
Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop

Kenji Fukushima

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 17 April 2008; published 27 June 2008)

We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the

Nambu–Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription

dependence in choosing the Polyakov loop effective potential and propose a simple and rather sensible

ansatz. We look over quantitative comparison to the lattice measurement to confirm that the model

captures thermodynamic properties correctly. We then analyze the phase structure by changing the

temperature, quark chemical potential, quark masses, and coupling constants. We particularly investigate

how the effective UAð1Þ restoration and the induced vector-channel interaction at finite density would

affect the QCD critical point.

DOI: 10.1103/PhysRevD.77.114028 PACS numbers: 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Gc

I. INTRODUCTION

The phase diagram of hot and dense matter out of quarks
and gluons described by quantum chromodynamics (QCD)
has attracted theoretical and experimental interest for dec-
ades [1,2]. We can define one phase transition associated
with chiral symmetry restoration in the vanishing quark
mass limit (i.e. mq ! 0) which is commonly referred to as

the chiral phase transition. In the quenched limit with
infinitely heavy-quark mass (i.e. mq ! 1), on the other

hand, we can define another phase transition from the
hadron (glueball) phase to the color deconfinement phase.
The question is then the nature of these phase transitions
with intermediate quark masses of two light (up and down)
and one heavy (strange) flavors. We stress that the chiral
and deconfinement phase transitions are conceptually dis-
tinct phenomena and, theoretically speaking, they reside in
the opposite limits with respect to the quark mass.
Nevertheless, the standard QCD phase diagram on the
plane of the temperature T and the chemical potential �
has only a single transition or crossover boundary. Whether
this is really the case is not trivial a priori and not quite
settled yet.

It is the result from the Monte Carlo integration of the
(quenched) QCD partition function on the lattice that had
led us to this phase diagram with a single phase boundary
[3]. (See Ref. [4] and references therein for historical
background.) Later on, the lattice QCD simulation with
dynamical quarks [5] have confirmed that the chiral and
deconfinement phase transitions occur at the same tem-
perature (or at different but close temperatures [6]). This
observation suggests that two phenomena of chiral resto-
ration and color deconfinement should be locked by some
dynamical mechanism so that they should take place
(nearly) at once.

We can find the first successful study based on a dy-
namical model to give an account for this locking mecha-
nism in the work by Gocksch and Ogilvie [7]. They have
constructed the effective action of QCD by means of the

strong coupling and large dimensional expansions. The
same action has been discussed at finite T and � also by
Ilgenfritz and Kripfganz [8]. There were proposed some
generic mixing arguments which aim to explain the coin-
cidence of critical temperatures in a model independent
way [9]. The mixing effect, however, does not suffice to
force two crossovers to be a single one in view of the
associated peaks in the susceptibility; two separate cross-
overs (susceptibility peaks) with mixing for each cannot be
ruled out. That means the mixing effect is a necessary but
not sufficient condition in order to realize the coincidence
in a way seen on the lattice [10]. Thus, the locking between
chiral restoration and deconfinement should need more
tangled dynamical properties of two phenomena.
To reveal the relevant dynamics, the present author

proposed a useful model [11] based on the Nambu–Jona-
Lasinio (NJL) model [12,13] with the Polyakov loop de-
grees of freedom augmented, which was inspired by the
strong-coupling analyses [7,8,14]. The peculiar feature in
this model is that we can uniquely determine the coupling
between the chiral condensate, which is an order parameter
for the chiral phase transition inmq ! 0, and the Polyakov

loop, which is an order parameter for the deconfinement
phase transition in mq ! 1. The model inputs and outputs

have been carefully compared to the lattice QCD data by
Ratti, Thaler, and Weise [15] and they named this hybrid
description as the PNJL model.
The PNJLmodel has been generalized to the three-flavor

case recently [16,17]. In the present paper we shall exten-
sively explore the phase diagrams in the three-flavor PNJL
model by changing four physical variables, namely, T, �,
the light-quark mass mud, and the heavy-quark mass ms.
First we revisit the choice of the Polyakov loop effective
potential that cannot avoid ambiguity in the PNJL model
approach. We claim that a careful consideration is neces-
sary for the effective potential form. Once we fix the pure
gluonic sector by specifying the potential, we can calculate
the mean fields of the chiral condensate and the Polyakov
loop to draw the phase diagrams.
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Although it is usually assumed implicitly, we have no
first-principle insight into the locking of two crossovers in
the finite-density region. The lattice Monte Carlo simula-
tion is of no practical use except when � is much smaller
than T. So far it seems that almost nothing but the PNJL
model can access both transitions at any density. Strictly
speaking, in fact, the mean-field treatment of the PNJL
model is not totally free from the sign problem. Detailed
analyses in Ref. [18] support that the saddle point of the
mean-field energy leads to an appropriate estimate for the
mean fields, however. Hence, we will not argue the sign
problem any more in the present work.

In this paper, after we check that our results from the
three-flavor PNJL model are consistent with the state-of-
art lattice simulation at zero chemical potential [19], we
will shift our emphasis toward the QCD (chiral) critical
end point in the last half. It should be noted that the
terminal point of the first-order phase boundary has a
second-order phase transition characterized by the univer-
sality class of the Z(2) Ising model and this special point is
often called the QCD critical point. The search for the
critical point is one of the most interesting problems in
finite-density QCD because it provides us with a firm
milestone for our quest for the QCD phase diagram. If
we are lucky enough to find out the critical point as
predicted in theory, we can get confident about our theory
reliability. This is, so to speak, a mutual correspondence
between theory and experiment, which is an ideal situation
for sound scientific developments.

The existence of the QCD critical point has not been
established yet. We cannot exclude a possibility that the
QCD phase transition is smooth everywhere in the �-T
plane, while there are a pile of indirect evidences for its
existence [20–26]. In model studies, in fact, a minor modi-
fication in the treatment could easily smear a first-order
phase transition out into a crossover, as demonstrated later.
In particular, we shall pay attention to two obscure factors
which may significantly affect where the critical point is
and even whether it exists. Those two factors are the
magnitude of the UAð1Þ-breaking anomaly interaction
and the vector-channel interaction. The former, the
UAð1Þ-breaking term, induces a six-quark vertex called
the ’t Hooft term which mixes three different flavors up
and is responsible for the first-order phase transition in the
chiral limit [27]. It could be possible at finite temperature
and density that the ’t Hooft interaction is reduced by
instanton suppression [28–30]. The latter effect, i.e. the
vector-channel interaction term, does not break chiral
symmetry and the zeroth component directly couples the
quark density. It is thus likely that the finite-density envi-
ronment enhances or induces interactions in the vector
channel which could weaken the first-order phase transi-
tion [20,31–33]. In this paper we shall quantify these
effects on the location of the QCD critical point using
the three-flavor PNJL model.

II. MODEL SETUP

The present author proposed the PNJL model action in
Ref. [11] inspired by the effective action in strong-coupling
QCDwith dynamical quarks [7,8,14]. It is possible to some
extent to elaborate a field-theoretical setup for the PNJL
model starting with the Lagrangian density [15]. For this
purpose it is required to assume a homogeneous mean-field
distribution of the Polyakov loop. In other words, the
temporal component of the gauge field, A4, in Euclidean
space-time must be approximated by a spatially constant
mean field, so that one can perform the one-loop integra-
tion with respect to thermal quarks in a closed form. This
thermal integration leads to the unique coupling between
the chiral condensate and the Polyakov loop. Spatial uni-
formity is in fact a mean-field ansatz, however, and it
makes a contrast to the strong-coupling framework [14],
as we shall discuss shortly.
In the PNJL model the Polyakov loop is therefore put in

as a global mean field rather than a local dynamical vari-
able, which is analogous to the treatment of the chiral
condensate in the ordinary NJL model; the Lagrangian
density with a shift by the mean field is sometimes referred
to as the mean-field Lagrangian that contains no kinetic
term for the mean field. Such an approximation should
work to investigate the bulk property of the thermody-
namic system, while we have to be aware that the mean-
field model cannot properly deal with the spatial structure
of confined objects. It is beyond the scope of the simple
PNJL model framework, for instance, to extract the heavy-
quark potential.
All the model ingredients are thus given as mean-field

variables. Here wewould prefer to start with the mean-field
free energy after one-loop integration for the model setup.
Let us decompose the free energy below into four pieces
and discuss them in order. That is, the total free energy (or
the grand potential) is a sum of four contributions;

�PNJL ¼ �cond þ�zero þ�quark|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NJL part

þ �Polyakov|fflfflfflffl{zfflfflfflffl}
pure gluonic part

; (1)

where �cond represents the condensation energy in the
chiral sector, �zero the zero-point energy which is impor-
tant in the NJL model formulation, �quark the thermal

quark contribution with the Polyakov loop coupling com-
ing from the Dirac determinant, and �Polyakov gives the

effective potential in terms of the Polyakov loop variable.
As indicated in Eq. (1), we can deduce the first three from
the standard NJL model and the last one from the pure
gluonic theory.

A. Condensation energy

We can read the condensation energy from the standard
NJL model Lagrangian. Using the notation by Hatsuda and
Kunihiro [13], we write the four-quark interaction in the
scalar channel and the six-quark ’t Hooft interaction as
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L S ¼ gS
2
½ð � �a Þ2 þ ð � i�5�a Þ2�; (2)

and

L A ¼ gD½det � ð1� �5Þ þ H:c:�; (3)

respectively. For later convenience we also give an expres-
sion for the vector-channel interaction:

L V ¼ �gVð � �� Þ2: (4)

For the moment we will work only in the gV ¼ 0 case.
Here, �a’s are the Gell-Mann matrices in flavor space (with

�0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
) and the matrix determinant is taken also in

flavor space. In the mean-field approximation with three
condensates, h �uui, h �ddi, and h�ssi, the scalar four-quark
interaction is rewritten as

gSð �uuÞ2 ! gSð �uu� h �uui þ h �uuiÞð �uu� h �uui þ h �uuiÞ
’ gSh �uui2 þ 2gSh �uuið �uu� h �uuiÞ
¼ �gSh �uui2 þ 2gSh �uui �uu; (5)

in the u-quark sector and likewise for d-quarks and
s-quarks. In this way we can readily reach the following
expression for the condensation energy:

�cond ¼ gSðh �uui2 þ h �ddi2 þ h�ssi2Þ þ 4gDh �uuih �ddih�ssi:
(6)

We see that the six-quark interaction induces the flavor-
mixing interaction indeed which makes the phase transi-
tion of first order in the presence of massless three flavors.

B. Zero-point energy

The zero-point energy diverges and requires the ultra-
violet cutoff � to regularize the three-momentum integra-
tion. Since the NJL model is a nonrenormalizable cutoff
theory depending on the choice of�, the zero-point energy
contribution largely affects the model output. With the

quasiquark energy dispersion relation, "iðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q
, the zero-point energy can be expressed simply

as a summation of all "iðpÞ=2, that is,

�zero ¼ �2Nc
X
i

Z � d3p

ð2�Þ3 "iðpÞ; (7)

where 2 is the spin degrees of freedom, Nc ¼ 3 is the
number of colors, and the particle and antiparticle contri-
butions cancel 2 in the denominator of "iðpÞ=2. The con-
stituent quark mass is defined as a sum of the current quark
mass and the mean field as

Mu ¼ mu � 2gSh �uui � 2gDh �ddih�ssi;
Md ¼ md � 2gSh �ddi � 2gDh �ssih �uui;
Ms ¼ ms � 2gSh �ssi � 2gDh �uuih �ddi;

(8)

which is understood from the second term in Eq. (5).

C. Thermal quark energy

The thermal quark energy is where we can uniquely
introduce coupling between the chiral condensate and the
Polyakov loop. In the PNJL model, under the assumption
of the presence of the spatially uniform Polyakov loop
background, the one-loop free energy is modified as

�quark ¼ �2T
X
i

Z d3p

ð2�Þ3 flndet½1þ Le�ð"iðpÞ��Þ=T�

þ lndet½1þ Lye�ð"iðpÞþ�Þ=T�g: (9)

Let us comment on preceding works [34,35] in which a
similar coupling form is addressed.
We note that the above expression is identical with that

in the strong-coupling expansion but the physics content is
slightly different. The Polyakov loop L is a mean field from
the beginning here, whereas the strong-coupling calcula-
tion at finite temperature decouples the temporal hopping
from spatial link variables [14]. As a result, the quark
excitation is static in the strong-coupling leading order,
and the above expression results at each lattice site in this
way, that is, L could be a local variable in the strong-
coupling expansion.
It is noteworthy that the three-momentum integration

above is finite and has no need for the ultraviolet cutoff. We
can thus relax the cutoff in the thermal quark energy,
though we found that the s-quark sector behaves unnatu-
rally at extremely high temperature without the cutoff,
which is of no importance practically. In this work we
will not impose the momentum cutoff onto the thermal
quark energy in order to let the thermodynamic quantities
free from cutoff artifact.
The Polyakov loop L is an Nc � Nc matrix in color

space and is defined originally in terms of A4. The explicit
form of the Polyakov loop is irrelevant in our study be-
cause we treat it as a model variable and will not return to
the original definition of the Polyakov loop in terms of the
gauge field.
In the simplest mean-field approximation one can ex-

press the free energy as a function of the traced Polyakov
loop expectation value defined by

‘ ¼ 1

Nc
htrLi; �‘ ¼ 1

Nc
htrLyi: (10)

It should be mentioned that we must distinguish ‘ and �‘ at

finite density [18,36,37]; both ‘ and �‘ are real, and never-

theless, �‘ > ‘ whenever �> 0. This is because a finite
chemical potential gives rise to a C-odd term like
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� Im½trL� in the average weight leading to �‘� ‘�
�hðIm½trL�Þ2i> 0 for small �. We can also give an in-

tuitive explanation; �‘ represents the exponential of the
free-energy gain, f �‘, by the presence of an antiquark.
The test charge brought in by an antiquark can be more
easily screened in a medium with more quarks than anti-

quarks. Therefore, f �‘ < f‘, that means �‘ ¼ e�f �‘=T > ‘ ¼
e�f‘=T for a positive �.

It is straightforward to take an average of the 3� 3
determinant to reach

hdet½1þ Le�ð"��Þ=T�i ¼ 1þ e�3ð"��Þ=T þ 3‘e�ð"��Þ=T

þ 3 �‘e�2ð"��Þ=T; (11)

hdet½1þ Lye�ð"þ�Þ=T�i ¼ 1þ e�3ð"þ�Þ=T þ 3 �‘e�ð"þ�Þ=T

þ 3‘e�2ð"þ�Þ=T: (12)

In this work we use the logarithm of the above expressions
as the mean-field free energy and will not perform the
group integration over L. Roughly speaking, the approxi-
mation involving the group integration [7] corresponds to
what is called the Weiss mean-field approximation in the
spin system. The integration has an effect on the quantita-
tive results [38] but a simple mean-field treatment suffices
for our present purpose. We also remark that the action is

invariant under simultaneous replacement ‘$ �‘ and
��$ þ�.

D. Polyakov loop energy

In the definition of the PNJL model, the choice of the
Polyakov loop potential has subtlety because the effective
potential has not been known directly from the lattice QCD
simulation. In the present study we will assume the strong-
coupling inspired form of

�Polyakov ¼ �b � Tf54e�a=T‘ �‘þ ln½1� 6‘ �‘� 3ð‘ �‘Þ2
þ 4ð‘3 þ �‘3Þ�g: (13)

The logarithmic term appears from the Haar measure of the
group integration with respect to the SU(3) Polyakov loop
matrix. The first term is reminiscent of the nearest neighbor
interaction in the effective action at strong coupling. The

temperature-dependent coefficient of this ‘ �‘ term controls
the deconfinement phase transition temperature. It should
be, however, noted that the model parameters are assumed
to be temperature independent. (See Ref. [39] for the
running coupling effects including renormalization.)

In this simple ansatz for the Polyakov loop potential, we
have two parameters; a and b. The deconfinement phase
transition is determined solely by the choice of a, while b
parametrizes the relative strength of mixing between the
chiral and deconfinement phase transitions. If b is small,
chiral restoration dominates the phase transition, and if b is
large, deconfinement is more governing.

We will numerically make a comparison between the
above-proposed ansatz and others in the next section.

III. NUMERICAL PROCEDURES

Now that we have specified all the constituents in the
model action, we get ready to proceed to the numerical
analyses. We will solve the following four equations in a
self-consistent way:

@�PNJL

@h �uui ¼ @�PNJL

@h �ssi ¼ @�PNJL

@‘
¼ @�PNJL

@ �‘
¼ 0 (14)

to acquire h �uui ¼ h �ddi, h�ssi, ‘, and �‘ as functions of the
model input. For this purpose we have to fix all the model
parameters, �, gS, gD in the NJL potential, and a and b in
the Polyakov loop potential.

A. Parameter choice

The Polyakov loop coupling appears only in the thermal
part, that means that the NJL model parameters fixed at
T ¼ � ¼ 0 are not affected by introduction of the
Polyakov loop coupling. In this work we will employ the
widely accepted parameter set according to Hatsuda and
Kunihiro [13]:

� ¼ 631:4 MeV; mud ¼ 5:5 MeV;

ms ¼ 135:7 MeV; gS ��2 ¼ 3:67;

gD ��5 ¼ �9:29;

(15)

which nicely reproduces the � mass, the K mass, the �0
mass, and the � decay constant f�. Here mud stands
representatively for the light-quark mass, i.e. mud ¼ mu ¼
md.
Regarding the Polyakov loop potential, we can fix the

parameter a by the condition that the first-order phase
transition in the pure gluodynamics takes place at T ¼
270 MeV, which yields

a ¼ 664 MeV; (16)

and then the remaining variable is b only. Actually, the
determination of b suffers uncertainty and there is no
established prescription. In this study we shall take a value
of b that leads to simultaneous crossovers of chiral resto-
ration and deconfinement around T ’ 200 MeV. As a re-
sult, we set

b ���3 ¼ 0:03: (17)

B. Other Polyakov loop potentials

The choice of the Polyakov loop potential has some
variations, as we have mentioned before. Our choice of
Eq. (13) is much simpler than the widely accepted forms by
Ratti, Thaler, and Weise [15] and by Rößner, Ratti, and
Weise [40]. It would be instructive to scrutinize respective
forms and quantify the difference numerically. Let us call
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the ‘‘RTW05 potential’’ to indicate

�RTW05 ¼ T4

�
�b2ðTÞ

2
‘ �‘� b3

6
ð‘3 þ �‘3Þ þ b4

4
ð‘ �‘Þ2

�

(18)

with b2ðTÞ ¼ a0 þ a1ðT0=TÞ þ a2ðT0=TÞ2 þ a3ðT0=TÞ3,
which is proposed in Ref. [15]. There are seven parameters,
a0 ¼ 6:76, a1 ¼ �1:95, a2 ¼ 2:625, a3 ¼ �7:44, b3 ¼
0:75, b4 ¼ 7:5, and T0 ¼ 270 MeV such that the potential
(18) reproduces the pressure, energy density, and entropy
density in the pure gluonic sector measured on the lattice.
A slightly different choice is suggested in Ref. [40] which
we shall call the ‘‘RRW06 potential’’:

�RRW06 ¼ T4

�
� aðTÞ

2
‘ �‘þ bðTÞ ln½1� 6‘ �‘� 3ð‘ �‘Þ2

þ 4ð‘3 þ �‘3Þ�
�

(19)

with aðTÞ ¼ a0 þ a1ðT0=TÞ þ a2ðT0=TÞ2 and bðTÞ ¼
b3ðT0=TÞ3. Five parameters are fixed as a0 ¼ 3:51, a1 ¼
�2:47, a2 ¼ 15:2, b3 ¼ �1:75, and T0 ¼ 270 MeV. We
note that b3 plays the same role as b in our ansatz (13).
Actually, if we substitute T0 ¼ 190 MeV to lower the
crossover temperature as argued in Ref. [15], b3T

3
0 ��3 ’

0:044 (where � is not our value but 650 MeV used in
Ref. [15]) which turns out to be comparable to our choice
(17).

Under the assumption that �RTW05 and �RRW06 corre-
spond to the total negative pressure in the pure gluonic
theory, they approach the Stefan-Boltzmann limit at high
temperature, that is, p ¼ ð2 � 8 � �2=90ÞT4 ¼ 1:75T4. One
can easily make this sure from �a0=2� b3=3þ b4=4 ¼
�1:75 in �RTW05 and �a0=2 ¼ �1:75 in �RRW06.

We would claim, however, that �RTW05 and �RRW06

might overcount the relevant degrees of freedom in the
system. In the high temperature limit not only the Polyakov
loop but also the deconfined transverse gluons contribute to
the pressure. Since the Polyakov loop corresponds to the
longitudinal gauge field, the Stefan-Boltzmann limit
should be saturated by the transverse gluons but not the
Polyakov loop. It is thus a subtle assumption that the
effective potential with respect to the order parameter field
can reproduce the total pressure, energy density, and en-
tropy density for all temperatures.

One can understand this from a more familiar example.
Let us consider the mean-field effective potential in the O
(4) linear sigma model. The effective potential with respect
to the � condensate describes the chiral phase transition.
The total pressure should contain contributions from the �
excitations too which are not fully included in the effective
potential in terms of h�i.

It is not our point to insist that �RTW05 and �RRW06 are
doubtful. Our main point lies in the other way around in

fact. We presume that their parametrization works in effect
for the following reason; the pressure contribution from
transverse gluons is a function of T, and the Polyakov loop
is also a function of T, and so the former can be implicitly
parametrized by the latter. Then, it is possible to express
the total pressure in the form of Eq. (18) or Eq. (19). One
has to keep in mind, however, that the total pressure in this
interpretation would make sense provided that the
Polyakov loop is already solved as a function of T.
Therefore, one should solve Eq. (14) first and then one
can fit the total pressure using Eq. (18) or Eq. (19) with

solved ‘ðTÞ and �‘ðTÞ substituted. One should not use the
total pressure itself to optimize the variational parameters ‘

and �‘. This may explain why the critical temperature
determined with Eq. (18) or Eq. (19) put into the gap
equations becomes relatively higher. The Polyakov loop
effective potential which overcounts the gluonic degrees of
freedom would drag the crossover point closer to the pure
gluonic transition temperature T0 ¼ 270 MeV.
We emphasize that our simple choice of the Polyakov

loop potential is physically natural and, interestingly, it
makes only little difference from the numerical results
based on the RTW05 or RRW06 potential. This sounds
very good, for our new potential ansatz does not ruin the
nice agreement to the lattice data addressed in
Refs. [15,40,41]. In Fig. 1 we plot the Polyakov loop
pressure difference from the zero temperature value using

0 200 400 600 800

0

10

RRW06

RTW05

This Work

Po
ly

ak
ov

 L
oo

p 
Pr

es
su

re
 D

if
f 

 [
π2 T

4 /9
0]

T  [MeV]

FIG. 1. Comparison of the Polyakov loop pressure excess as a
function of the temperature. The vertical axis signifies the
effective degrees of freedom. RTW05 and RRW06 represent
�RTW05 and �RRW06 with ‘ and �‘ given as a solution of the
full gap equation with two quark flavors. For comparison we
used the same NJL model parameters, �, gS, and mu ¼ md, as
in Ref. [15] and quenched the s-quark sector to draw the solid
curve which represents our �Polyakov.

PHASE DIAGRAMS IN THE THREE-FLAVOR NAMBU– . . . PHYSICAL REVIEW D 77, 114028 (2008)

114028-5



the mean fields obtained from the full gap equations with
two flavors. We could, of course, show the genuine total
pressure with the Polyakov loop and quark contributions
both. We subtracted the quark contribution in Fig. 1 be-
cause the quark contribution makes the comparison
blurred; the quasiquark pressure is dominating up to near
Tc but it is not sensitive to the choice of the Polyakov loop
with �quark untouched. The nontrivial part is the Polyakov

loop contribution that we now focus on here.
In the absence of interaction, the pressure is given by the

Stefan-Boltzmann law, �2T4=90, multiplied by the effec-
tive degrees of freedom which we denote by �. To see how
� increases as T goes up, we normalize the pressure by the
Stefan-Boltzmann unit; �2T4=90. Clearly both �RTW05

and�RRW06 increase with increasing T and asymptotically
approach the value of � ¼ 2 ðpolarizationÞ � 8 ðcolorÞ ¼
16. It is so by construction, as we explained. It is intriguing
to note that our ansatz (13) results in the solid curve in
Fig. 1 which is close to the dashed and dot-dashed curves
by�RTW05 and�RRW06 as long as the temperature is below
300 MeV ’ 1:5Tc. We do not have to care much about the
discrepancy in the higher temperature region, in fact, be-
cause the validity region in the present study extends at
best up to �2Tc above which transverse gluons should be
dominant. Therefore, we can conclude that all these poten-
tial choices are consistent to each other within the validity
range of the temperature. In our choice (13) the effective
degrees of freedom slowly decrease at higher temperature
in the Stefan-Boltzmann unit. This is reasonable because
the Polyakov loop must give way to transverse gluons.

The near coincidence of three curves in the vicinity of Tc
in Fig. 1 delivers us an important message. The Polyakov
loop takes on a major fraction of the system pressure up to
the temperature around 1:5Tc. We should recall that two
parameters, a and b, in Eq. (13) have been fixed not to
reproduce the pressure but just to yield T0 ¼ 270 MeV in
the pure gluonic sector and Tc ’ 200 MeV with 2þ 1
flavors.

IV. ZERO-DENSITY RESULTS

Here we show the model results at zero quark density
with our choice of the model parameters. In our subsequent
discussions we will make clear the virtues of the PNJL
model as well as some caveats.

A. Order parameters

Because nothing breaks isospin symmetry in this work,
we will show the numerical results only for the u-quark
sector which is degenerate to the d-quark sector.

First of all, we present Fig. 2 to confirm that simulta-
neous crossovers of deconfinement and chiral restoration
certainly realize in the PNJL model. The chiral conden-
sates are normalized by their zero-temperature value:
h �uui0 ¼ ð246 MeVÞ3 and h �ssi0 ¼ ð267 MeVÞ3 for light
and heavy quarks, respectively.

The reason why we find the simultaneous crossovers
around Tc ’ 200 MeV (the temperature derivative gives
Tc ¼ 204:8 MeV) is that we have chosen the value of b
as Eq. (17) to adjust the crossover temperature by hand.
Thus, we note that the crossover temperature is not the
model output but the input. Nevertheless we would com-
ment on a nontrivial feature inherent in the model dynam-
ics; the chiral phase transition can never occur until the
Polyakov loop grows up [11]. It is also interesting to look
at the behavior of the s-quark chiral condensate depicted
by the dotted curve. The results for h �ssi are the output
rather than the input unlike h �uui. If we define a crossover
temperature for the s-quark sector, it should be higher than
the simultaneous crossovers due to the explicit breaking of
chiral symmetry.

B. Effective confinement

Let us elucidate how the effective confinement is pos-
sible in the model description. The underlying idea in the
PNJL model is that the group integration (average) with
respect to the Polyakov loop acts as a projection onto the
center symmetric state (or the canonical ensemble [42]
with zero Z3 charge) if there is no Polyakov loop mean
field. [See Eqs. (11) and (12) and also Refs. [18,38] for
details.] We solve the four coupled equations (14) at T � 0
and� ¼ 0, and plot the quark pressure difference from the
zero-temperature value in Fig. 3 using the obtained mean
fields.
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In the limit of massless two and three flavors we can
count the fermionic degrees of freedom as � ¼ ð7=8Þ � 3 �
2 � 4 ¼ 21 and � ¼ ð7=8Þ � 3 � 3 � 4 ¼ 31:5, respectively.
Because the system of our interest is quark matter with
two light and one heavy flavors, � should take a certain
value between 21 and 31.5 at temperature above Tc where
chiral symmetry is restored. This expectation is manifest in
view of Fig. 3 both in the NJL model and in the PNJL
model. Here we have determined the pseudocritical tem-
perature by the location where the temperature derivative,
@h �uui=@T, is largest. It follows that Tc ¼ 171:6 MeV for
the NJL model results and Tc ¼ 204:8 MeV for the PNJL
model results (see also Fig. 2).

Even in the standard NJL model, the effective degrees of
freedom go down as the temperature becomes lower. This
is because quark excitations are suppressed by the con-
stituent quark mass in the low temperature side where
chiral symmetry is spontaneously broken. In reality the
system should be mainly composed of a gas of �0 and ��
below Tc but the � mass is �135 MeV which is compa-
rable to the critical temperature. It is thus expected that we
can neglect the � loop corrections in the pressure in the
first approximation.

We can see from Fig. 3 that the NJL model contains too
many (unphysical) quark excitations below Tc. It should be
mentioned that, strictly speaking, too many excitations
cannot be concluded until this comparison and the obser-
vation that the PNJL model is consistent with the lattice
results. These fictitious excitations diminish only slowly. It

is apparent that the Polyakov loop projection works effi-
ciently in the PNJL model case. The effective degrees of
freedom rapidly decrease near Tc, which means that arti-
ficial quark excitations are removed by the Polyakov loop
coupling. Therefore, we can anticipate that the PNJL
model should be more capable to capture realistic thermo-
dynamics than the standard NJL model especially at tem-
peratures near Tc. Also, because the Polyakov loop
projection affects the quark sector, it is a natural expecta-
tion that the PNJL model would be a more suitable de-
scription than the NJL model in the finite-density region
where quarks exist abundantly.
Finally we shall remark that the separation of the total

pressure into the Polyakov loop and the quark contribu-
tions like in Figs. 1 and 3 does not make sense in the mean-
field approximation. This is because each of h �uui, h�ssi, ‘,
and �‘ determined by the gap equations (14) involve en-
tangled contributions and thus a clear separation is impos-
sible in any way.

C. Susceptibility

In this subsection we clarify how we can evaluate the
susceptibility in respective channels of our interest. A
useful alternative is to be deduced from the temperature
slope, i.e.�@h �uui=@T, @‘=@T, and so on. They behave as a
function of T in a similar manner as the susceptibility but
the temperature slope is not really informative more than
the order parameter curves read from Fig. 2.
In order to compute the susceptibility in the mean-field

model we need some caution. Remembering that the loga-
rithm of the partition function is�V�PNJL=T, we can give
the definition of the dimensionless susceptibility of our
interest as

�ud ¼ 1

4T

@2ð��PNJL=TÞ
@m2

ud

; (20)

�s ¼ 1

T

@2ð��PNJL=TÞ
@m2

s

; (21)

�‘ ¼ T3 @
2ð��PNJL=TÞ
@�@ ��

; (22)

�q ¼ 1

T

@2ð��PNJL=TÞ
@�2

; (23)

for the light-quark susceptibility, the heavy-quark suscep-
tibility, and the Polyakov loop susceptibility, respectively.
We also enumerate the quark number susceptibility that we
will discuss later. Here we have inserted the Polyakov loop

source � and �� in the potential as �Polyakov ! �Polyakov �
Tð�‘þ �� �‘Þ. It is crucial to notice that we have to take the
derivative in a way that it hits the mean fields also. That
means that we should take @h �uui=@mud, @

2h �uui=@m2
ud,

@h �ssi=@mud, @
2h �ssi=@m2

ud, @‘=@mud, @
2‘=@m2

ud, etc. into
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account to evaluate Eq. (20) for instance. Otherwise we
would miss the loop effect and the mixing to other
channels.

We can justify this procedure by evaluating the suscep-
tibility in an independent (and equivalent) method. By
definition, in general, the susceptibility is to be identified
as the inverse of the potential curvature. For the purpose
to compute the curvature inverse, we should consider
the curvature matrix C whose dimensionless com-
ponents are given by Cuu ¼ T2@2�PNJL=@h �uui2, Cus ¼
T2@2�PNJL=@h �uui@h �ssi, Cu‘ ¼ T�1@2�PNJL=@h �uui@‘,
C‘ �‘ ¼ T�4@2�PNJL=@‘@ �‘, and so on. In the present case
C is a 4� 4 matrix. Then the diagonal components of C�1

give the susceptibility which is an involved expression in
terms of Cuu,Cus,Cu‘, etc. Roughly speaking, the diagonal
part, C�1

uu , C
�1
ss , C

�1
‘ �‘
, corresponds to soft-mode propagators

and the off-diagonal part, Cus, Cu‘, C‘‘, C �‘ �‘, and so on,
corresponds to mixing vertices. It is immediate to make
sure that C�1 certainly leads to exactly the same results as
obtained from Eqs. (20)–(22). This matrix method has an
advantage in giving us the mixing angle between each
mode.

As we can notice from Fig. 4 showing the susceptibility
as a function of T, two crossovers associated with h �uui and
‘ are located close to each other but do not coincide
precisely. As long as we treat the chiral condensate and
the Polyakov loop as independent variables as in the PNJL
model, two crossovers attract each other to some extent but
have a short ‘‘repulsion.’’ Within this kind of model ap-
proach, it is hence hard to explain the complete coinci-
dence without fine-tuning.

One interesting strategy is not to explain the locking but
to build a new model based on the complete locking of

chiral restoration and deconfinement. As discussed in
Ref. [10], most of the lattice results support the idea that
there is only one order parameter field 	 that is a mixture
of the � meson and the electric glueball (Polyakov loop).
Then, we could make a model with the chiral condensate
given by h �uui / 	 cos
 and the Polyakov loop by ‘ /
	 sin
 with some potential energy for the mixing angle 

between them. The work along this direction is under
progress [43].

D. Quark number susceptibility

It is difficult to probe physical observables sensitive to
the chiral and Polyakov loop susceptibility directly in
experiments. In fact, it is impossible to count the number
fluctuation of the � meson and the glueball which even-
tually decay to the lightest � meson. From the experimen-
tal point of view, the quark number susceptibility should be
a better measure because the quark number is a conserved
quantity. The fluctuation in the baryon multiplicity would
be directly related to the quark number susceptibility, �q
[13,24,44]. Also in Refs. [41,45] �q has been evaluated and

discussed in the two-flavor PNJL model. Actually, the
PNJL model can reproduce �q measured on the lattice in

the two-flavor case as beautifully illustrated in Ref. [41].
We plot our results in the 2þ 1 flavor case in Fig. 5. We

can see, as expected, that the 2þ 1 flavor quark matter
yields �q greater than the two-flavor case shown in

Ref. [41]. In the chiral limit �q would scale as N2
f, and

thus the three-flavor value should be 32=22 ¼ 2:25 times
greater than the two-flavor value. Because s-quarks are
massive in reality, this scale factor should become smaller.
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Let us choose one temperature to take an example for
comparison. At the temperature T ¼ 1:5Tc ’ 300 MeV,
Fig. 5 reads around 2.7, while the two-flavor value is
around 1.5, which leads to the ratio 1.8. This seems to be
a reasonable number.

It is interesting to define the following quantity [46]:

�ð4Þ
q ¼ T

@4ð��PNJL=TÞ
@�4

; (24)

and take the ratio to the quark number susceptibility. This

ratio, �ð4Þ
q =�q, counts the number squared of quark content

inside thermally excited particles carrying baryon number.
Therefore, if quarks are liberated in the high temperature

region, �ð4Þ
q =�q ’ 12 should follow, whereas the low tem-

perature side should results in �ð4Þ
q =�q ’ 32 because of

confinement. This is actually a general feature in the
quasiparticle picture and attributed to the Boltzmann factor
in the free fermionic partition function.

Figure 6 shows this susceptibility ratio obtained in the
2þ 1 flavor PNJL model. We see that the behavior per-
fectly fits what is expected. A short conclusion that we

should learn from this analysis is that �ð4Þ
q =�q signifies the

quark number but does not tell us whether the thermally
excited particle is a confined nucleon or a set of three
quarks. The latter is the case in the PNJL model.

E. More on thermodynamics

Before proceeding into the finite-density inquiry, we
shall exemplify the success of the PNJL model by two
more thermodynamic quantities.

The trace of the energy momentum tensor is vanishing at
the classical level when theory has no mass scale. We know
that QCD in the chiral limit is scale invariant, which means
that the trace of the energy momentum tensor in massless
QCD is zero unless quantum corrections are taken into
account. The QCD scale�QCD arises from the dimensional

transmutation due to the trace anomaly at the quantum
level.
In thermodynamics the traceless of the energy momen-

tum tensor without mass gap means �� 3p ¼ 0, where p
is the pressure given by ��PNJL and � is the internal
energy given by T2@ðp=TÞ=@T. It is straightforward to
evaluate �� 3p or the ‘‘interaction measure’’ from
�PNJL in our model study.
We show the model results in Fig. 7. The gross structure

with a peak around Tc is in nice agreement with the recent
lattice data (see Fig. 4 in Ref. [19]). The peak height in the
interaction measure is not as large as that in Ref. [19],
which is partly because of the finite number of N� on the
lattice and partly because of the smaller fermion contribu-
tion, ���

F , in our calculation. We present the results for

���
F ¼ 2mudðh �uui � h �uui0Þ þmsðh�ssi � h �ssi0Þ also in

Fig. 7. We see that our results are significantly smaller
than the results shown in Fig. 5 in Ref. [19]. This is because
the quark mass is different; the � mass in Ref. [19] is still
around 220MeV, while we choosemud to yield the realistic
� mass.
We should be aware that the interaction measure, ð��

3pÞ=T4, has only little to do with the trace anomaly in the
PNJL model study. We have model inputs with mass
dimension, that is, the cutoff �. (There are four more
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dimensional parameters, gS, gD, a, and b, but they can be
all dimensionless in units of �.)

As a matter of fact, the peak structure is rather generic
regardless of any specific model. One can understand this
from the thermodynamic relation,

�� 3p

T4
¼ T

@

@T

�
p

T
� 1

T3

�
: (25)

The right-hand side is the temperature derivative of p=T4,
where p=T4 naively counts the effective degrees of free-
dom � as plotted in Figs. 1 and 3. Therefore, the so-called
the trace anomaly, �� 3p, signifies how quickly � grows
up as T increases. The pseudocritical temperature is, by
definition, where � starts getting larger, and eventually � is
saturated to the total number of particle species at high
temperature. As a result, the peak shape is inevitable
associated with crossover behavior. It is not quite surpris-
ing in this sense that the PNJL model can mimic the trace
anomaly in hot QCD around Tc.

In other words, it is the relation between �� 3p and the
gluon condensate that is a nontrivial consequence from the
trace anomaly. The interaction measure, ð�� 3pÞ=T4, is
governed not by the anomaly but by the thermodynamics
which determines the gluon condensate in turn.

Now that we have come by the pressure and the internal
energy, we can infer the sound velocity. Although the
velocity of sound is given by c2s ¼ dp=d�, the ratio p=�
can approximate it in the high temperature limit. To com-
pare our results to the available lattice data, we plot p=� as

a function of �1=4 in Fig. 8, which agrees quite well with
Fig. 9 in Ref. [19]. We remark that the sound velocity has

been investigated by means of the two-flavor PNJL model
also in Ref. [47] where both of c2s and p=� are presented.

V. FINITE-DENSITY RESULTS

By adding one more axis in the direction of quark
chemical potential, we can investigate the order parameter
behavior and the phase structure in wider perspective. In
this work we limit ourselves to the chiral and deconfine-
ment phase transitions and do not take account of the
diquark condensation that plays an essential role in the
color superconducting phase [40,48–50].

A. Chiral phase transition

Figure 9 is a 3D plot for h �uui as a function of T and �.
We see that there is a discontinuity in the low temperature
and high density region, while the high temperature and
low density region has continuous crossover. Therefore the
phase diagram has an end point of the first-order phase
boundary, that is called the QCD critical point. We remark
that in the present parameter set the constituent quark
masses turn out to be

Mud ¼ 336 MeV; Ms ¼ 528 MeV; (26)

and the first-order phase transition is located at � ¼
345 MeV when T ¼ 0, which is slightly above the light-
quark mass. This is a general feature to be explained
intuitively. First, let us focus on the region at �<
345 MeV where the system does not have any discontinu-
ous transition along the T ¼ 0 density axis. We can still
locate the point where a nonvanishing baryon density
appears at � ¼ Mud, that is a sort of continuous phase
transition from the empty vacuum to degenerate quark
matter. Next, once quark matter is concerned at � ’
345 MeV, the pressure of cold quark matter at a fixed
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value of � becomes smaller for larger quark mass; for
instance, p / �4 for massless quarks and p / ð�2 �
M2Þ2 for massive quarks. Thus, the kinetic energy favors
lighter quark matter, that is, the chiral symmetric phase.
The condensation energy gives a negative contribution to
the pressure, which means that the chiral symmetric phase
where the condensation energy is smaller is energetically
favorable again. In this way, one can expect that, as soon as
the quark number density becomes substantial with �
going above Mud, the system tends to undergo a phase
transition to the chiral symmetric phase.

B. Polyakov loop

It is interesting to see what happens in the Polyakov loop
behavior on the �-T plane. One may well anticipate that
the coincidence of chiral restoration and deconfinement
should persist in the finite-density region. This expectation
is partially true but too naive. We shall discuss the appro-
priate physical interpretation in what follows below.

We plot the Polyakov loop ‘ in the�-T plane in Fig. 10.
It should be mentioned that we do not make another plot

for �‘, for �‘ has the qualitatively same functional shape as ‘
with small quantitative difference.

From the comparison between the chiral condensate
displayed in Fig. 9 and the Polyakov loop in Fig. 10, we
can readily perceive that two crossovers are linked in the
entire region on the �-T plane. For instance, we have
already confirmed that two crossovers are simultaneous
indeed at zero density in Fig. 2, and we can find a first-
order phase transition along the density axis at low tem-
perature whose location is exactly the same in Figs. 9 and
10. The locking of chiral restoration and deconfinement
remains at finite density in this sense.

It would be misleading, however, to dive into a conclu-
sion that two phenomena of chiral restoration and decon-
finement simultaneously take place in the high-density

region. In view of the Polyakov loop behavior at low
temperatures, in fact, the discontinuous jump is tiny and
the expectation value of the Polyakov loop stays vanish-
ingly small even at �> 345 MeV where chiral symmetry
is restored. Therefore, the discontinuous jump in the
Polyakov loop signifies a first-order phase transition from
nearly confined matter (‘ ’ 0) with chiral symmetry break-
ing (h �uui � 0) to nearly confined matter (‘ ’ 0) with chiral
symmetry restoration (h �uui ’ 0).
It is an interesting question how the Polyakov loop

behaves so differently from the chiral condensates in the
region of low temperature and high density. This is because
center symmetry is not broken at zero temperature even in
the presence of dynamical quarks, and therefore, the ex-
pectation value of the Polyakov loop must stay vanishing.
The reason for preserved center symmetry is to be under-
stood intuitively as follows; when the quark density is
specified by a certain chemical potential, each energy level
is occupied by a quark up to the Fermi surface. Because
quarks have color degeneracy, red, green, and blue quarks
always sit on the same energy level, which makes a color
singlet. One can easily see this really happening in the
model from the Dirac determinant given in Eqs. (11) and
(12). That is, when �> " we only have the second term
out of the whole particle contribution,

1þ e3j"��j=T þ 3‘ej"��j=T þ 3 �‘e2j"��j=T; (27)

that is exponentially dominant for large j"��j=T. This
second term, e3j"��j=T , actually represents the three-quark
occupation which does not couple ‘ and thus not break
center symmetry. The third and fourth terms are one-quark
and two-quark (which is equivalent to one antiquark in
color) contributions with nontrivial (nonsinglet) color.
Consequently, the Polyakov loop is insensitive to whether
the quark degrees of freedom are present in the system or
not. Strictly speaking, the PNJL model cannot deal with
confinement, namely, nucleon wave functions as a bound
state out of three quarks, but still, the low temperature
region always has a signature of confinement (‘ ’ 0)
with respect to quarks. We would stress that this quarky
confined phase is not a model artifact but a physical one.
We propose that this phase should be identified as the
quarkyonic phase discussed in Ref. [51].
One important suggestion emphasized in Ref. [51] is

that the baryon or quark number density serves as an order
parameter to tell the quarkyonic phase from the hadronic
phase. We have then calculated the quark number density
in the �-T plane to make a plot of Fig. 11. The quark
number density is readily available from

nq ¼ �@�PNJL

@�
: (28)

In order to visualize in a sensible manner on the 3D plot,
we normalize nq by the free massless quark density given

by NcNfð�3=3�2 þ T2�=3Þ, that is, in Fig. 11 we plot
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Nq ¼
nq

3�3=�2 þ 3T2�
; (29)

which should take a value from zero to unity.
We can clearly confirm that the quark degrees of free-

dom are relevant [i.e. Nq �Oð1Þ] even in the region at T ’
0 and �>Mud where ‘ ’ 0. This gives another evidence
for our identification to the quarkyonic phase.

It is a nontrivial finding from the present PNJL model
study that Nq surely behaves as an order parameter and

locates the crossover point that coincides the chiral phase
transition point. This coincidence is apparent at a glance of
Figs. 9 and 11.

C. Phase diagram

We now explore the phase diagram in the �-T plane by
the cross section of Figs. 9–11 at a certain height in the
vertical axis. As we discussed, in the high-density region,
in particular, the susceptibility peak position does not make
much sense, but the magnitude of the order parameter is a
more suitable quantity to probe the physical state of matter.
For example, the Polyakov loop susceptibility diverges at
the critical end point as well as the chiral susceptibility, but
it does not result from the deconfinement transition but
from the mixing to the chiral dynamics. Therefore we
define the pseudocritical temperature for u-quark chiral
restoration by the condition

h �uui
h �uui0

								T¼Tuð�Þ
¼ 1

2
: (30)

In the same way we can define the pseudocritical tempera-
ture for s-quark chiral restoration by

h �ssi
h�ssi0

								T¼Tsð�Þ
¼ 1

2
: (31)

Also, we can define the pseudocritical temperature for
deconfinement by

‘jT¼T‘ð�Þ ¼ 1
2: (32)

Then, we can draw three distinct curves by T ¼ Tuð�Þ,
Tsð�Þ, T‘ð�Þ on the �-T phase diagram. The PNJL model
prediction is shown in Fig. 12. The solid curve represents
T ¼ Tuð�Þ which is a crossover in the low density region
and turns a first-order phase transition in the high-density
region accompanied by a critical end point. We note that
Nq is nearly zero inside this solid curve. Because of

explicit symmetry breaking by ms � 0, the T ¼ Tsð�Þ
boundary is located at higher T and � shown by the dotted
curve in Fig. 12. Of course, strictly speaking, chiral sym-
metry or even SUVð3Þ symmetry is not restored at any
temperature or density, but h �ssi can decrease up to a half
of h �ssi0 smoothly. Actually this boundary hits T ¼ 0 and
� ¼ 512 MeV which is not far from the constituent
s-quark mass. In any case, the boundary by the dotted
curve does not have a strong meaning because the change
in h �ssi as a function of T is only gradual. Nevertheless, the
region bounded by Tuð�Þ< T < Tsð�Þ is interesting. This
is because the SUVð3Þ symmetry breaking becomes en-
hanced further in this region by chiral restoration for
u-quarks and d-quarks but not for s-quarks [52].
It is surprising that the deconfinement crossover defined

by the condition (32) goes away from the chiral phase
transition at finite density as indicated by the dashed curve
which represents the T ¼ T‘ð�Þ curve. As we have dis-
cussed, the Polyakov loop expectation value is always
vanishing at zero temperature, and thus, this T ¼ T‘ð�Þ
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curve never hits the horizontal axis at T ¼ 0. The region
surrounded by Tuð�Þ< T < T‘ð�Þ is what should be
called the quarkyonic phase embodied in the PNJL model.

As a final remark in this section we refer to the similar
results presented in Figs. 16 and 17 of Ref. [45] and the
similar physical picture to the quarkyonic phase discussed
in a different context in Ref. [53].

VI. QCD CRITICAL END POINT

We have already mentioned on the QCD critical end
point in the explanation of Fig. 12. The rest of this paper
will be devoted to physics related to the QCD critical point.
First of all, it is instructive to elucidate how the location of
the critical point moves by the effect of the Polyakov loop.
In the three-flavor NJL model with the Hatsuda-Kunihiro
parameters, the location of the critical point is found to be

ðTE;�EÞ ¼ ð48 MeV; 324 MeVÞ; (33)

in the three-flavor NJL model. The location is almost the
same as in the two-flavor case. (See Ref. [54] for a sum-
mary table and also Ref. [55].) The model dependence is
nicely compiled also on Fig. 4 of Ref. [56]. In the three-
flavor PNJL model the location goes up along the tempera-
ture to

ðTE;�EÞ ¼ ð102 MeV; 313 MeVÞ; (34)

in the present parameter set. This value is close to the two-
flavor PNJL location first reported in my paper [11]. The
reason why the critical point moves toward higher tem-
perature is that the artificial quark excitation at finite
temperature and density is suppressed by the Polyakov
loop average as exhibited in Fig. 3 and also discussed
around Eq. (27).

The question is to what extent we can trust the model
prediction for the location of the QCD critical point or even
its existence. In what follows we will discuss the depen-
dence on ambiguous model parameters. So far, it is quite
difficult to make any robust statement about the QCD
critical point from model studies, that is our short
conclusion.

A. Divergent susceptibility

Before addressing the theoretical uncertainty on the
QCD critical end point, we will begin with standard argu-
ments, that is, physical implication from the assumption
that the QCD phase diagram holds a critical end point.

The importance of the QCD critical point lies in the fact
that it is an exact second-order phase transition point.
Therefore the susceptibility diverges right at the end point.
Originally divergent growth in the chiral susceptibility �u
has been paid attention [57] which might lead to furious
fluctuations in the � channel and thus � fluctuations
through the �$ 2� coupling. We have made a 3D plot
in Fig. 13 to show the u-quark chiral susceptibility multi-
plied by ðT=�Þ2, i.e. � 1

4�
�2@2�PNJL=@m

2
ud in the �-T

plane. We notice that the susceptibility has a singularity at
the critical point.
A physical quantity of more experimental interest is the

quark number susceptibility. We plot �q multiplied by

ðT=�Þ2 in Fig. 14, that is, ���2@2�PNJL=@�
2 in the

�-T plane. Figure 14 shows a singularity at the QCD
critical point which should translate into event-by-event
fluctuations of baryon multiplicity. The global shape is just
similar to that of the chiral susceptibility. It is, however,
different that the quark number susceptibility gets non-
vanishing in the high temperature or density region whose
behavior is closely linked to the quark number density in
Fig. 11.

B. Columbia diagram

What we will reveal particularly in this work is the
robustness of the existence of the critical end point, which
is in part motivated by the lattice suggestion [58]. We can
disclose another aspect of the phase diagram in the plane of
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FIG. 13 (color online). 3D plot for the light-quark chiral
susceptibility �ud multiplied by ðT=�Þ2 in the �-T plane.
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FIG. 14 (color online). 3D plot for the quark number suscep-
tibility �q multiplied by ðT=�Þ2 in the �-T plane.
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the light and heavy quark masses [59]. Such a phase
diagram is sometimes referred to as the ‘‘Columbia
diagram.’’

The PNJLmodel results are summarized in Fig. 15. Each
curve represents the boundary between the first-order
phase transition to the crossover. For mud and ms below
the curve, the chiral phase transition at finite T is of first
order, and otherwise, it is crossover. We draw a line
ms=mud ¼ 24:67 which crosses the physical point, and
add two lines at mud ¼ 0 and ms ¼ 0, respectively, for
the eye guide.

This plot poses us a problem in the model study based on
the NJL-type description. It is that the first-order phase
transition region at � ¼ 0 is substantially smaller than
what has been observed in the lattice QCD simulations.
In the ms ¼ 0 case, for instance, the critical value of the
light-quark mass ismu ¼ 2:1 MeV in this work, and on the
mud ¼ 0 axis, the critical strange quark mass is ms ¼
8:8 MeV, which are smaller by 1 order of magnitude at
least as compared to the lattice empirical value [58]. This
fact implies that the first-order phase transition with mass-
less three flavors is presumably weaker in the NJL model
than realistic. Then, the critical end point at physical quark
mass cannot avoid being far away from zero density. That
is, the density has to increase significantly until the bound-
ary eventually hits the physical mass point. This is why the
NJL-type model has a common tendency to lead to the
critical end point at relatively high density above ��
300 MeV.

Because the PNJL model predicts the QCD critical
point, the first-order transition region expands with in-
creasing � as shown in Fig. 15. The boundary surface is
thus standard but not quite consistent with the recent lattice
observation [58]. This is problematic to the model study if
the lattice results are correct. The model study has, how-
ever, unknown factors which could make a drastic change

in the order. Here, we will point out two major effects; one
is the UAð1Þ anomaly reduction in a medium and the other
is the induced vector-channel interaction.

1. Anomaly strength

We have already noted that the first-order transition
region on the Columbia diagram obtained in the PNJL
model is significantly smaller than the lattice results. One
likely explanation for this is that the ’t Hooft (six-quark)
coupling constant, gD, is weaker in the NJL model estimate
than realistic because of cutoff artifact. It should be men-
tioned that the value of gD is fixed to reproduce the �0
mass, which is as large as 957.5 MeVand is greater than the
cutoff � ¼ 631:4 MeV. It is not unlikely that the strength
of gD has been underestimated to reproduce such a large
mass in this cutoff model.
Figure 16 shows the first-order transition boundary on

the mud-ms plane. Here gD0 denotes the standard value in
the Hatsuda-Kunihiro parameter set. Because gD0 has been
fixed in the vacuum, gD in a hot and dense medium might
take a different (presumably smaller) value. As we antici-
pated, the first-order region becomes wider with larger gD
and narrower with smaller gD. It should be noted that the
plot is made in the linear scale in Fig. 16, while the scale is
logarithmic in Fig. 15.
One can then expect that the QCD critical point should

move accordingly as gD changes. We show the location of
the QCD critical point for various values of gD in Fig. 17.
We can learn two lessons from this figure: One is that the
QCD critical point can be located at higher temperature
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FIG. 15 (color online). Boundaries of the first-order phase
transition region as a function of the quark masses at � ¼ 0,
100, 200, 250, 300, and 350 MeV from the bottom to the top.
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and lower density if gD is underestimated in the NJL model
study due to too heavy �0 out of model reliability. The
other is in a sense opposite to the first one. The QCD
critical point might be absent from the QCD phase diagram
if gD is suppressed by the effective UAð1Þ restoration at
high density. Actually, only 35% reduction is enough to
make the QCD critical point disappear from the phase

diagram. If the suppression is exponential like gDð�Þ ¼
e��2=�2

0gD0 [13], 35% reduction is within a reasonable
reach.

Then, one could change the scenario in Fig. 15 by
introducing a �-dependent value for gD. For instance, if

one assumes an exponential ansatz, gDð�Þ ¼ e��2=�2
0gD0,

one could find some �0 that produces a boundary surface
with bending behavior that the first-order transition region
shrinks with increasing �.

2. Vector-channel interaction

It is not only theUAð1Þ anomaly term but also the vector-
channel interaction term in Eq. (4) that can affect the
location of the QCD critical point. We remark that LV

does not break chiral symmetry at all, and besides, the
zeroth component corresponds to the density operator
ð y Þ2. Therefore, it is conceivable to expect that the
finite-density environment brings about nonzero gV even
though we choose gV to be zero in the vacuum.

There is no constraint at all for the choice of induced gV
at finite density. We have no knowledge on even its sign.
Since we regard gV in the present study as induced in dense
quark matter, the choice of gV has nothing to do with the
vector meson property in the vacuum. (It might be related
to an in-medium modification.) It is presumably appropri-

ate to measure the strength of gV in units of gS, and we just
try various values of gV to grasp a feeling of its effect.
There are two modifications necessary to accommodate

the vector-channel interaction. The condensation energy
should be �cond ! �cond � gVn

2
q where we already de-

fined nq in Eq. (28). At the same time, the quark chemical

potential should be replace by the renormalized one,

�r ¼ �� 2gVnq; (35)

like the quark mass replaced by the constituent one. Then,
we have to solve the number constraint equation, nq ¼
�@�PNJL=@�r, together with the four gap equations self-
consistently. In view of the condensation energy part,
positive gV seems to decrease the free energy for nonzero
nq, but the chemical potential renormalization overcomes

it and the free energy becomes greater. Because the chiral
symmetric phase has smaller Mud and thus larger nq, the

vector-channel interaction with gV > 0 delays chiral
restoration.
The results are summarized in Fig. 18 in the sameway as

in Fig. 17. It is remarkable that the qualitative feature is
quite similar to Fig. 17. Thus, we can draw the same
conclusions as in the case of the UAð1Þ anomaly term.
The QCD critical point could be absent again in the case

when gV is greater than around 0:108gS. The critical value
turns out to be much smaller than the known value [32].
This discrepancy stems from the difference between the
two-flavor and three-flavor calculations; we calculated the
critical gV in the standard NJLmodel with three flavors and
found it to be almost the same �0:11gS. That also means
that the Polyakov loop plays a minor role. In the three-
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FIG. 17. Dependence of the critical point location on the
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flavor treatment in comparison to the two-flavor case nq
becomes larger generally and gS is different as well.

Nevertheless, this value of critical gV seems to be sur-
prisingly small. If we take care of the effect of the effective
UAð1Þ restoration, as we illustrate in Fig. 17, the critical gV
could be even smaller.

VII. CONCLUSIONS

We have formulated the 2þ 1 flavor PNJL model with a
simple ansatz for the Polyakov loop effective potential. We
first confirmed that our model setup works pretty well to
account for recent results in the zero-density lattice QCD
simulation. We then explored our perspective toward the
finite-density QCD phase transition.

The phase diagram in our model study turns out to have
three (crossover) boundaries corresponding to ud-quark
chiral restoration, s-quark chiral restoration, and decon-
finement characterized by the Polyakov loop expectation
value. We have also computed the quark number density
and found that its behavior is governed by the u-quark
chiral condensate. Our phase diagram is consistent with the
large Nc argument and, in particular, we identified the
phase region with vanishing Polyakov loop and nonzero
quark number density as the quarkyonic phase.

It would be intriguing to include the diquark conden-
sates to describe a family of the color superconducting
phases. The large Nc argument cannot access physics of
color superconductivity, and thus, nothing so far could
predict the fate of the quarkyonic phase region under the
effect of color superconductivity. One possibility is that the
quark-hadron continuity realizes at low temperature and
high density, and there appears crossover from the quar-
kyonic phase to the color superconducting phase, which is
to be interpreted as crossover from confined to deconfined
quark matter. We remark that this continuity scenario
requires three flavors and there have already been other
scenarios (i.e. phase transitions with the coexisting re-
gions) within the PNJL model framework [40,49].

Also, we have closely investigated parameter depen-
dence of the location of the QCD critical point. We dem-

onstrated that the QCD critical point moves quite easily in
accord to the choice of the UAð1Þ anomaly strength and the
vector-channel interaction. Both are not under theoretical
control at finite density. In fact, we have found that the
critical values of these parameters are within a conceivable
range in dense quark matter. That means, not only the
location but also the existence of the QCD critical point
is not robust at all in the model study.
Although we limited our discussions only to numerical

results in this paper, it could be viable to examine the
density dependence of the Columbia diagram in an ana-
lytical way [60]. Analytical understanding should be useful
for the lattice QCD study from the zero density approach-
ing toward the critical point.
To establish the existence or nonexistence of the QCD

critical point, anyway, we must wait for future develop-
ment of the finite-density lattice simulation, or experimen-
tal confirmation. (See also Refs. [61,62] for proposed
experimental signatures.)
Finally, let us refer to some of the recent attempts in the

PNJL model. The neutrality condition has been considered
in Ref. [63]. It is known that the neutrality plays an
important role especially in bulk superconducting quark
matter. Because the (untraced) Polyakov loop is a color
matrix, there arises nontrivial coupling between the
Polyakov loop and the color chemical potential, which
may bring a subtle difficulty involving the gauge choice.
This is a future problem. In Refs. [64,65] the imaginary
chemical potential has been considered. This is also an
interesting future direction toward the nature of high-
density quark matter.
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