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QCD at a finite quark-number chemical potential � has a complex fermion determinant, which

precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite �

in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-

quenched approximation can be considered as simulating at finite isospin chemical potential 2� for Nf=2

u-type and Nf=2 d-type quark flavors.) These simulations are used to study the finite-temperature

transition for small �, where there is some evidence that the position (and possibly the nature) of this

transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor

QCD. Here, it has been argued that the critical point at zero �would become the critical endpoint at small

�, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and

there is no such critical endpoint for small �. We discuss how we might adapt techniques used for

imaginary� to improve the signal/noise ratio and strengthen our conclusions, using results from relatively

low statistics studies.

DOI: 10.1103/PhysRevD.77.114503 PACS numbers: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

Relativistic heavy-ion colliders allow one to study had-
ronic and nuclear matter at high temperatures where it
undergoes a transition to a quark-gluon plasma. While
the highest energy colliders (RHIC and the forthcoming
heavy-ion program at the CERN LHC) study only the very
low density regimewhere the baryon-number density is too
small to have much effect on the thermodynamics, lower
energy relativistic heavy-ion colliders can probe the region
where baryon-number density is appreciable.

For physical u, d, and s quark masses, the finite-
temperature transition at zero baryon-number density is
predicted to be a rapid crossover rather than a true phase
transition [1–3]. It is expected that, at high enough baryon-
number densities, this transition will become first order.
The point at which the change from a crossover to a first-
order transition occurs would be a critical point, expected
to be in the universality class of the 3-dimensional Ising
model. This critical point is referred to as a critical end-
point, and is expected to be the most interesting feature of
this intermediate density regime of the QCD phase
diagram.

While finite-temperature QCD is straightforward (but
tedious) to simulate on the lattice, QCD at a finite quark-
number chemical potential � has proved intractable. The
reason is that at finite � the fermion determinant becomes
complex, with a real part having an indefinite sign. Since
all the standard lattice QCD simulation methods rely on
importance sampling, they fail for such systems.

In the region of small �, close to the finite-temperature
phase transition, methods have been developed to circum-
vent this sign problem. These methods fall into several
classes. One such method involves simulating lattice QCD
at a carefully selected set of parameters where no such sign
problem exists and using the ratios of determinants to
reweight to the region of interest [4]. Such multiparameter
reweighting only works provided there is significant over-
lap between those configurations which are important for
the chosen set of parameters, and those which are impor-
tant for the original set of parameters. A second class of
methods contains those which rely on analyticity in � or
related parameters. These include series expansion meth-
ods [5,6], which expand the Boltzmann weight and the
observables as power series in �, calculating the coeffi-
cients in simulations at zero �. Since the higher order
coefficients require the calculation of higher order fluctua-
tion quantities, this ultimately limits their utility. Other
analyticity methods involve simulating in a domain of
parameters such as at imaginary �, where there is no
sign problem, and analytically continuing the results to
the desired domain (in this case, real�), typically by fitting
the results to a power series [7,8]. There exist variants
where different parameters are used for the analytic con-
tinuation such as in [9]. Another way of avoiding the sign
problem is to use canonical methods [10–12]. Here the sign
problem is encountered in Fourier transforming to obtain
the canonical ensembles at fixed quark number.
We have adopted the alternative approach of ignoring

the phase of the determinant and replacing the determinant
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by its magnitude. This can be thought of as simulating
QCD with Nf=2 u-type quarks and Nf=2 d-type quarks,

with a chemical potential �I ¼ 2� for isospin (I3). (Nf is

the number of quark flavors.) For low temperatures, there is
a critical point �I ¼ �c above which the system enters a
superfluid phase, with a charged pion condensate which
breaks I3 symmetry spontaneously [13–15]. At zero tem-
perature�c ¼ m�. Since this phase does not exist for QCD
at finite �, the phase-quenched approximation breaks
down at the boundary of this superfluid domain, if not
before.

The Taylor series calculations of the Bielefeld-Swansea
Collaboration [5,16] showed evidence that the � depen-
dence of the transition temperature Tc for full 2-flavor
QCD was similar if not identical to that of the phase-
quenched approximation (finite isospin chemical poten-
tial), at small �. The � dependence of this transition for
full 2-flavor QCD, obtained from the imaginary quark-
number chemical potential simulations of de Forcrand
and Philipsen [7], was consistent with being identical to
that observed in our direct simulation of the phase-
quenched theory [17]. A random matrix model of 2-flavor
QCD at finite temperature and chemical potentials also
predicts that the dependence of Tc on quark number and
isospin chemical potentials should be identical for �<
m�=2 [18]. In addition, Nambu-Jona-Lasinio models for
QCD have transition temperatures which exhibit the same
dependence on quark number and isospin chemical poten-
tials for �<m�=2 [19,20]. This strongly suggests that the
� dependence of Tc is the same for phase-quenched and
full QCD for small �. We shall indicate later that the
simulations discussed in this paper are consistent with
this assumption. There is, however, one lattice result which
contradicts this assumption. The 3-flavor calculations of
the Bielefeld-Swansea Collaboration indicate that, while
the Tc dependence on quark number and isospin chemical
potentials is consistent at larger quark masses, they are not
consistent at small quark masses [21,22]. However, be-
cause of large statistical errors, the observed difference in
slopes was less than 2 standard deviations. In addition,
these simulations were performed using the R algorithm,
which could potentially introduce larger than expected
updating errors, due to the discretization of molecular-
dynamics ‘‘time,’’ in the fluctuation quantities used to
obtain these results.

For 3-flavor QCD at zero chemical potentials, the finite-
temperature transition is first order at small quark mass m.
For larger m the transition softens to a crossover with no
phase transition. At m ¼ mc, where the nature of the
transition changes, the finite-temperature transition is a
critical point in the universality class of the 3-dimensional
Ising model [1]. Similar behavior is seen for 2þ 1-flavor
QCD, and for the physical u, d, and s quark masses, the
transition is predicted to be a crossover [2,3]. It has been
suggested that mc would increase with increasing �, be-

coming the critical endpoint. If so it should be possible to
tune this endpoint to be as close to � ¼ 0 as desired by
choosing m just above mc.
Hence we simulate 3-flavor lattice QCD at�I < m�, for

several masses close tomc, and determine the nature of the
finite-temperature phase transition using fourth-order
Binder cumulants for the chiral condensate. For these
studies we use simulations on 83 � 4, 123 � 4, and 163 �
4 lattices. Our simulations indicate that there is no critical
endpoint for m>mcð0Þ, and mcð�IÞ actually decreases
(slowly) with increasing �. Preliminary results from these
simulations have been reported at various conferences, the
most recent being Lattice2007 [23]. This absence of the
expected critical endpoint at small �ð�IÞ has been ob-
served by de Forcrand and Philipsen using analytic con-
tinuation from imaginary � [2]. Our simulations use the
exact RHMC algorithm [24], since in the inexact hybrid
molecular dynamics used in earlier simulations, the Binder
cumulant had such strong dt2 dependence as to lead to
incorrect conclusions about the nature of the transition
[25].
The relatively weak dependence of the Binder cumulant

on �2
I and the statistical errors in determining it, even in

high statistics runs, make it difficult to determine the sign
of the slope dB4=d�

2
I and hence dmc=d�

2
I with certainty.

Similar difficulties occurred with the methods of
de Forcrand and Philipsen, but they were able to calculate
the slope directly with much higher precision, using re-
weighting methods [26]. We have performed studies which
indicate that similar methods should work for the phase-
quenched simulations. However, on the larger lattices we
use, it is unclear whether these methods will be signifi-
cantly more efficient than simply increasing statistics. As
yet, we have insufficient statistics to achieve results for the
slope of the Binder cumulant. However, we are already
able to determine the slope of �c.
Section II describes phase-quenched lattice QCD. In

Sec. III we describe our simulations and results.
Exploratory studies of reweighting techniques are de-
scribed in Sec. IV. Section V is devoted to discussions
and conclusions.

II. PHASE-QUENCHED LATTICE QCD

Phase-quenched lattice QCD with eight staggered quark
flavors (or two staggered quark fields, each with four
‘‘tastes’’) has the fermion action

Sf ¼
X

sites

��

�
6D
�
1

2
�3�I

�
þm

�
� (1)

where 6Dð12 �3�IÞ is the standard staggered quark transcrip-

tion of 6D with the links in the þt direction multiplied by
expð12 �3�IÞ and those in the �t direction multiplied by

expð� 1
2 �3�IÞ. Since we are performing simulations out-
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side of the superfluid phase, the explicit symmetry-
breaking interaction of our earlier studies is unnecessary.

To simulate Nf flavors using the RHMC algorithm, this

is replaced by the pseudofermion action

Spf ¼ py
 M

�Nf=8p (2)

where p are the momenta conjugate to the pseudofermion

field  [27]. Here,

M ¼ ½ 6Dð12�IÞ þm�y½ 6Dð12�IÞ þm�: (3)

In the RHMC algorithm M�Nf=8 (and M�Nf=16) are re-
placed by rational approximations, using a speculative
lower bound [25]. It is interesting to note that these rational
approximations provide similar infrared protection to what
a symmetry-breaking interaction would give.

For 8 flavors, and indeed for any even number of flavors,
�I has the interpretation of an isospin chemical potential,
for a theory with Nf=2 u-type quarks and Nf=2 d-type

quarks. Since we are interested in this phase-quenched
theory as an approximation to QCD with a quark-number
chemical potential � ¼ �I=2, we are free to choose any
integral Nf. In fact we shall work with Nf ¼ 3.

As we have shown in earlier work, the Binder cumulant
which is used to extract the nature of the finite-temperature
transition is very sensitive to the updating increment dt in
the older, inexact, hybrid molecular-dynamics (R) algo-
rithm [25]. This is the principal reason that we have
switched to the RHMC algorithm.

As mentioned in the Introduction, such theories are
known to undergo a phase transition to a superfluid phase
with a charged pion condensate and orthogonal charged
pion excitations which are true Goldstone bosons at low
temperatures, as �I is increased. At zero temperature this
transition occurs at �I ¼ �c ¼ m�. At high enough tem-
peratures the system should be in the quark-gluon phase for
all �I, and no such transition is expected.

III. SIMULATIONS AND RESULTS

We perform simulations of 3-flavor lattice QCD at finite
�I and temperature on 83 � 4, 123 � 4, and 163 � 4 latti-

ces. We use rational approximations to M�3=8 and

M�3=16 in these RHMC simulations, which are valid
provided the spectrum of M is in the range ½1�
10�4; 25�. (Two runs were made using smaller speculative
lower bounds for testing purposes.) We performed runs
with quark masses m ¼ 0:02, m ¼ 0:025, m ¼ 0:03, and
m ¼ 0:035 on 83 � 4 and 123 � 4 lattices. At the lowest
mass, we only ran simulations for �I ¼ 0. For the other 3
masses we ran simulations at �I ¼ 0, �I ¼ 0:2, and �I ¼
0:3. In addition, we ran simulations on 163 � 4 lattices at
m ¼ 0:03 at all 3 �I’s and at m ¼ 0:025 with�I ¼ 0. The
masses are chosen such that the lower 2 masses lie below
mc and the higher 2 masses lie above mc. The choice of �I

values is to cover the region 0 � �I < m�, where m� is

estimated to lie in the range 0:4 & m� < 0:5 for 0:025 �
m � 0:035. (This comes from measurements of m� for
m ¼ 0:03, �I ¼ 0 at � ¼ 5:10 and � ¼ 5:15, which
bracket the region of interest, on 83 � 16 and 123 � 24
lattices. Estimates for other m values were made using
PCAC.)
For our 123 � 4 simulations, where we have the highest

statistics, we have run for 300 000 length-1 trajectories for
each of 4 (or more) � values close enough to the transition
to access this transition using Ferrenberg-Swendsen re-
weighting in �, at each ðm;�IÞ. For the 83 � 4 and 163 �
4 simulations we have performed 300 000 trajectory runs at
each of the 2�’s at each ðm;�IÞ. We have made 5 inde-
pendent stochastic estimates of the chiral condensate �  
and the isospin density j30 ¼ @Sf=@�I after each trajectory,

to enable us to make unbiased estimates of the suscepti-
bilities and Binder cumulants.
For any observable X, the susceptibility �X is defined by

�X ¼ V

T
h �X2 � h �Xi2i; (4)

where V is the spatial volume and T ¼ 1=Nt is the tem-
perature. The overlining of X indicates that these are lattice
averaged quantities. The fourth-order Binder cumulant for
X is defined by

B4 ¼ hð �X � h �XiÞ4i
hð �X� h �XiÞ2i2 (5)

[28]. These quantities are measured at the value � ¼ �0 of
the simulation and extrapolated to nearby �’s, by
Ferrenberg-Swendsen reweighting:

hXi� ¼ hexp½�6ðV=TÞð�� �0ÞSh�Xi�0

hexp½�6ðV=TÞð�� �0ÞSh�i�0

(6)

[29], where

Sh ¼ 1� 1
3 ReTrhUUUU (7)

appropriately averaged over the lattice and over plaquette
orientations. The position of the transition, �c, can be
estimated as that of the peak of the susceptibilities, or the
minimum of the Binder cumulants. We have noticed that
the measured �c’s from the susceptibilities of various
observables and from the Binder cumulants are close.
The Binder cumulant for the chiral condensate is used to

probe the nature (as well as the position) of the transition.
In the infinite volume limit, B4 ¼ 3 at a crossover, B4 ¼ 1
at a first-order transition, and B4 ¼ 1:604ð1Þ at a 3-
dimensional Ising critical point. If there indeed were a
critical endpoint, for m>mcð0Þ B4 would start at a value
above the Ising value for�I ¼ 0 (close to 3 for really large
lattices) and decrease, passing through a value close to the
Ising value at the critical endpoint, eventually approaching
1 for large �I. On large enough lattices, finite-size scaling
predicts that lines of B4 versus �I for different lattice sizes
will cross at the Ising value. Similarly, lines of B4 versusm
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for different size lattices will cross at the Ising value asm is
varied.

In Fig. 1 we plot the Binder cumulants at the transition
point as functions of �2

I for m ¼ 0:025, m ¼ 0:03, and
m ¼ 0:035 for the various lattice sizes. For m ¼ 0:035, B4

on the 123 � 4 lattice starts at a value significantly above
that for an Ising critical point and appears to increase with
increasing �I, and hence shows no evidence for a critical
endpoint—the slope of this straight line fit is 0.68(26).
Similarly, for m ¼ 0:03, B4 starts above the Ising value
and increases with increasing�2

I on the 12
3 � 4 and 163 �

4 lattices. For the 123 � 4 lattice the slope is 0.39(22), and
for the 163 � 4 lattice, this slope is 0.76(53). For m ¼
0:025, there is no evidence for any �2

I dependence for B4

on the 123 � 4 lattice and it remains below the Ising value
for the range of �2

I considered. We note that the 83 � 4
slopes appear negative for m ¼ 0:035 and m ¼ 0:025 and
positive for m ¼ 0:03, which we interpret as meaning that
we have insufficient statistics to determine the very small
slopes of the 83 � 4 lines.

None of the slopes we have measured is much more than
2 1
2 standard deviations from zero. However, the fact that

the two 123 � 4 slopes and the one 163 � 4 slope for m>
mc are all positive makes it less likely that this is a statis-
tical fluctuation. For m<mc we can draw no conclusions.

We now turn our attention to the mass dependence of B4

at fixed �I values. Figure 2 shows the m dependence of B4

for �I ¼ 0, �I ¼ 0:2, and �I ¼ 0:3. First we note that the
intersection of the curves for the different lattice sizes
intersect at B4 close to its value for the 3-dimensional
Ising model. This is strong evidence that this critical point
is in the universality class of the 3-dimensional Ising
model, as predicted. We therefore use the masses for which
the 123 � 4 Binder cumulants achieve the Ising value as
our estimate for the position of the critical point for the �I

under consideration. We get mcð0Þ ¼ 0:0265ð3Þ,
mcð0:2Þ ¼ 0:0259ð5Þ, and mcð0:3Þ ¼ 0:0256ð4Þ. A straight
line fit yields

mcð�IÞ ¼ 0:0265ð3Þ � 0:10ð6Þ�2
I : (8)

This suggests that mc decreases with increasing �I, rather
than increasing as would be needed for a critical endpoint.
Note also that if we were to use the intersections of the
curves for different lattice sizes as our estimates for mc,
this would slightly increase our estimate formcð0Þ, slightly
decrease our estimate of mcð0:3Þ, and leave our estimate of
mcð0:2Þ essentially unchanged. This would make the slope
even more negative. In addition, since the transition tem-
perature decreases with increasing�I,mc in physical units

(a) (b)

(c)

FIG. 1 (color online). Graphs showing the �2
I dependence of the Binder cumulants for the chiral condensate �  at the transition:

(a) for m ¼ 0:035, (b) for m ¼ 0:03, (c) for m ¼ 0:025. The dashed line is at the Ising value.
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will decrease slightly faster than the mc in lattice units,
which we have presented here.

We have also examined the Binder cumulants for the
isospin density j30, and found that these are consistent with

those for the corresponding chiral condensates. However,
since our estimates for j30 are much noisier, the errors on

B4ðj30Þ are considerably larger than those for B4ð �  Þ,
which makes them less useful. The Binder cumulants for
the plaquettes are appreciably larger, which is expected,
since these should be a reasonable approximation to the
energylike order parameter whose Binder cumulant would
approach 3, even in the first-order regime and at the critical
point.

The critical behavior of this theory will be described by
an effective Hamiltonian which is a linear combination of 3
fields, each of which has finite-size scaling properties with
one critical exponent. One such field has the scaling be-
havior of a ‘‘magnetization,’’ a second that of an ‘‘energy,’’
and the third that of a ‘‘density.’’ Each will be given as a
linear combination of �  , Sg ¼ ð1� 1

3 TrhUUUUÞ, and
j30. The simpler case at �I ¼ 0, where there are only 2

fields to consider, has been studied in Ref. [1]. In that paper
they were able to find simple expressions for the two
‘‘mixing’’ parameters. In our case there are six such mixing
parameters, and we have been unable to find the six equa-

tions required to determine these coefficients. If we were
able to obtain these eigenmodes of the renormalization
group, the Binder cumulant of the magnetization order
parameter would pass through the Ising value, once our
lattice is large enough that subdominant terms in the finite-
size scaling relation could be ignored. Until we can find
such relationships we use the fact that, on large enough
lattices, the magnetization component of the chiral con-
densate will dominate and its Binder cumulant will ap-
proach that of this eigenmode. The fact that the Binder
cumulants for the chiral condensate cross close to the Ising
value is evidence that this field is not strongly affected by
contamination from nonmagnetic eigenmodes, on the lat-
tice sizes we use.
Using Ferrenberg-Swendsen reweighting again, we cal-

culate the chiral susceptibilities and measure the positions
and values of the peaks. We observe that the positions of
these peaks are very close to the minima of the Binder
cumulants. Finite-size scaling tells us that, at the critical
point,

� �  ðL; TcÞ ¼ L�=� ~� (9)

where L is the spatial extent of the lattice and Tc is the

critical temperature. Hence if we plot L�ð�=�Þ� �  ðL; TcÞ as
functions of m for different L values, the curves should

(a) (b)

(c)

FIG. 2 (color online). Graphs showing the m dependence of the Binder cumulants for the chiral condensate �  at the transition:
(a) for �I ¼ 0, (b) for �I ¼ 0:2, (c) for �I ¼ 0:3. The dashed line is at the Ising value.
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cross at the critical point. In Fig. 3 we plot this quantity for
L ¼ 8 and L ¼ 12, for each of our �I values. Here we
have taken � ¼ 1:237 and � ¼ 0:630 as the required criti-
cal indices for the 3-dimensional Ising model.

Because it is clear that the points on this graph do not fall
on straight lines and the curves for different lattice sizes
cross at rather shallow angles, a quantitative estimate for
the position of the crossing would be difficult to obtain.
What is clear is that the curves for the different lattice sizes
cross somewhere between m ¼ 0:25 and m ¼ 0:3 for
�I ¼ 0 and �I ¼ 0:2 and close to m ¼ 0:25 for �I ¼
0:3, which is consistent with our estimates of mcð�IÞ
from Binder cumulants.

As well as trying to determine the nature of the finite-
temperature transition as a function of �I, and measuring
observables and susceptibilities, the positions of the min-
ima in the Binder cumulants, and the positions of the
maxima in the various susceptibilities yield predictions
for �c, the transition � values. The �I dependence of �c
will ultimately yield the �I dependence of the transition
temperature Tc. This not only requires that we know Tc at
�I ¼ 0, which we can obtain from the numerous measure-
ments by other groups, but it also requires that we know the
renormalization group running of � with lattice spacing a.
On the coarse lattices we use, 2-loop perturbative running
of the coupling constant, which has been used earlier, is

clearly suspect. Hence we present only the �I dependence
of�c in this paper. Associated with our present simulations
aimed at determining the equation of state for phased-
quenched (lattice) QCD, we will measure the running of
� directly with the same action and masses as are used
here, on zero temperature lattices. At that time we will be
able to predict the �I dependence of Tc.
In Fig. 4 we plot the measured values of �c against �

2
I

for each of the quark masses. Straight line fits appear
adequate with our current statistics. Although better fits
could be obtained with a �4

I term for m ¼ 0:025 and
m ¼ 0:035—the m ¼ 0:03 straight line fit is excellent—
the coefficients are clearly very small, and with only 3
points on each curve, such an exact fit is hard to justify.
These fits are to the more extensive 123 � 4 ‘‘data.’’ We
have plotted the 163 � 4 points on the same graph. These
indicate that the finite-size effects on�c are very small. For
comparison with the work of others, these fits are

�c ¼ 5:134 18ð10Þ � 0:1743ð18Þ�2
I m ¼ 0:025;

(10)

�c ¼ 5:143 85ð8Þ � 0:1711ð13Þ�2
I m ¼ 0:030; (11)

(a) (b)

(c)

FIG. 3 (color online). The rescaled chiral susceptibilities � �  as functions of m: (a) for �I ¼ 0, (b) for �I ¼ 0:2, (c) for �I ¼
0:3.
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�c ¼ 5:153 26ð10Þ � 0:1735ð16Þ�2
I m ¼ 0:035;

(12)

and �c ¼ 5:123 77ð10Þ at m ¼ 0:02, �I ¼ 0.

IV. REWEIGHTING STUDIES

As we saw in the previous section, the weak dependence
of the Binder cumulants on �I, and the sizable statistical
errors in determining this fluctuation quantity mean that
the observation that B4 increases with �I, while strongly
suggested, is not definitive. Similar difficulties arise for
simulations at imaginary �. Here, de Forcrand, Kim, and
Philipsen have circumvented this difficulty by calculating
@B4=@�

2 directly [26]. They do this by calculating B4ð�Þ
and B4ð�þ ��Þ in the same simulation. This is achieved
by including the ratio of determinants

	 ¼ det½Mð�þ ��ÞNf=8�= det½Mð�ÞNf=8� (13)

as a weight in the measurement of �  ð�þ ��Þ from the
same ensemble at chemical potential � as is used to
measure �  ð�Þ, namely

h �  ð�þ ��Þi�þ�� ¼ h	 �  ð�þ ��Þi�
h	i� ; (14)

and similar expressions for higher powers of �  ð�þ ��Þ.
Since exact calculation of such determinants is expen-

sive, de Forcrand et al. used unbiased stochastic estimators
for the ratio of determinants, in particular,

	 ¼ hexp½�
yMð�Þ�Nf=16Mð�þ ��ÞNf=16
�Mð�þ ��ÞNf=16Mð�Þ�Nf=16
þ 
y
�i
 (15)

where
 is Gaussian noise. The advantage of this method is
that any finite number of noise vectors gives an unbiased
estimator of the determinant. These authors reweighted
from� ¼ 0 and performed a multistep reweighting to� ¼
0:1.
Whereas it appears that de Forcrand et al. limited them-

selves to 83 � 4 lattices, we are investigating applying this
to 123 � 4 lattices, since the results of the previous section
make it unclear whether the slope @B4=@�

2
I is the same for

83 � 4 lattices as it is for larger lattices. We first inves-
tigated the possibility of reweighting from�I ¼ 0 to�I ¼
0:1 in a single reweighting, but analysis of a few configu-
rations quickly convinced us that, although the overlap
might be reasonable, the fluctuations were so large as to
make it impossible to obtain a reasonable estimate of the
determinant without use of far more noise vectors than is
reasonable. We then went back to a reweighting from�I ¼
0 to �I ¼ 0:01 as a single step process, and one that could
be used as a basis for a multistep reweighting to an even
larger �I. For this trial run we used 1500 configurations at
m ¼ 0:03, separated by 200 trajectories. For each configu-
ration we used 200 noise vectors with ��I ¼ 0:01 and the
same set of noise vectors with ��I ¼ �0:01, making use
of the fact that the determinant for a single configuration
remains unchanged under �I ! ��I to remove Oð��IÞ
fluctuations in our noisy estimator. We used 1000 noise
vectors for our noisy estimators for �  ð0Þ and the same set
for �  ð0:01Þ and �  ð�0:01Þ. This effectively removes the
errors in using noisy estimators of the condensate from
consideration. The resulting estimate of @B4=@�

2
I is 3:1�

4:1 compared with the estimate 0:38� 0:22 obtained in the
previous section. This indicates that, as expected, we need
to use a �ð�2

I Þ much greater than the 0.0001 used here,
which will require a multistep reweighting in order to
avoid large fluctuations. Our estimate for @�c=@�

2
I is

�0:177ð9Þ, in agreement with �0:171ð1Þ obtained in the
previous section. Figure 5 shows the noisy estimators of the
determinants with errors that we obtained. We see that the
errors are comparable with the difference of these deter-
minant ratios from 1 and from their mean, which is one
reason why the signal/noise ratio is so poor.
We notice with the reweighting from �I ¼ 0, that one

problem is that the signal is of order �ð�2
I Þ ¼ ð��IÞ2,

while the noise is of order ��I. While this can be over-
come with a multistep (multiple �I’s) reweighting, an
alternative way of avoiding this difficulty is to start at
nonzero �I, where for small ��I, ��I and �ð�2

I Þ are of
the same order of magnitude. We have thus tried 1-step
reweighting from 1500 configurations at �I ¼ 0:2, with
��I ¼ 0:01 and hence with �ð�2

I Þ ¼ 0:0041. For this test
we ran first with 200 noise vectors for each configuration,
and later with 1000 noise vectors for each configuration. In

FIG. 4 (color online). Transition �, �c as functions of �
2
I for

chosen masses. The lines from top to bottom are for m ¼ 0:035,
m ¼ 0:03, and m ¼ 0:025. The isolated point is for m ¼ 0:02.
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estimating the chiral condensate, 1000 noise vectors were
used. Using 200 noise vectors to estimate the determinant
ratio, we obtained @B4=@�

2
I ¼ �0:39� 0:56, and for

1000 noise vectors, �0:54� 0:45. Although this indicates
that we still do not have enough statistics, we would only
need to reduce the statistical errors by an order of magni-
tude to make a definitive prediction. @�c=@�

2
I measured in

the same calculations is �0:175ð2Þ compared with
�0:171ð1Þ calculated in the previous section. In Fig. 6,
we show our estimates of the ratio of fermion determinants.
Even with 200 noise vectors/configuration, the ratio of
determinants is well determined. The statistical errors are
considerably smaller than the ratio’s departure from unity
and, more importantly, considerably smaller than the range
of values taken by this ratio over the ensemble of configu-
rations. This presumably is why little improvement in the
estimate of @B4=@�

2
I is obtained by increasing the number

of noise vectors from 200 to 1000. Comparison of the
estimates of the determinant ratios for 200 and 1000 noise

vectors makes us confident that our noisy estimates are
reliable.
In case the main problem was overlap, we reduced our

��I to 0.005. The results, however, were similar. @�c=@�
2
I

was well determined, while the errors in @B4=@�
2
I ex-

ceeded the signal. The determinant ratio was well deter-
mined by 200 noise vectors, the errors being much smaller
than the fluctuations in the value of this ratio from con-
figuration to configuration.
To get an accurate estimate of @B4=@�

2
I will require the

analysis of many more configurations. These configura-
tions should be separated by enough trajectories as to make
them reasonably independent, or they are unlikely to im-
prove the errors, just as increasing the number of noise
vectors for estimating each ratio from 200 to 1000 did not
significantly improve our errors. In fact, using 1 noise
vector to estimate the determinant ratio at the end of
each of 300 000 consecutive trajectories at �I ¼ 0:2 gave
similar accuracy to using 200 or 1000 noise vectors for
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FIG. 5 (color online). (a) Stochastic estimates of the ratio of
fermion determinants at �I ¼ 0:01 and �I ¼ 0 on a 123 � 4
lattice at m ¼ 0:03, �I ¼ 0, � ¼ 5:143. (b) Section of graph
(a) showing detail.
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FIG. 6 (color online). (a) Stochastic estimates of the ratio of
fermion determinants at �I ¼ 0:21 and �I ¼ 0:2 on a 123 � 4
lattice at m ¼ 0:03, �I ¼ 0:2, � ¼ 5:137. The crosses (red
online) are for 200 noise vectors; the circles (blue online) are for
1000 noise vectors. (b) Section of graph (a) showing detail.
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each of our 1500 configurations spaced by 200 trajectories.
In addition, producing a single trajectory takes much less
computer time than a measurement with (say) a 100 noise-
vector estimate of the determinant ratio and a 100 noise-
vector estimate of �  . In addition we need to check
whether a single-step or a multistep estimation of the
determinant ratio is more efficient, even at�I ¼ 0:2where
it is not forced on us by other considerations.

V. DISCUSSIONS AND CONCLUSIONS

We have studied the finite-temperature transition for 3-
flavor lattice QCD with a finite chemical potential � in the
phase-quenched approximation, where the phase of the
fermion determinant is set to zero, using RHMC simula-
tions. This can be considered as studying lattice QCD with
3=2 up-type quarks and 3=2 down-type quarks at a chemi-
cal potential �I ¼ 2� for isospin (I3). As we have indi-
cated in the Introduction, in the small �ð�IÞ regime—
�I < m�—there are indications that the dependence of
the transition temperature on � for the phase-quenched
model is similar if not identical to that for full QCD.Within
the limitations of our statistics, which only allow us to
include terms linear in �2, we find that the coefficient of
�2 in the fit to �cð�2Þ is within 10% and probably within
5% of that obtained by de Forcrand and Philipsen for the
full theory by continuation from imaginary � [2,26]. This
gives further evidence that the �2 dependence of Tc is the
same in phase-quenched and full QCD. If this is true, it is
reasonable to expect that the nature of the transition will be
the same in both theories.

Let us briefly digress to discuss other recent work which
could have relevance to the connection between phase-
quenched and full QCD. Some recent work of Fodor,
Katz, and Schmidt, which employs the density-of-states
method, uses the phase-quenched theory as a starting point
for their factorized reweighting [30]. This shows a small
but finite shift in �c in reweighting from phase-quenched
to full QCD. However, all the� values which they consider
are larger than m�=2, and so in the region where the two
theories are no longer expected to be similar. There has
also been extensive work on QCD at finite chemical po-
tentials using a random matrix/chiral perturbation theory
approach [31,32]. This has indicated that the phase of the
fermion determinant becomes much worse behaved for
�>m�=2. Although this work does not (yet) explain
why the full and phase-quenched QCD behave similarly,
it does indicate that the same pion modes describe the
physics of each, and suggests model calculations which
might clarify the situation.

It was expected that the critical point at zero chemical
potential would move to higher mass at finite chemical
potential. If so, for quark masses just above the critical
mass at � ¼ �I ¼ 0, this would become the sought-after
critical endpoint where the crossover at � ¼ 0 would
change to a first-order transition. Our simulations for m

close tomcð0Þ indicate that this does not happen, but rather
mcð�IÞ decreases with increasing �I. The �I dependence
of the Binder cumulant used to determine the nature of the
transition is very weak for the lattice sizes we use (83 � 4,
123 � 4, and 163 � 4). For this reason, our results can only
be considered suggestive, and not definitive. Similar con-
clusions have been drawn by de Forcrand et al. from
simulations at imaginary � [2,26]. This disagrees with
the early work of the Bielefeld-Swansea Collaboration
[21], who did claim to find such a critical endpoint.
However, as indicated before, these simulations used the
R algorithm which, as de Forcrand and Philipsen and we
discovered, can lead to misleading results.
De Forcrand et al. have recently introduced reweighting

methods which enabled them to calculate the slope of the
Binder cumulant directly, thus reducing the errors to a
point where the sign is determined unambiguously [26].
This shows that the critical mass does indeed decrease with
increasing�, so that there is no critical endpoint associated
withmcð0Þ. However, their published results using this new
method are all on 83 � 4 lattices where finite-size effects,
such as the fact that the chiral condensate is not the true
order parameter (in the renormalization group sense), are
large.
For this reason we have been investigating the use of

such reweighting techniques for phase-quenched QCD on
123 � 4 lattices. Larger lattices are less suited to such
reweighting because the overlap between the ensembles
of configurations at �I and �I þ ��I for given �I and
��I is smaller for larger lattices. The ratio of determinants
is further from unity for the larger lattices, and the fluctua-
tions associated with the noisy estimator on a single con-
figuration are also larger. Correlations in molecular-
dynamics time are longer on the larger lattice. Our tests
are promising and suggest that using finite rather than zero
�I configurations for the reweighting is preferable.
However, since reweighting is expensive, unless we can
find a way to make better use of the fact that the ratio of
fractional powers of Dirac operators for �I and �I þ ��I

is better conditioned than either of the original operators,
reweighting will be considerably more expensive than the
cost of producing a single trajectory, so that it is unclear as
yet whether reweighting will prove to be the most cost-
effective method of getting definitive results on these larger
lattices.
One might ask whether our failure to find a critical

endpoint disagrees with the work of Fodor and Katz [3].
They reported a critical endpoint at �B ¼ 360ð40Þ MeV
and T ¼ 162ð2Þ MeV, and hence �I ¼ 240ð27Þ MeV.
Since our method breaks down for �I * m� �
140 MeV, their value is beyond the reach of our method.
Hence our simulations do not show the absence of a critical
endpoint, only the absence of a critical endpoint associated
with the critical point at � ¼ �I ¼ 0, for 3-flavor QCD.
We are now extending our simulations of 3-flavor phase-

quenched lattice QCD to enable a calculation of the equa-
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tion of state of this theory outside the superfluid region.
This will enable comparison with full QCD. In addition,
the phase diagram of QCD at finite isospin chemical po-
tential and its equation of state are of interest in their own
right. This has led to new activity in the studies of these
theories [33].

All our simulations have been performed with the stan-
dard staggered action, with Nt ¼ 4, and are thus subject to
large discretization errors. The Bielefeld-Swansea
Collaboration found that the critical mass at � ¼ 0 de-
creased dramatically, when they changed their lattice ac-
tion from the standard lattice action to a highly improved
action, indicating that this mass is very sensitive to finite
lattice-spacing errors [21,22]. A less dramatic decrease in
the critical mass has recently been reported by de Forcrand,
Kim, and Philipsen when they increased Nt from 4 to 6
with the standard staggered action [26]. Hence we should
consider repeating our simulations at larger Nt, improving
the action we use, or both.

In using a staggered action for 3 flavors, we are ignoring
the so-called ‘‘rooting’’ controversy. People have ques-
tioned whether taking fractional powers of the fermion
determinant, to allow use of staggered fermions to simulate
numbers of fermion flavors which are not multiples of 4,

defines a theory with a sensible continuum limit. We direct
the reader to [34,35] for recent arguments on both sides of
this controversy. Even assuming that this controversy is
resolved and indicates that rooted staggered fermions are
legitimate, this is only relevant to the case of zero �. At
� � 0, Golterman, Shamir, and Svetitsky have pointed out
that further ambiguities arise with regard to taking frac-
tional powers of the phase of the determinant [36]. We have
avoided this difficulty by ignoring the phase, but eventually
it will need to be faced.
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