, Hs;; = —1. This indeed takes

the same form as the Ward identity in the one-flavor theory,
Eq. (4.3).

If we integrate only over fermion and ghost fields (but
not over gauge fields) then we can extend the considera-
tions above to the multilocal quantities {g(x)g(y)) and
(,(x)i;(y)). By an essentially identical argument to that
given above one finds that the Ward identities from U(1),
and U(1), symmetries are consistent. Thus, for example,
the presence of a bilinear 't Hooft vertex in the partially
quenched theory is consistent with the presence of the
U(1), symmetry, and indeed with all of the exact (non-
singlet) chiral symmetries.

We conclude from the preceding discussion that order
parameters for nonanomalous symmetries, such as (i;/;),
can be nonvanishing in finite volume. This is allowed as
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long as the corresponding symmetry acts in the full RCT
rather than the physical subspace. The essential technical
point is that one cannot work directly at m = 0, even in
finite volume, once one moves out of the physical one-
flavor subspace into the full RCT (as is required to discuss,
for example, the U(1), symmetry). This is because of the
severe divergences as m — 0, such as those in the quadri-
linear vertex, Eq. (3.6). Since m # 0, chiral symmetries are
explicitly broken, and there is no mathematical inconsis-
tency in having (i;1;) # 0 in finite volume.

We stress that the preceding discussion applies to the
continuum limit of the rooted staggered theory provided
that this limit is taken before the chiral limit 2 — 0. This is
explained in detail in Refs. [2,18]. If on the contrary, the
chiral limit is taken first, while keeping a # 0, the finite-
volume condensate will vanish [2,3]. The emergence of a
nonzero chiral condensate in the Schwinger model with
rooted staggered fermions, including the noncommutativ-
ity of the continuum and chiral limit, was carefully
checked numerically in Refs. [3,19].

V. CONSEQUENCES FOR THE ARGUMENT
OF REF. [26]

The validity of the rooted staggered theory has been
called into question by Creutz [17,24,26], who discusses
various paradoxes that, it is claimed, provide proof of the
failure of rooting. While the discussion of Ref. [18] in fact
resolves all the apparent paradoxes, the most recent work
by Creutz [24,26] brings up features of rooted theories that
were not treated explicitly in Ref. [18]. In particular, the
’t Hooft vertices of the rooted one-flavor theory are
claimed in Refs. [24,26] to have a different structure
from the desired *t Hooft vertices of the standard one-flavor
theory. In this section, we review each of the claims of
Refs. [24,26] in turn, and, using the results obtained above,
refute them.

A. A racemic mixture?

Creutz notes [24,26] that the exact chiral symmetry of
staggered quarks (the U(1), symmetry) is a nonsinglet
symmetry in which two tastes transform with positive
chirality, and two, with negative chirality. He calls the
resulting rooted staggered quark a “‘racemic mixture”—a
heterogeneous combination of the two types of chirality.
So far, this is just a standard fact about staggered quarks,
coupled with new nomenclature. However, he then claims
that the RCT of (2.1) and (2.3) cannot be the continuum
limit of a rooted staggered quark because it contains four
identical tastes with (necessarily) the same chirality, in-
stead of the required racemic mixture. So, for example, the
RCT is required to have zero-modes with the same chirality
for each taste, while the staggered quark has zero-modes
with opposite chiralities for different tastes.

Creutz’s argument in this case is based on a simple
misunderstanding of the meaning of chirality. The *“chi-
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rality”” of a taste (or flavor, or zero-mode) is not a well-
defined concept before one specifies the particular chiral
symmetry in question. Thus, all four tastes of the RCT have
the same chirality with respect to the singlet (anomalous)
chiral symmetry, generated by ys ® /. But, with respect to
the nonsinglet chiral symmetry U(1),, generated by ys ®
Es, there are two tastes with positive chirality (55, =
Esy = +1), and two with negative (Es33 = Hsgq =
—1). So the RCT is every bit as much a “‘racemic mixture”
with respect to U(1), chiralities as the original rooted
staggered theory, and the same holds for the corresponding
(approximate) zero-modes of the two theories. Of course,
the U(1), symmetry happens to be exact on the lattice (up
to mass terms); while the singlet chiral symmetry and all
the nonsinglet chiral symmetries other than U(1), are
violated by discretization effects. Indeed, the singlet sym-
metry must be violated on the lattice, or (even unrooted!)
staggered quarks could not reproduce the correct anomaly
[36]. But the lesson is that, if one wants to discuss 't Hooft
vertices, for which the anomalous symmetry is relevant,
one needs to consider the chirality of modes under that
anomalous symmetry. In both the RCT and for rooted
staggered quarks on the lattice, the zero-modes for each
of the tastes in the presence of an instanton have the same
chirality under the anomalous chiral symmetry.

B. The one-flavor ’t Hooft vertex and U(1), symmetry

The bilinear form of the 't Hooft vertex of the one-flavor
theory, which has the form of a mass shift, is claimed in
Ref. [26] to be ‘““inconsistent with any exact chiral sym-
metry,” and, in particular, with the U(1), symmetry of
staggered fermions.

Were this assertion correct, then it would indeed indicate
a failure of rooting. In fact, we have shown in Sec. IV that
this claim is not correct. The Ward identities of the U(1),
symmetry agree with the original, anomalous Ward iden-
tities of the U(1), symmetry on the physical subspace, and
are consistent with a bilinear ’t Hooft vertex. Furthermore,
the direct calculation of Sec. III shows that such a vertex is
present in the physical subspace, obtained by using only a
single taste.

We note again that it is essential to take the continuum
limit of rooted staggered fermions before the chiral limit.

What is missed in Ref. [26] is the unusual nature of
symmetry breaking in partially quenched theories—non-
anomalous chiral symmetries can be broken in finite vol-
ume. To see this one must take the massless limit carefully,
as we have shown in Sec. IV, since there are more severe
infrared divergences in the enlarged set of correlation
functions of the partially quenched theory.

C. 1/m" singularities

Anticipating the argument that one can obtain the cor-
rect 't Hooft vertex by using only a single taste, Ref. [26]
points out that the rooted theory allows an octilinear
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't Hooft vertex, which is not suppressed by the lattice
spacing, and that, for example, gives rise to a 1/m?> diver-
gence in the correlation function ([T ¢;(x,) (). It is
then claimed that ““because of this strong coupling between
the tastes, all four must be considered in intermediate
states.”

We agree with the presence of such infrared divergent
’t Hooft vertices in the rooted theory. Indeed, the quadri-
linear example, which we discussed in Sec. III, plays an
essential role in Sec. IV in showing the consistency be-
tween the Ward identities of one-flavor QCD and its rooted
staggered extension. Furthermore, as noted in Sec. III,
there are in fact multilinear vertices involving ghosts
with arbitrarily high order of infrared divergence.

The presence of such vertices is a peculiarity of the
partially quenched theory, and the relevant question is
whether these couplings between tastes impact the physical
subsector. The answer is no, as can be seen from the
formulation of the partially quenched theory given in
Eq. (2.4). As we have already seen from Eq. (2.5), if the
only nonvanishing sources are 7, and 7;, which are all that
is needed to generate the correlation functions in the single
taste subsector, then the generating function is exactly that
of one-flavor QCD. There are contributions from inter-
mediate quarks of all species, including those that are
produced by the unsuppressed coupling between tastes
due to the “problematic” 't Hooft vertices. There are
also, however, contributions from intermediate ghosts,
and these precisely cancel those from the additional tastes.
It is essential for this cancellation that one keep m > 0 in
the partially quenched theory, so that none of the 't Hooft
vertices actually diverge. Only when one focuses on the
physical subsector alone (and only after taking the contin-
uum limit of the rooted theory) can one take the chiral
limit.

The problem with the argument of Ref. [26] is thus seen
to be that, in the partially quenched representation, it leaves
out the contribution from ghosts. Alternatively, using the
approach in the Appendix, which works directly with the
rooted theory, we can say that the problem with the argu-
ment of Ref. [26] is that it does not properly take into
account the cancellations that occur because different con-
tractions in the rooted theory are weighted with different
factors of 1/4.

We stress, as already noted in the Introduction, that the
additional multilinear 't Hooft vertices do not provide an
obstacle to taking the continuum limit of the rooted stag-
gered lattice theory. In particular, these vertices do not
break the vector taste symmetry, and thus their presence
is consistent with the assumed partially quenched contin-
uum limit, namely, the RCT, which has this symmetry.

D. The FF two-point function

A specific example of the claimed additional unphysical
contributions is considered in Ref. [26]. This is the two-
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point function of the gluonic operator tr(F(x)F(x)), which
probes the interaction between instantons and anti-
instantons. The specific claim is that the octilinear
’t Hooft vertices will produce a 1/m® divergent behavior
in this two-point function. Such a contribution would be
clearly unphysical, and represent a failure of rooting. As
we now show, however, this contribution is absent.

The general argument based on Eq. (2.4) is even more
simple than that of the previous subsection. Here we can set
all fermionic (and ghost) sources to zero, so that the
partition function (including gluonic sources as needed)
reduces to that of the one-flavor theory (with only gluonic
sources). Thus, in particular, the correct two-point function
of FF will be reproduced.

Although this cancellation is trivial, it is illuminating to
work out the details in an instanton—anti-instanton back-
ground. Let us start with the physical one-flavor theory.
The instanton and anti-instanton are located at x and y
respectively, and both have fixed sizes. The effective
instanton—anti-instanton interaction induced by the
(nearly) massless fermions, V(x — ), is equal, by defini-
tion, to the (renormalized) fermion determinant in the
instanton—anti-instanton background:

Vi(x — y)[1 — flavor] = det(D(1, I)), (5.1

where D(I, I) denotes the single-quark Dirac operator in
the background field. Let us assume that V(x — y) is ac-
counted for by the 't Hooft vertices. Since these vertices are
H; « iy, and Hj = i g, we have

Vi(x = y[1 = flavor] = (H, () H;(y)) = 1/(x = y)°,
(5.2)
where the fermion contractions are performed in the free
theory (as is always the case—by definition—with ’t Hooft

vertices.) Extending this result to the unrooted continuum
theory we evidently have

Vi(x — y)[unrooted] = det*(D(I, 1)) = 1/(x — )04,
(5.3)

whereas for the RCT, which is equivalent to the partially
quenched (4|3) theory,

Ve(x — y)[rooted] = det*3(D(I, I)) < 1/(x — y)0*“=3),
5.4

As expected, this agrees with the one-flavor result. This
conclusion is, clearly, completely independent of the de-
tailed form of the instanton—anti-instanton effective inter-
action [37].

It is now worth noting that the effective interaction
induced by a single ghost-quark is

Vi(x — y)[one ghost] = det™1(D(1, I)) « (x — y). (5.5)

The ghost-quark induced interaction is growing with the
separation! Once again Eq. (5.5) is nothing more than a
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trivial consequence of the fact that the ghost-quark deter-
minant is by construction the inverse of the quark deter-
minant. Nevertheless, this implies that the ghost-quark
contribution is not amenable to the language of 't Hooft
vertices; the interaction between local operators never
grows with distance. In this language, the erroneous con-
clusion of Ref. [26] (see, in particular, Fig. 5 therein) is a
result of failing to take into account the contribution of the
ghost quarks.

E. Motion of eigenvalues between topological sectors

For most gauge fields near the continuum limit, the
eigenvalues A; of Dg,, with a|);| <1 are observed to
lie in approximate quartets, consistent with the approxi-
mate taste symmetry [7,13]. The softly broken U(1), sym-
metry plays no role in determining the approximate quartet
structure, but does imply that all eigenvalues appear in
pairs with opposite imaginary parts, £iA + m. The number
of quartets with A near zero matches, for most configura-
tions, the number expected from the index theorem. Thus,
for example, a configuration with unit topological charge
has a “zero-mode quartet” composed of two U(1), pairs:
there are two eigenvalues with (small) positive imaginary
parts and two with the corresponding negative imaginary
parts.

It is observed in Ref. [26] that the quartet structure
cannot be maintained as one traverses from one topological
charge sector to another (as one can do on the lattice by
varying the gauge field continuously). For example, mov-
ing from Q = 0 to Q = 1, a quartet of approximate zero-
modes must appear, and this can only happen by having
two eigenvalues with positive imaginary part come down
to the real axis, with their U(1), partners coming up
symmetrically from below. Thus at least two approximate
quartets must be broken up during the transit (one each for
positive and negative imaginary part). This is indicated
pictorially in Fig. 3 of Ref. [26].

In this case we agree with the description of Ref. [26],
but argue that it does not present a problem for rooting. It is
true that the transit between sectors involves rough gauge
fields with significant components with momenta p ~ 1/a,
and this does lead to significant taste breaking. The issue,
however, is whether such gauge fields are important in the
functional integral. In the continuum theory, different to-
pological sectors form disconnected spaces. We thus ex-
pect that, regardless of the type of fermions used, lattice
configurations lying “‘on the boundary” between different
topological sectors must have a vanishing weight in the
continuum limit.

VI. CONCLUSION

In this paper, we have shown how the appropriate
’t Hooft vertices appear in a rooted version of QCD with
exact taste symmetry, the so-called rooted continuum the-
ory, and how they are consistent with the Ward identities of
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the rooted theory. A key to doing so is realizing that the
RCT is a partially quenched theory. A crucial property of
such theories is that they contain a physical sector (here the
desired target theory, QCD) that is protected from the
unphysical effects that are present in the full partially
quenched theory. It is straightforward to construct correla-
tion functions that are contained in the physical sector of
the RCT, and thus are free from unphysical effects. In the
main text we used a projection onto a single taste, while in
the Appendix we show how a different projection, used in
our earlier paper [18], also works. For each of these ap-
proaches, there exist lattice versions that go over to the
desired projections in the continuum limit and that can
easily be applied to the rooted staggered theory.

A subsidiary result of this paper is to expose further
unphysical features of partially quenched theories. That
unphysical effects are present is well known. What we find,
elaborating on an observation of Ref. [26], is that (anti-)
instantons give rise to fermionic correlation functions that
diverge with a power of m when m — 0. We observe that
such infrared divergent 't Hooft vertices exist also with
external ghost quarks, and that for these there is no limit to
the power of the divergence. Nevertheless, these quenched
sicknesses do not affect the physical sector, because of a
cancellation between valence quark and ghost sectors.

Another unphysical feature is that an order parameter for
a nonanomalous symmetry of a partially quenched theory
can be nonvanishing in finite volume, if the action of the
symmetry is not restricted to the physical subspace. This
can happen because the divergences in correlation func-
tions force one to approach the massless limit carefully
from m # 0, where chiral symmetries are explicitly bro-
ken. This phenomenon occurs in rooted one-flavor QCD,
and plays a central role in understanding how the conden-
sate of that theory is consistent with the extended symme-
tries of the RCT, and hence also of rooted staggered QCD.

Our discussion was mostly restricted to the continuum
limit, and our observations do not imply that rooted stag-
gered fermions have been proven to be correct. What they
do imply is that it is not possible to invalidate rooting using
arguments based on the symmetries of the partially
quenched theory that is the (assumed) continuum limit of
rooted staggered QCD. Indeed, because of discretization
effects, the symmetries of rooted staggered QCD are a
subset of those of the RCT. So if the RCT does not have
what Creutz calls “too much symmetry” [24] to preclude it
having a physical subspace equivalent to QCD (as we have
shown), then the rooted staggered theory itself cannot have
“too much symmetry.”” We have made this point previ-
ously in Ref. [18] in the context of mesonic correlation
functions. What we have done here extends the discussion
to all correlators. In particular, our arguments invalidate the
claims of Refs. [17,24,26] that rooting fails. The core claim
of Ref. [26] is that the appropriate 't Hooft vertices cannot
occur (e.g., a bilinear vertex in one-flavor QCD) because
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they are inconsistent with the symmetries of staggered
fermions. On the contrary, we show that the proper
't Hooft vertices exist provided that the continuum limit
is taken before the chiral limit, and that they are consistent
with the staggered symmetries.

ACKNOWLEDGMENTS

We thank Andreas Kronfeld for discussions. C.B., M. G.
and S. S. were supported in part by the U.S. Department of
Energy. Y.S. was supported by the Israel Science
Foundation under Grant No. 173/05.

APPENDIX: AN ALTERNATIVE PROJECTION

In this Appendix, we discuss an alternative projection
onto the physical subspace of the RCT. This projection was
introduced in Ref. [18], to which we refer the reader for
more details, and works only for mesonic correlation func-
tions. It is a useful projection to consider, because it can be
easily applied to staggered fields on the lattice. In addition,
it does not require the introduction of ghosts for the treat-
ment of the ’t Hooft vertices.

For mesonic operators, one may introduce a source J in
the rooted determinant:

det 4(Dger + M + J) = det/*(D + m) ® 1 + J).
(A1)

Restricting to a taste-singlet source, J = J ® 1, we have

det'/*(Dper + M+ J @ 1) = det/*(D + m + J) ®1)
= det(D + m + J). (A2)

The rightmost expression can be used to generate the set of
mesonic correlation functions of the physical one-flavor
theory; therefore the same is true for the source J = J ® 1
in the rooted theory. However, if we generate correlation
functions using the leftmost or middle expression, both of
which include explicitly the taste degrees of freedom, we
will get intermediate states including all combinations of
tastes, as well as factors of 1/4 coming from the fourth root
of the determinant. The factors will depend on the particu-
lar contraction in question; it is in fact easy to see that we
get one power of 1/4 for each quark loop. Thus Eq. (A2)
implies that the factors of 1/4 must compensate for the
presence of intermediate states made out of all tastes,
giving precisely the physical one-flavor mesonic
correlations.

Let us work out two examples relevant to the discussion
of ’t Hooft vertices in Sec. III. Comparing J derivatives of
the rightmost and leftmost expressions in Eq. (A2), we
find, in the one-flavor theory:
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(@0)a( = = et Dycr + M) Tr((Dycr + M) (5,0, (A30)
(G(0)q(x)g(»)g(»))p = det'/*(Dger + M)I:—% Tr((Dger + M)~ (x, y)(Drer + M)~ 1(y, x))
e Tr(Drer + M) (5 3) Tr((Dger + M)'(y y))], (A3b)

where again ¢, g are the one-flavor fields, and (...)p
denotes averaging over fermion fields only. As expected,
different contractions are weighted by different powers of
1/4 on the right-hand side. The corresponding lattice ex-
pressions can be obtained simply by replacing Dgcr + M
by Dslag + Mistag -

With exact taste symmetry, each trace in Eq. (A3) pro-
duces a factor of 4, canceling the factors of 1/4. Thus, for
example, the two terms in Eq. (A3b) end up with equal and
opposite weights. When saturated by zero-modes in the
0O =1 sector, each of these diverges as 1/m, but this
divergence cancels in the sum. This cancellation corre-
sponds exactly to the cancellation among the two terms
in Eq. (3.6) when that equation is projected on the physical
subspace by choosing i = j = k =1 = 1. As explained
above, this is a manifestation of Fermi statistics. It explic-
itly shows that the unphysical four-point ’t Hooft vertex
does not appear in the physical subspace of the rooted
theory.

On the other hand, if we take derivatives with respect to
the more general sources in Eq. (Al), we can generate
unphysical correlations. For example, taking derivatives
with respect to J;; and Jy, and using the exact taste
symmetry, gives

52d6t1/4(DRCT + M + ])
8J11(x)8J(y) J=0

1
= det'/*(Dgcr + M)E Tr([(Drer + M)~y

X (x, x)) Tr([(Drer + M)~ ] (y, ). (A4)
There is no cancellation here, and there will be a 1/m
divergence in this correlator in the Q = 1 sector coming
from zero-modes. This is as expected, since this correlation
function is outside the physical subspace. We see again that
in the rooted theory one has to take m # 0, and that the
limit m — O can only be taken in the physical subspace.
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