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The calculation of the finite lattice spacing corrections for I ¼ 2 �� scattering is carried out for

isotropic and anisotropic Wilson lattice actions. Pion masses and decay constants are also determined in

this context. These results correct the phase shift calculated from the lattice, which is connected to the

scattering length and effective range in this low energy scattering process. When in terms of the lattice-

physical parameters for either Wilson action, these lattice spacing effects first appear at the next-to-

leading order counterterms.
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I. INTRODUCTION

Numerical scattering calculations in lattice QCD are
being performed by several collaborations. These calcula-
tions are performed through the analysis of two hadrons in
finite volume [1–4]. One such scattering that has gained
much attention in the field is I ¼ 2 �� scattering. Such
numerical calculations (usually involving phase shifts and
scattering lengths) have been calculated using Wilson lat-
tice actions [5–20] along with a several other lattice actions
[21–23]. Additionally, there are currently only two fully
dynamical, 2þ 1 flavor calculations of I ¼ 2 �� scatter-
ing, which use mixed lattice actions [24,25]. Regardless of
the action, unphysical lattice artifacts due to the finite
lattice spacings exist in the numerical results of these
calculations. Therefore, measures should be taken in order
to remove these effects so that the results from the lattice
can best represent the continuum limit. The analysis in this
paper is applicable for both isotropic and anisotropic
Wilson actions.

Effective field theory (EFT) provides a framework by
which one can remove these unphysical effects. Lattice
spacing effects were first made explicit in chiral perturba-
tion theory (�PT) by Sharpe and Singleton [26]. For the
Wilson action, the chiral breaking terms that depend on
the lattice spacing can be accounted for in a similar way to
the chiral breaking quark mass. Such methods have been
extended to mixed-action, partially quenched theories for
mesons through OðaÞ and Oða2Þ [27–29], and baryons
through OðaÞ [30] and Oða2Þ [31–33]. Additionally,
Ref. [29] carries out multiple meson scattering calculations
(including I ¼ 2 �� scattering) for mixed lattice actions
and shows that for actions with chiral valence fermions,
mesonic scattering parameters in terms of the lattice-
physical parameters will have no counterterms depen-
dent on lattice spacing through next-to-leading order.

Alternatively, this work calculates these lattice spacing
effects1 for I ¼ 2 �� scattering for the chiral breaking
Wilson fermions in both valance and sea sectors, and
shows that these finite lattice spacing effects first appear
in the next-to-leading order counterterms for this action.
Many collaborations are now using anisotropic lattices

(lattices with different temporal and spacial lattice spac-
ings) as opposed to the usual isotropic lattices. Such lat-
tices can probe higher energy states (inverse time spacings
a�1
t � 6 GeV) and allow for a greater resolution (more

data points). However, anisotropic lattices lead to new
lattice artifacts, including terms that explicitly break hy-
percubic symmetry. Recent work has derived these aniso-
tropic lattice artifacts in �PT for OðaÞ and Oða2Þ for
mesons and baryons [35]. There are several numerical I ¼
2 �� scattering results published for anisotropic Wilson
lattices [10,17,20], which can benefit from removing these
additional lattice artifacts.
This paper presents the I ¼ 2 �� scattering results from

the isotropic �PT and the anisotropic �PT. The pion mass
and decay constant are also determined in this context.
Section II presents scattering on the lattice and defines the
relevant quantity, k cot�0, used to make comparisons be-
tween �PT and the actual lattice calculation. Next, in
Sec. III A, the continuum scattering theory from �PT is
formulated in the context of this paper (originally worked
out before [36–39]). Then, in Sec. III B, the continuum
result is extended for the isotropic Wilson lattice and
finally, in Sec. III C, the result is extended for the aniso-
tropic Wilson lattice.

II. SCATTERING ON THE LATTICE

The Euclidean two-hadron correlation function in infi-
nite volume gives no information about the Minkowski
scattering amplitude (except at kinematic thresholds)
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1These effects are in addition to the finite volume corrections
to I ¼ 2 �� scattering from Ref. [34].
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[40]. However, when the correlation functions of two
hadrons in a finite box are analyzed, the resulting energy
levels are given by the sum of the energies of these two
hadrons plus an additional energy of interaction, �E,
which is related to the scattering phase shift, �l [1–4].
The l subscript here represents the partial wave contribu-
tion of the phase shift. In infinite volume, the relation
between the total scattering amplitude, Tðs; �Þ, and the
partial waves amplitude, tlðsÞ, is given by

Tðs; �Þ ¼ X1
l¼0

ð2lþ 1ÞPlðcos�ÞtlðsÞ; (1)

where s ¼ 4ðm�
2 þ k2Þ, and k is the magnitude of the

3-momentum of the incoming particle in the center-of-
mass frame. The partial scattering amplitude tlðsÞ is related
to the phase shift, �l by

tlðsÞ ¼ 32�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

s� 4m�
2

s
1

2i
½e2i�lðsÞ � 1�

¼ 32�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

s� 4m�
2

s
1

cot�l � i
: (2)

These relations allow one to compare the calculated
scattering amplitude (in �PT) to the lattice calculation of
�l. The s-wave (l ¼ 0) scattering amplitude is the domi-
nant contribution to the total scattering amplitude in most
low energy scattering processes and gives the cleanest
signal in the lattice calculation. The s-wave projection of
the continuum scattering amplitude, t0ðsÞ, is

t0ðsÞ ¼ 1

2

Z 1

�1
Tðs; �Þdðcos�Þ: (3)

This s-wave scattering amplitude will be the scattering
amplitude analyzed throughout the rest of this paper.
Following the discussion in Ref. [34], through one loop
order in perturbation theory in Minkowski space, t0ðsÞ can
be written as

t0ðsÞ ’ tðLOÞ0 ðsÞ þ tðNLO;RÞ0 ðsÞ þ itðNLO;IÞ0 ðsÞ

’ ðtðLOÞ0 ðsÞÞ2
tðLOÞ0 ðsÞ � tðNLO;RÞ0 ðsÞ � itðNLO;IÞ0 ðsÞ ; (4)

where tðLOÞ0 ðsÞ is the leading order s-wave scattering ampli-

tide, and tðNLO;RÞ0 ðsÞ (tðNLO;IÞ0 ðsÞ) is the real (imaginary) part

of the next-to-leading order s-wave scattering amplitude.
At this point, it is advantageous to introduce a K-matrix,
which is defined through one loop as

KðsÞ � ðtðLOÞ0 ðsÞÞ2
tðLOÞ0 ðsÞ � tðNLO;RÞ0 ðsÞ : (5)

Taking the real part of the reciprocal of Eqs. (2) and (4)
and comparing to Eq. (5), one gets the relation

1

KðsÞ ¼ Re

�
1

t0ðsÞ
�
¼ 1

32�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m�

2

s

s
cot�0ðsÞ; (6)

where

Re

�
1

t0ðsÞ
�
¼ Re t0ðsÞ

ðRe t0ðsÞÞ2 þ ðIm t0ðsÞÞ2

� 1

tðLOÞ0 ðsÞ
�
1� tðNLO;RÞ0 ðsÞ

tðLOÞ0 ðsÞ
�
: (7)

It is worth noting that when keeping terms though one
loop, Im t0ðsÞ does not contribute (it contributes at the next
order). Combining Eqs. (5)–(7), one arrives at the contin-
uum result

k cot�0ðsÞ ¼ 16�
ffiffiffi
s

p
Re

�
1

t0ðsÞ
�

� 16�
ffiffiffi
s

p 1

tðLOÞ0 ðsÞ
�
1� tðNLO;RÞ0 ðsÞ

tðLOÞ0 ðsÞ
�
: (8)

As previously mentioned, lattice scattering calculations
are performed in Euclidean space at finite volume. The
Euclidean amputated four-point correlator from the lattice,
�0ðsÞ, is given by

�0ðsÞ

’ ðtðLOÞ0 ðsÞÞ2
tðLOÞ0 ðsÞ � tðNLO;RÞ0 ðsÞ ��t0ðsÞ � ðtðLOÞ

0
Þ2

16�2L
ffiffi
s

p Sððs�4m�
2ÞL2

4�2 Þ
;

(9)

where �t0ðsÞ represents all of the nonphysical lattice arti-
facts (lattice spacing errors, finite volume errors, etc.), s is
related to the energy of interaction, �E, and S is a univer-
sal function of s [3,41,42]. If both pions in the box start
with no external momentum, then s ¼ ð�Eþ 2m�Þ2. In
this paper, the only effect from lattice artifacts that will be
included in �t0 is the lattice spacing effect. Manipulating
Eq. (9):

�0ðsÞ ’ 1

1
KðsÞ � �t0ðsÞ

ðtðLOÞ
0

Þ2 � 1
16�2L

ffiffi
s

p Sððs�4m�
2ÞL2

16�2 Þ

¼ 16�
ffiffiffi
s

p

k cot�0ðsÞ � 16�
ffiffiffi
s

p �t0ðsÞ
ðtðLOÞ
0

Þ2 � 1
�LSððs�4m�

2ÞL2

16�2 Þ
:

(10)

The energy states are given by the poles of Eq. (10),
which are given by [34]

k cot�0 þ �ðk cot�0Þ ¼ 1

�L
S
�ðs� 4m�

2ÞL
16�2

�
; (11)

where
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�ðk cot�0Þ ¼ �16�
ffiffiffi
s

p �t0ðsÞ
ðtðLOÞ0 Þ2 : (12)

In general, most lattice calculations give their results in
terms of the scattering length, aI¼2

�� . One can extract the
scattering length and the effective range, rI¼2

�� , via the
expansion of k cot�0:

k cot�0 ¼ 1

aI¼2
��

þ 1

2
rI¼2
�� k

2 þ � � � : (13)

It is important to note that the prescription given above
for finding the scattering length and effective range implies
that the lattice artifacts, �ðk cot�0Þ, have already been
subtracted before the expansion. In this paper, continuum
results are given in terms of k cot�0 and lattice artifacts are
given in terms of �ðk cot�0Þ.

For results given in terms of the scattering length and
effective range, one can relate Eq. (13) to the left-hand side
of Eq. (11) to arrive at

k cot�0 þ�ðk cot�0Þ ¼
�

1

aI¼2
��

þ�

�
1

aI¼2
��

��

þ 1

2
ðrI¼2

�� þ�rI¼2
�� Þk2 þ � � � ; (14)

where

�

�
1

aI¼2
��

�
¼ �ðk cot�0Þjk2¼0; (15)

and

�rI¼2
�� ¼ 2

dð�ðk cot�0ÞÞ
dk2

��������k2¼0
: (16)

While these relations are not too complicated, they do
add additional steps to the calculation when compared to
working with only k cot�0 and �ðk cot�0Þ. Therefore, if
one wants to extract the scattering length and effective
range from the lattice calculation, one should first subtract
�ðk cot�0Þ from the right-hand side of Eq. (11) and then
expand to determine the individual parameters.2 This paper
relates k cot�0 and �ðk cot�0Þ to the effective field theory
of the lattice.

III. CHIRAL PERTURBATION THEORY RESULTS
FOR k cot�0 AND �ðk cot�0Þ

In leading order (LO) and next-to-leading-order (NLO)
chiral perturbation theory (�PT), it is necessary to intro-
duce several undetermined low energy constants (LECs) in
order properly account for corrections and counterterms.

The number of independent LECs in the continuum de-
pends on whether there are two flavors or more. For
I ¼ 2 �� scattering being calculated here, only two-flavor
�PT (SUð2ÞL � SUð2ÞR chiral symmetry) is needed for
extrapolation.

A. Continuum

From the continuum �PT Lagrangian, one can predict
numerous results for different low energy processes involv-
ing hadrons. However, the extent of the accuracy of these
predictions are ultimately tied to how well the LECs are
known. For this reason, there has been much effort in the
lattice community to try to determine these values [43–47].
The continuum Lagrangian in �PT is determined order

by order in Bmq and p
2. The Lagrangian throughOðp4Þ for

two flavors is given by [37]

Lcont ¼ f2

8
trð@��@��yÞ þ Bf2

4
trðmq�

y þ�mqÞ

þ ‘1
4
½trð@��@��yÞ�2

þ ‘2
4

trð@��@��yÞtrð@��y@��Þ

þ ð‘3 þ ‘4ÞB2

4
½trðmq�

y þ�mqÞ�2

þ ‘4B

4
trð@��@��yÞ trðmq�

y þ �mqÞ; (17)

where f� 132 MeV, ‘1–4 are the original Gasser-
Leutwyler coefficients defined in Ref. [37] and

� ¼ exp

�
2i�

f

�
; � ¼

�0ffiffi
2

p �þ

�� � �0ffiffi
2

p

 !
;

mq ¼ �m 0
0 �m

� �
:

(18)

At LO, the resulting condensate is

B ¼ lim
mq!0

jh �qqij
f2

: (19)

From Eq. (17), one can calculate the physical values for
the mass of the pion (m�) and the pion decay constant (f�)
to LO and NLO. These expressions are given by

m�
2 ¼ m2 þ 1

3f2
½4m�

2iIðm�Þ �m2iIðm�Þ� þ 4‘3
m4

f�
2

(20)

f� ¼ f

�
1� 2

f�
2
iIðm�Þ þ 2‘4

m2

f�
2

�
(21)

where m2 and Iðm�Þ are defined below in Eq. (23). When
evaluating the scattering amplitude from �PT, one has the

2Current numerical calculations can only determine k cot�0

for a limited number of k values. This leads to inaccuracies in
expansions of k2 and adds difficulty to finding the effective
range.
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option of either expressing the answer in terms of the bare parameters (f and m) or in terms of lattice-physical parameters
(f� and m�). Throughout this paper, the bare parameters will always be eliminated from the scattering amplitude. The
continuum I ¼ 2 �� scattering length at infinite volume is given by

Tcont ¼ � 2

f�
2

�
s� 2m�

2 � 2ð3s� 4m�
2Þ

3f�
2

iIðm�Þ þ ðs� 2m�
2Þ2

f�
2

iJ ðm�; psÞ þ 1

3f�
2
½3ðt2 �m�

4Þ þ tðt� sÞ � 2tm�
2

þ 4sm�
2 � 2m�

4�iJ ðm�; ptÞ þ 1

3f�
2
½3ðu2 �m�

4Þ þ uðu� sÞ � 2um�
2 þ 4sm�

2 � 2m�
4�iJ ðm�; puÞ

� 1

9ð4�f�Þ2
½2s2 þ 6sm�

2 � 8m�
4 � t2 � u2� � 4‘1

f�
2
½ðt� 2m�

2Þ2 þ ðu� 2m�
2Þ2� � 2‘2

f�
2
½2ðs� 2m�

2Þ2

þ ðt� 2m�
2Þ2 þ ðu� 2m�

2Þ2� � 8‘3
m�

4

f�
2
þ 4‘4

m�
2ðs� 2m�

2Þ
f�

2

�
(22)

where

m2 ¼ 2B �m Iðm�Þ ¼
Z
R

d4k

ð2�Þ4
1

k2 �m2

J ðm�; PÞ ¼
Z
R

d4k

ð2�Þ4
1

½ðkþ PÞ2 �m2�
1

½k2 �m2� :
(23)

This scattering amplitude includes all the partial wave
contributions [this T is the same as the Tðs; �Þ that appears
in Eq. (1)]. When projecting on the s-wave, expand-
ing through Oðk2=m�

2Þ and using Eq. (8), the result for
k cot�0 (for the regularization and renormalization scheme
defined in Ref. [38]) is

k cot�0 � � 8�f�
2

m�

��
1� m�

2

ð4�f�Þ2
�
3 ln

�
m�

2

�2

�
� 1

þ ‘a��ð�Þ
��

� 1

2

�
3þ m�

2

ð4�f�Þ2
�
17

3
ln

�
m�

2

�2

�

þ 31

3
þ ‘r��ð�Þ

��
k2

m�
2
þ � � �

�
; (24)

where ‘a��ð�Þ and ‘r��ð�Þ are linear combinations of the
Gasser-Leutwyler coefficients given by [38]

‘a��ð�Þ ¼ �4ð4�Þ2ð4ð‘R1 ð�Þ þ ‘R2 ð�ÞÞ þ ð‘R3 ð�Þ
� ‘R4 ð�ÞÞÞ;

‘r��ð�Þ ¼ 4ð4�Þ2ð12‘R1 ð�Þ þ 4‘R2 ð�Þ þ 7‘R3 ð�Þ
� 3‘R4 ð�ÞÞ:

(25)

The superscript R represents the renormalized Gasser-
Leutwyler coefficients with scale-dependence.

In order for these continuum predictions from �PT to be
useful in a physical context, one needs to determine the
values for ‘a��ð�Þ and ‘r��ð�Þ, which are undetermined
from �PT alone. While numerous values have been quoted
for the Gasser-Leutwyler coefficients [47], it is still bene-
ficial to determine these values with more precision.
Therefore, it is prudent to use various lattice calculations

at different pion masses determine these values. However,
since the lattice calculations are performed with discre-
tized space and time, one needs to remove these lattice
artifacts to extract the continuum result.

B. Isotropic discretization

To calculate finite lattice spacing corrections to I ¼ 2
�� scattering for the isotropic Wilson action, one can
follow the same steps done in the continuum case, but
starting from a Lagrangian which includes these lattice
spacing artifacts. The analysis on lattice spacing effects
was done for the Symanzik action by Sheikholeslami and
Wohlert [48]. From this analysis, the Lagrangian was made
explicit in �PT by Sharpe and Singleton [26], followed by
Bär, Rupak, and Shoresh [27,28]. The power counting they
used for this �PT Lagrangian is

asW � Bmq � p2 � 	; (26)

where as is the lattice spacing (same spacing in space and
time direction) and W is a condensate defined below. The
simplified two-flavor Lagrangian to Oð	2Þ is

L iso ¼ Lcont þ �Liso: (27)

�Liso ¼ asWf2

4
trð�y þ�Þ

þ ðw3 þw4ÞasWB0

4
trðmq�

y þ�mqÞ trð�y þ�Þ

þw0
3ðasWÞ2

4
½trð�y þ�Þ�2

þw4asW

4
trð@��@��yÞ trð�y þ�Þ (28)

This Lagrangian is similar to Eq. (17) with one new term
at LO and three new terms at NLO. All new terms are
proportional to as or a

2
s , which will vanish in the contin-

uum limit as as ! 0. At LO, there is a new condensate
given by
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W ¼ lim
mq!0

cSW
h �q
��F

��qi
f2

: (29)

The new LECs at NLO are given by w3, w
0
3, and w4. All

these new terms obey the same symmetries as the
Lagrangian in the continuum case and break chiral sym-
metry in a similar way to the quark mass. It should also be
noted that these new LECs depend on as lnas as well (as
opposed to the Gasser-Leutwyler coefficients that have no
dependence on the mass term).

Furthermore, Ref. [49] showed that the axial current
(needed to calculate f�) has an additional term at this order
in �PT given by

�Aa
� ¼ 2awA@� trð
að�� �yÞÞ: (30)

This term (which can also be inferred from Ref. [50]) leads
to modifications of the LECs as well as the coefficient
in front of the chiral logarithm in f�. Thus, this coeffi-
cient has dependence on the lattice artifacts at NNLO.
Reference [49] also points out that the condition for fixing
the renormalization factor, ZA, of the lattice currents needs
to be mapped onto �PT.3 From this Lagrangian, f� andm�

through NLO are [27,28,49]

m�
2 ¼ ðm2 þ 2asWÞ þ 1

3f2
½4m�

2iIðm�Þ � ðm2

þ 2asWÞiIðm�Þ� þ 4‘3
m4

f�
2
þ 8w3

asWm2

f�
2

þ 16w0
3

ðasWÞ2
f�

2
(31)

f� ¼ f

�
1� 2

f�
2
iIðm�Þ þ 2‘4

m2

f�
2
þ 4weff

asW

f�
2

�
; (32)

where weff in f� includesw4 and wA and can vary based on
the given renormalization condition for the axial current.

To acquire the continuum result of these quantities, one
needs to remove all the terms with dependence on as or a

2
s .

The resulting I ¼ 2 �� scattering amplitude with the
physical parameters restored is given by

Tiso ¼ Tcont þ �Tiso; (33)

where the m� and f� in Tcont are given by Eqs. (31) and
(32) and �Tiso is given by

�Tiso ¼ � 2

f�
2

�
�16ðw3 � 2‘3ÞasWm�

2

f�
2

� 32ðw0
3 � w3

þ ‘3Þ ðasWÞ2
f�

2
þ 8ðweff � ‘4Þ asWðs� 2m�

2Þ
f�

2

�
:

(34)

It is worth noting that by restoring the physical parame-
ters,m2 does not appear, and asW only appears in the terms
containing the LECs (the ‘ and w terms). This is a bit
different than the continuum case where one could elimi-
nate m2 with only m�

2. Now, one eliminates m2 with
ðm�

2 � 2asWÞ, and thus, several LECs are multiplied by
factors of asW. In addition, all of the continuum results
without LECs remain unchanged since each vertex will
only contribute m�

2 when the physical parameters are
restored. Using the relation in Eq. (12), the resulting
artifact for the isotropic Wilson lattice, �ðk cot�0Þiso is
given by

�ðk cot�0Þiso � m�

2�

��
wa

��ð�ÞasW
m�

2
þ w0a

��ð�Þ ðasWÞ2
m�

4

�

� 1

2

�
wr

��ð�Þ asW
m�

2
þ 7w0a

��ð�Þ ðasWÞ2
m�

4

�

� k2

m�
2
þ � � �

�
; (35)

where

wa
��ð�Þ ¼ �8ð4�Þ2ðwR

3 ð�Þ � wR
effð�Þ � 2‘R3 ð�Þ

þ ‘R4 ð�ÞÞ;
w0a

��ð�Þ ¼ �16ð4�Þ2ðw0R
3 ð�Þ � wR

3 ð�Þ þ ‘R3 ð�ÞÞ;
wr

��ð�Þ ¼ �8ð4�Þ2ð7wR
3 ð�Þ � 3wR

effð�Þ � 14‘R3 ð�Þ
þ 3‘R4 ð�ÞÞ: (36)

As seen in the results, the artifacts from the isotropic
lattice that are present in the final form are either linear or
quadratic in as. By using results that differ in lattice spac-
ing, one can pick off the coefficients of these artifacts and
remove them from the final result. If one is working with a
perfectly clover-improved Wilson lattice, this would re-
move all OðasÞ effects leaving only the Oða2sÞ effects. It is
also important to note that there is no physical information
gained by determining specific LECs that are a result of the
isotropic lattice spacing (the individual w terms) unlike
determining specific Gasser-Leutwyler coefficients. There-
fore, the useful coefficient to extract is the linear combi-
nation of these terms so they can be removed from the final
result.
At this point, one can compare these lattice spacing

effects for the Wilson action to those found for the mixed
action (with chiral valence fermions) in Refs. [29,51]. For

3The condition for fixing ZA is chosen by individual lattice
calculations. Reference [49] shows an example of this in �PT by
using the chiral Ward identities in infinite volume, which leads to
f� being free lattice artifacts until NNLO.
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this mixed action case, when in terms of the lattice-
physical parameters, there is no lattice spacing dependence
through the NLO counterterms. In contrast, when the
lattice-physical parameters are restored in the Wilson ac-
tion, these effects first appear at the NLO counterterms.
Thus, these additional effects that are not present at NLO in
the mixed-action calculation will need to be removed for
the Wilson action calculation.

C. Anisotropic discretization

With the recent formulation of �PT for the anisotropic
lattice [35], one can begin calculating corrections to vari-
ous quantities of interest on the lattice. This process is, in
general, very similar to calculations in the continuum and
isotropic lattices, but one now picks up additional terms
that are a result of having different spacial and temporal
spacings. To help extract these effects in a more simplistic
notation, the superscript � has been added to all the new
terms resulting from this anisotropy. In practice, the aniso-
tropic lattice picks up two new nonperturbative parameters:
the parameter � ¼ as=at which is the measure of anisot-
ropy and the parameter �, which is used to correct the
‘‘speed of light’’ [52–54]. By setting both parameters to 1,
the isotropic limit is recovered. In addition to the W
condensate defined in Eq. (29), we pick up a W� conden-
sate that is given by

W� ¼ lim
mq!0

c�SWðu�Þ�ðu�Þ�
h �q
��F

��qi
f2

: (37)

where u�� is a vector that breaks hypercubic invariance. It is

important to note that the convention chosen for u�� ap-
pears in the anisotropic �PT and its observables. For con-

venience, we choose this vector to be u�� ¼ ð1; 0Þ. The
condensates and the anisotropic parameters are related at
the classic level by (with Wilson coefficients rs ¼ rt ¼ 1)

W / cSW / �; (38)

W� / c�SW / 1

2

�
at
as

� �

�
: (39)

In the isotropic limit when � and � are set to 1, the isotropic
condensate will remain and the anisotropic condensate will
vanish. Using a similar notation throughout, all terms that
appear with a � superscript will vanish when as ¼ at and
� ¼ 1.
The power counting convention used in Eq. (26) for the

anisotropic Lagrangian is

asW � asW
� � Bmq � p2 � 	: (40)

Writing this new Lagrangian in the form of Eq. (27), the
two-flavor anisotropic �PT Lagrangian through Oð	2Þ is

L aniso ¼ Lcont þ�Liso þ�Laniso: (41)

where

�Laniso ¼ asW
�f2

4
trð�y þ �Þ þ ðw�

3 þ w�
4 þ w�

1ÞasW�B0

4
trðmq�

y þ �mqÞ trð�y þ �Þ

þ ŵ�
3ðasW�Þ2

4
½trð�y þ�Þ�2 þ �w�

3ðasWÞðasW�Þ
4

½trð�y þ �Þ�2 þ w�
4asW

�

4
trð@��@��yÞ trð�y þ �Þ

þ w�
1asW

�

4
u�u�ð@��@��yÞ trð�y þ �Þ: (42)

In addition to the anisotropic condensate W� mentioned
above at LO, there are five new LECs at NLO as a result of
this anisotropy. Four of these new LECs obey the same
symmetry structure as the isotropic terms, however the !�

1

term additionally breaks hypercubic invariance. Therefore,
this term only corrects the time derivative, but not the
spacial one (for the convention of u�� chosen). As a result,
f� is parametrized by two constants; ft�, which is f�
measured in time, and fs�, which is f� measured in space.
This leads to one correction for the space-measured fs� and
a separate correction for the ft�. The pion mass (m�), the
time-measured pion decay constant (ft�), and the space-
measured pion decay constant (fs�) through NLO are

m�
2 ¼ ðm2 þ 2asW þ 2asW

�Þ þ 1

3f2
½4m�

2iIðm�Þ

� ðm2 þ 2asW þ 2asW
�ÞiIðm�Þ�

þ 4‘3
m4

ft
2

�

þ 8w3

asWm2

ft
2

�

þ 16w0
3

ðasWÞ2
ft

2

�

þ 8w�
3

asW
�m2

ft
2

�

þ 16ŵ�
3

ðasW�Þ2
ft

2

�

þ 16 �w�
3

ðasWÞðasW�Þ
ft

2

�

(43)
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ft� ¼ f

�
1� 2

ft
2

�

iIðm�Þ þ 2‘4
m2

ft
2

�

þ 4w4

asW

ft
2

�

þ 4ðw�
eff þ w�

1Þ
asW

�

ft
2

�

�
(44)

fs� ¼ f

�
1� 2

ft
2

�

iIðm�Þ þ 2‘4
m2

ft
2

�

þ 4w4

asW

ft
2

�

þ 4w�
eff

asW
�

ft
2

�

�
; (45)

where, as in the isotropic case, the w�
eff depends on the

renormalization condition for the axial current (this LEC is
the same for both ft� and fs�).

For the rest of this section, all calculations are given in
terms of m� and ft�. As mentioned before, how one ac-
counts for the effect of this hypercubic breaking term
depends on the convention. In the convention used here,
only ft� sees the effect of this term and fs� does not. The
scattering amplitude is given by

Tiso ¼ Tcont þ�Tiso þ �Taniso (46)

where them� and ft� in Tcont are given by Eq. (43) and (44)
and �Taniso is given by

�Taniso ¼ � 2

ðft�Þ2
�
�16ðw�

3 � 2‘3ÞasW
�m�

2

ðft�Þ2
� 32ðŵ�

3

� w�
3 þ ‘3Þ ðasW

�Þ2
ðft�Þ2

� 32ð �w�
3 � w3 � w�

3

þ 2‘3Þ ðasWÞðasW�Þ
ðft�Þ2

þ 8ðw�
eff þ w�

1 � ‘4Þ

� asW
�ðs� 2m�

2Þ
ðft�Þ2

� 16w�
1

asW
�k2

ðft�Þ2
�
: (47)

Most of the effects in this scattering amplitude are
similar to the isotropic case, except now there are also
expansions in asW

� in addition to the expansions in
asW. Thus, as expected, if all the anisotropic effects are
removed, only the isotropic limit remains. The only new
symmetry breaking effect is the w1 term which is not a
hypercubic invariant term. In other words, all of the hyper-
cubic breaking due to anisotropy at this order is contained
in this term. However, its effects in �Taniso appear as
just another contribution to the linear combination of the
LECs in front of the term asW

�. Therefore, it is difficult
to determine the effect of the hypercubic breaking term
alone from �Taniso since its effects will be mixed in with
the other anisotropic LECs.4 The resulting artifacts for
the anisotropic Wilson lattice are the isotropic artifacts,
�ðk cot�0Þiso, and the anisotropic artifacts, �ðk cot�0Þaniso.
Therefore, the total effect of the lattice artifacts due to
lattice spacings are

�ðk cot�0Þ ¼ �ðk cot�0Þiso þ�ðk cot�0Þaniso: (48)

The anisotropic lattice artifacts are given by

�ðk cot�0Þaniso � m�

2�

��
w�a

��ð�Þ asW
�

m�
2
þ ŵ�a

��ð�Þ ðasW
�Þ2

m�
4

þ �w�a
��ð�Þ ðasWÞðasW�Þ

m�
4

�

� 1

2

�
w�r

��ð�Þ asW
�

m�
2
þ 7w0�a

��ð�Þ ðasW
�Þ2

m�
4

þ 7 �w�a
��ð�Þ ðasWÞðasW�Þ

m�
4

�
k2

m�
2
þ � � �

�
; (49)

where

w�a
��ð�Þ ¼ �8ð4�Þ2ðw�R

3 ð�Þ � w�R
eff ð�Þ þ w�R

1 ð�Þ � 2‘R3 ð�Þ þ ‘R4 ð�ÞÞ;
ŵ�a

��ð�Þ ¼ �16ð4�Þ2ðw0R
3 ð�Þ � wR

3 ð�Þ þ ‘R3 ð�ÞÞ;
�w�a
��ð�Þ ¼ �16ð4�Þ2ð �w�R

3 ð�Þ � wR
3 ð�Þ � w�R

3 ð�Þ þ 2‘R3 ð�ÞÞ;
w�r

��ð�Þ ¼ �8ð4�Þ2ð7w�R
3 ð�Þ þ 9w�R

eff ð�Þ þ w�R
1 ð�Þ � 14‘R3 ð�Þ � 9‘R4 ð�ÞÞ: (50)

4The total hypercubic breaking effect would be more visible from the differences of ft� and fs�.
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As a result, the ultimate effects of the anisotropic lattice on
�ðk cot�0Þ are more terms that will require variation of as
and at independently to fit. Three more terms require fit-
ting to correct the constant term in the expansion and one
more term requires fitting for theOðk2=m�

2Þ term in order
to remove its effects. As mentioned with the isotropic
correction, no physical information is gained by picking
off the individual anisotropic LECs. Analogous to the
isotropic case, the anisotropicWilson action first has lattice
spacing dependence at the NLO counterterms. The aim
here is to determine these linear combinations and remove
their effects from the lattice measurements.

IV. DISCUSSION

In this work, I ¼ 2 �� scattering was calculated from
the �PT for isotropic and anisotropic lattice spacings.
Also, connections between these �PT calculations and
the k cot�0 value measured from lattice calculations were

illustrated. When �ðk cot�0Þ is given in terms of the
lattice-physical parameters, these lattice spacing effects
first appear at the NLO LECs and can be removed from
the result of the lattice calculation. However, �ðk cot�0Þ
has numerous undetermined linear combinations of LECs,
which would need to be determined (by fitting several
different lattice spacings) in order to successfully remove
it from the lattice result. Therefore, as more lattice calcu-
lations of �� scattering are completed (for both isotropic
and anisotropic lattice spacings), these combinations of
LECs can be determined better, which will result in a more
accurate result after these lattice artifacts are removed.
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