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I investigate the determination of the � pole from �� scattering data below the K �K threshold, including

the new precise results obtained from Ke4 decay by NA48=2 Collaboration. I discuss also the experimental

status of the threshold parameters a00 and b
0
0 and the phase shift �

0
0. In order to reduce the theoretical bias, I

use a large class of analytic parametrizations of the isoscalar S wave, based on expansions in powers of

conformal variables. The � pole obtained with this method is consistent with the prediction based on

ChPT and Roy equations. However, the theoretical uncertainties are now larger, reflecting the sensitivity

of the pole position to the specific parametrizations valid in the physical region. I conclude that Roy

equations offer the most precise method for the determination of the � pole from �� elastic scattering.

DOI: 10.1103/PhysRevD.77.114019 PACS numbers: 13.75.Lb, 14.40.Cs

I. INTRODUCTION

The determination of the pole associated with the �
resonance (or f0ð600Þ) is known to be a difficult problem.
The pole is situated deep in the complex plane, its influence
in the physical region is masked to a certain extent by the
nearby Adler zero, and, until recently, the experimental
data on�� scattering at low energies were quite poor. This
explains why the values reported by PDG [1] for the mass
and width of � cover a very large interval.

During the last years, chiral perturbation theory (ChPT)
and Roy equations led to an accurate description of ��
scattering at low energies [2,3]. In particular, the scattering
length a00 and the effective range parameter b00 of the

isoscalar S wave given in [3]

a00 ¼ 0:220� 0:005; b00 ¼ 0:276� 0:006; (1)

have remarkably small uncertainties.
The formalism based on Roy equations was shown

recently [4] to control also the analytic extrapolation of
the �� amplitude in the complex plane, leading to precise
values for the mass and width of �:

M� ¼ 441þ16
�8 MeV; ��=2 ¼ 272þ9

�12:5 MeV: (2)

In the standard method of detecting resonances, the experi-
mental data on the partial wave with the quantum numbers
of the resonance play an important role. Unlike this, the
prediction (2) was obtained without using experimental
data on the isoscalar S wave at low energies: the amplitude
was calculated below 800 MeV, and also in the complex
plane, from Roy equations, using experimental input at
higher energies and theoretical results on the pion-pion
scattering [3]. Roy equations provide a very suitable
framework in this case, compensating the lack of experi-
mental data on�� scattering at low energies by theoretical
information.

Recently [5], NA48=2 Collaboration measured the
phase shift difference �0

0 � �1
1 at low energies from Ke4

decay, with a precision much greater than that of the older

experiments [6,7]. This revived the interest in the determi-
nation of the scattering length a00 and the pole associated

with� by direct analytic extrapolation of the�� scattering
data. In [8] the authors propose a representation of the
isoscalar Swave t00ðsÞ based on an expansion in powers of a
conformal mapping variable. To account for the theoretical
uncertainties related to analytic continuation, two parame-
trizations were considered, the difference between them
being interpreted as a systematic theoretical uncertainty of
the method. In the framework discussed in [8], the mass
and width of � are obtained with an accuracy comparable
to that quoted in (2).
In the present work I focus on the problem of systematic

uncertainties within this approach. I note that the class of
functions used in [8], although based on a convergent
expansion, is still quite narrow when the expansion is
restricted to a few terms. By enlarging the class of admis-
sible analytic functions used for fitting the data, the theo-
retical bias is reduced and a more realistic estimate of the
uncertainties in the position of the � pole is obtained. In
the present work I apply this idea, by using a large sample
of analytic parametrizations of the �� amplitude, suitable
at low energies. A short description of the method and
some results were given already in [9].
In the next section I discuss several parametrizations of

the �� isoscalar S wave, which satisfy analyticity and
elastic unitarity. In the next two sections I apply these
parametrizations for fitting the data on the phase shift �0

0:

in Sec. III I consider only the data from Ke4 decay, and in
Sec. IV I include data up to the K �K threshold. From the
admissible parametrizations of the isoscalar S wave I find
the threshold parameters a00 and b

0
0 and the location of the

� pole. My conclusions are summarized in Sec. V.

II. THE ISOSCALAR S WAVE AT LOW ENERGY

I consider the �� isoscalar S wave t00ðsÞ, which is an

analytic function in the s-plane cut along s � 4M2
� and

s � 0. I assume that t00ðsÞ is the pure strong amplitude,
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where all the isospin breaking corrections are neglected.
As in [2–4], I take for M� and MK the masses of the
charged pion and charged kaon, respectively.

Neglecting the inelasticity due to the 4� channel below
1 GeV, unitarity implies that the relation

Im

�
1

t00ðsþ i�Þ
�
¼ �i�ðsÞ; �ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�=s
q

;

(3)

is valid up to the threshold for K �K production, s ¼ 4M2
K.

From (3) it follows that the function  ðsÞ, defined by

t00ðsÞ ¼
1

 ðsÞ � i�ðsÞ ; (4)

is real in the elastic region:

Im ðsþ i�Þ ¼ 0; 4M2
� � s < 4M2

K; (5)

and is related to the phase shift �0
0ðsÞ by

 ðsÞ ¼ �ðsÞ cot�0
0ðsÞ: (6)

Since the amplitudes are analytic functions of real type,
Eq. (5) means that  ðsÞ has no discontinuity across the
elastic unitarity cut. The definition (4) shows also that  ðsÞ
has poles at the points where t00ðsÞ has zeros. The amplitude

is expected to vanish below threshold at a point sA, related
to the so-called Adler zeros. ChPT to lowest order predicts
sA ¼ M2

�=2. Assuming that t00ðsÞ does not have other zeros
in the complex plane, the product ðs� sAÞ ðsÞ is analytic
in the s-plane cut for s � 0 and s � 4M2

K. The effective
range expansion amounts to expanding the function  ðsÞ in
powers of q2 ¼ ðs=4�M2

�Þ around the threshold q2 ¼ 0,
where it is regular. However, the branch point s ¼ 0 limits
the convergence of this expansion to the circle jq2j<M2

�.

A. Method of conformal mappings

The domain of convergence of a power series can be
enlarged by expanding the function in powers of a variable
which conformally maps a part of the holomorphy domain
onto the interior of a disk. The use of conformal mappings
in particle physics was first discussed in [10,11]; in the
context of the effective range expansion for partial waves a
conformal mapping was used in [12]; more recently, the
method was applied for the description of exclusive semi-
leptonic B decays [13] and in perturbative QCD [14]. As
shown in [10], the asymptotic rate of convergence of the
series in the physical region is optimal if the amplitude is
expanded in powers of the variable which maps the entire
holomorphy domain onto a disk. Since the disk is the
natural convergence domain of the power series, the new
expansion will converge in the whole analyticity domain,
up to its boundary.

Consider the variable

wðs; �Þ ¼
ffiffiffi
s

p � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

K � s
q

ffiffiffi
s

p þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

K � s
q ; (7)

where �> 0 is arbitrary. The function wðs; �Þ transforms
the s-plane cut along s � 0 and s � 4M2

K onto the unit disk
jwj< 1 in the complex plane w ¼ wðs; �Þ, such that
wð4M2

K; �Þ ¼ 1 and wð0; �Þ ¼ �1. In [8] the authors
adopt the expansion

 ðsÞ ¼ M2
�

s� sA

�
2sA
M�

ffiffiffi
s

p þ B0 þ B1wðs; �Þ

þ B2wðs; �Þ2 þ . . .

�
(8)

with the particular choice � ¼ 1. In Eq. (8), the first term
in parentheses, added to the expansion in powers of
wðs; �Þ, compensates the singularity of �ðsÞ at s ¼ 0 in
the denominator of (4), removing an unphysical singularity
of t00ðsÞ on the real axis which would appear otherwise.

A slightly different form was also used in [8]:

 ðsÞ ¼ M2
�

s� sA

�2
0 � s

�2
0

�
2sA
M�

ffiffiffi
s

p þ B0 þ B1wðs; 1Þ

þ B2wðs; 1Þ2 þ . . .

�
; (9)

where the factor (�2
0 � s) displays explicitly the energy

where the phase shift �0
0 passes through �=2, according to

(6). This factor is useful for fitting narrow resonances but,
as I shall show, it is not suitable for broad resonances like
�.
The power expansions in (8) and (9) converge in the disk

jwj< 1 and, for a large number of terms, these parametri-
zations are equivalent. However, when the series are trun-
cated at a finite number of terms, (8) and (9) lead to
different results. This difference is interpreted in [8] as a
systematic uncertainty of theoretical nature, which should
be added to the statistical errors. In the present work I
develop this idea, presenting other admissible analytic
parametrizations of the amplitude.
A first generalization is to expand  ðsÞ in powers ofw ¼

wðs; �Þ, for an arbitrary �, as in (8). By varying �, one
changes the point mapped to the origin of the w plane and
the position of the intervals where experimental data are
available. Some examples are shown in Fig. 1. As we shall
see, the flexibility offered by the parameter � allows one to
describe the peculiar structure of the isoscalar S wave near
the inelastic K �K threshold.

B. Alternative procedure for ghost removal

The singularity at s ¼ 0 of the phase space factor �ðsÞ in
(4) can be alternatively eliminated if the term i�ðsÞ is
replaced by a function which is analytic in the s-plane

IRINEL CAPRINI PHYSICAL REVIEW D 77, 114019 (2008)

114019-2



cut along s � 4M2
� and has the imaginary part equal to

�ðsÞ on the upper edge of the cut. In the context of effective
range approximation, Chew and Mandelstam [15] defined
such a function, vanishing at threshold, by a once sub-
tracted dispersion relation. For convenience, I consider the
loop function of ChPT, �Jðs;M2

�Þ, written as

�Jðs;M2
�Þ ¼ 2

�
þ �ðsÞ

�
ln

�
�ðsÞ � 1

1þ �ðsÞ
�
; (10)

which vanishes at the origin, Jð0;M2
�Þ ¼ 0, and satisfies

the relation

Im �Jðsþ i�;M2
�Þ ¼ �ðsÞ; s � 4M2

�: (11)

If I define the function  1ðsÞ by

t00ðsÞ ¼
1

 1ðsÞ � �Jðs;M2
�Þ
; (12)

the unitarity relation (3) and Eq. (11) show that  1ðsÞ is real
for 4M2

� � s < 4M2
K, where it is related to the phase shift

�0
0 by

 1ðsÞ ¼ �ðsÞ cot�0
0ðsÞ þ Re �Jðs;M2

�Þ: (13)

The reality property implies also that  1ðsÞ is analytic in
the s-plane cut for s � 0 and s � 4M2

K, except for the pole
at s ¼ sA, and can be expanded as

 1ðsÞ ¼ M2
�

s� sA
½B0 þ B1wðs; �Þ þ B2wðs; �Þ2 þ . . .�;

(14)

in powers of the variable (7). I remark that the compensat-
ing term 2sA=M

2
�

ffiffiffi
s

p
appearing in (8) is no longer necessary

in (14), since the function �Jðs;M2
�Þ is by definition regular

at s ¼ 0.

C. S-matrix factorization

Other parametrizations of t00ðsÞ are obtained by includ-

ing some information about its behavior near the K �K
threshold. I do this by expressing the S-matrix element

S00ðsÞ ¼ 1þ 2i�ðsÞt00ðsÞ (15)

as a product

S00ðsÞ ¼ SrestðsÞSf0ðsÞ; (16)

where each factor satisfies elastic unitarity (jSrestðsÞj ¼
jSf0ðsÞj ¼ 1) below the K �K threshold. The multiplication

of the two S matrices amounts to the following addition
rule for the corresponding amplitudes:

t00ðsÞ ¼ trestðsÞ þ tf0ðsÞ þ 2i�ðsÞtrestðsÞtf0ðsÞ; (17)

where

trestðsÞ ¼ SrestðsÞ � 1

2i�ðsÞ ; tf0ðsÞ ¼
Sf0ðsÞ � 1

2i�ðsÞ : (18)

Crossing symmetry implemented by Roy equations [3]
implies that the expansion of the partial wave amplitude
around s ¼ 0 starts with

t00ðsÞ ¼ t0 þ t1sþ t2s
3=2 þOðs2Þ; (19)

where t0 is nonzero. In order to cancel the singularity of the
factor �ðsÞ at s ¼ 0 in (17), either trestðsÞ or tf0ðsÞ must

vanish at s ¼ 0, but not both [since, cf. (19), the full
amplitude does not have a zero there]. I choose to set
tf0ð0Þ ¼ 0, taking for this amplitude the expression

tf0ðsÞ ¼
k1s

�� s� k1s �Jðs;M2
�Þ � ðk2 þ k3sÞ �Jðs;M2

KÞ
;

(20)

where �Jðs;M2
�Þ is defined in (10) and �Jðs;M2

KÞ is obtained
replacing M� in �ðsÞ by MK. I note that by taking

� ¼ 1:01; k1 ¼ 0:08; k2 ¼ �1:09; k3 ¼ 1:16;

(21)

the modulus of the corresponding Smatrix, Sf0ðsÞ, is close,
in the range 2MK <

ffiffiffi
s

p
< 1:16 GeV, to the elasticity 	0

0ðsÞ
measured in [16], while for

� ¼ 1:15; k1 ¼ 0:11; k2 ¼ 0:39; k3 ¼ 0:03;

(22)

FIG. 1. The disk jwj< 1 in the complex plane w ¼ wðs; �Þ defined in (7), for � ¼ 0:36 (left), � ¼ 1 (center), and � ¼ 4 (right).
The thick segments indicate the regions where experimental data are available from Ke4 decay [5–7] and the process �N ! ��N (cf.
the compilation of data made in [20]), respectively; the circle shows the � pole on the second Riemann sheet from [4].
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� ¼ 1:41; k1 ¼ 0:24; k2 ¼ �0:73; k3 ¼ 1:72;

(23)

jSf0ðsÞj is close, in the same range, to the upper/lower

edges of the band of the elasticity 	0
0 extracted from the

decay J= ! 
�� [17].
For my purpose, the specific form adopted for tf0ðsÞ is

not a limitation, since the total amplitude contains the
additional term trestðsÞ. Elastic unitarity, jSrestðsÞj ¼ 1, im-
plies that trestðsÞ can be written, for instance, as

trestðsÞ ¼ 1

 restðsÞ � i�ðsÞ ; (24)

with  rest analytic in the s-plane cut along s � 0 and s �
4M2

K, except for a pole at s ¼ s1, where trestðs1Þ ¼ 0 [from
(17) and (20) it follows that s1 is close to the Adler zero
sA]. Therefore, I can write  restðsÞ as

 restðsÞ ¼ M2
�

s� s1

�
2s1
M�

ffiffiffi
s

p þ B0 þ B1wðs; �Þ

þ B2wðs; �Þ2 þ . . .

�
; (25)

where wðs; �Þ is defined in (7). Alternatively, I can use for
trestðsÞ an expression similar to (12), involving the function
�Jðs;M2

�Þ.
Other admissible parametrizations are obtained if one

assumes that trestðsÞ is almost regular near s ¼ 4M2
K. Since

the next branch point, at s ¼ 4M2
	, is known to have a weak

effect, one can neglect at low energies the right-hand cut of
 restðsÞ, and expand it as

 restðsÞ ¼ M2
�

s� s1

�
2s1
M�

ffiffiffi
s

p þ B0 þ B1w1ðs; �Þ

þ B2w1ðs; �Þ2 þ . . .

�
; (26)

where the variable

w1ðs; �Þ ¼
ffiffiffi
s

p � �ffiffiffi
s

p þ �
; � > 0; (27)

maps the s-plane cut only for s � 0 onto the disk jw1j< 1
of the complex plane w1 ¼ w1ðs; �Þ.

The expressions given in this subsection are examples of
possible analytic parametrizations of the amplitude at low
energies. Following an idea of Dalitz and Tuan [18], in
some phenomenological analyses [19] the individual S
matrices in the product (16) are associated with specific
resonances. However, in my work I use the factorization
(16) only for mathematical purposes: by isolating a factor
with a rapid variation near the K �K threshold, I expect a
better convergence for the expansion of the remaining part,
trestðsÞ. This part, which is fixed by the low energy data,
contributes to both the elasticity 	0

0ðsÞ ¼ jS00ðsÞj and the

phase shift �0
0 above the K

�K threshold. So, the behavior of

t00 above this point is left free in my fits.

III. FITS OF THE DATA FROM Ke4 DECAY

I consider first the data on the difference �0
0 � �1

1 mea-

sured below 0.4 GeV from Ke4 decay [5–7]. The P-wave
phase shift �1

1 is known with precision in this energy range
[3,20], allowing an accurate extraction of �0

0. As shown

recently [21], the phase shift measured in Ke4 decay differs
from the pure strong phase shift �0

0ðsÞ by an isospin cor-

rection overlooked so far, accounting for the differences
between the masses of the charged and neutral mesons, and
between the quark masses mu and md. The correction
evaluated in ChPT to one-loop reads [21]

�½�0
0ðsÞ� ¼

1

32�F2
0

�
ð4�� þ sÞ�ðsÞ þ ðs�M2

�0Þ
�
1þ 3

2R

�

� �0ðsÞ � ð2s�M2
�Þ�ðsÞ

�
; (28)

where �ðsÞ is defined in (3) and

�� ¼ M2
� �M2

�0 ; �0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�0=s
q

;

R ¼ ms � m̂

md �mu

; m̂ ¼ ðmu þmdÞ=2:
(29)

With the estimate R ¼ 37� 4 given in [21], the correction
�½�0

0ðsÞ� amounts to a fraction of a degree in the whole

experimental range. This correction was subtracted from
the phase shift derived from Ke4 data, in order to obtain the
pure strong phase shift �0

0ðsÞ.
The total number of points from the Ke4 experiments is

21 (5 points from [6], 6 from [7] and 10 from [5]). As in [8],
I increased the experimental error on the last point in [7] by
50%. For the 10 data from the NA48=2 experiment I used
the covariance matrix published recently in [5]. I fitted
these data with the parametrizations described in Sec. II.
In my analysis, the positive number �, specifying the

conformal variables (7) and (27), together with the parame-
ters � and ki appearing in (20), represent the input which
defines an admissible class. To account for the uncertainty
in the position of the Adler zero, sA was varied between
0:4M2

� and 0:6M2
�. In each admissible class, the coeffi-

cients Bi of the expansion in powers of the conformal
variable are free. They are determined by fitting the low
energy data.
I investigated a large class of combination of input

parameters, from which I retained 16 admissible parame-
trizations: the first three are based on Eqs. (4) and (8), with
� ¼ 1, � ¼ 0:36, and � ¼ 4, respectively. The value � ¼
0:36 is special, since, as seen in Fig. 1, it maps the experi-
mental range relevant in Ke4 decay onto a symmetric
interval around the origin w ¼ 0. According to general
theorems [12], this variable gives the best approximation
of data in the experimental range. On the other hand, for �
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greater than 1 (for instance, � ¼ 4) the variable wðs; �Þ
maps the region close to the branch point s ¼ 4M2

K near
the origin of the w plane (see right panel of Fig. 1). As we
shall see, the expansion (8) is then more suitable at higher
energies.

The next three parametrizations are based on Eqs. (12)
and (14), with the same choices� ¼ 1,� ¼ 0:36, and� ¼
4. The difference from the previous fits is the way of
eliminating the singularity at s ¼ 0 of the phase space
�ðsÞ in the denominator of t00ðsÞ.

The remaining ten parametrizations are based on the
S-matrix factorization discussed in Sec. II C. In three of
them I take the parameters � and ki from (22) and the
expansion (26), with � ¼ 0:36, � ¼ 1, and � ¼ 4, and in
the next two I use the same parameters � and ki and the

expansion (25), with � ¼ 0:36 and � ¼ 1. In the other two
cases I use the parameters � and ki from (23) and the
expansion (26) with � ¼ 0:36 and � ¼ 1, while in the
last three parametrizations I take the parameters � and ki
from (21), using either the expansion (25) with � ¼ 1 and
� ¼ 0:36, or the expansion (26) with � ¼ 0:36.
I obtained good fits of the 21 experimental points with 2

free parameters, B0 and B1, in the expansion in powers of
the conformal variables. The values of �2 are very similar
for all the fits, although the parametrizations are quite
different. The values of �2 and the optimal parameters
are given in Table I, for sA (or s1) fixed at 0:5M2

� (note
that if s1 ¼ 0:5M2

�, the position sA of the Adler zero,
resulting from the fits, is slightly different: for the last 10
fits given in Table I, sA varied between 0:42M2

� and
0:47M2

�). The values of �
2 decrease by about 0.4 if I take

into account the theoretical uncertainty associated with the
isospin correction [21]. For simplicity I indicate only the
central values of the parameters, omitting the statistical
errors.
The quality of the fits is seen in Fig. 2. Although the fits

are almost indistinguishable in the experimental range,
they exhibit large differences when extrapolated to higher
energies. This illustrates the well-known phenomenon of
instability of analytic extrapolation [22]. I note that the
lowest curves in the right panel of Fig. 2 correspond to the
fits 4, 5, and 6 in Table I, obtained with the parametrization
(12)–(14). In particular, the fits 4 and 5, corresponding to
the choices � ¼ 1 and � ¼ 0:36 in (14), exhibit a plateau
at low values of �0

0ðsÞ. The increase of the phase shift

required by the high energy data (see below) is obtained,
for instance, with the choice � ¼ 4 in the expansion (8), or
by using parametrizations based on the S-matrix factoriza-
tion described in Sec. II C.
In Table I I give for each fit the central values of a00 and

b00 and the position s� of the� pole on the second Riemann

TABLE I. Results of the fits of the data from Ke4 decay [5–7],
using the 16 parametrizations described in the text.

Number �2 B0 B1 a00 b00
ffiffiffiffiffi
s�

p ðMeVÞ
1. 21.7 7.5 �15:1 0.216 0.278 459þ 259i
2. 21.5 14.6 �12:4 0.214 0.282 445þ 259i
3. 21.9 �16:4 �37:1 0.217 0.275 473þ 261i
4. 20.9 7.7 �20:2 0.212 0.287 412þ 237i
5. 20.6 17.2 �16:5 0.210 0.292 401þ 231i
6. 21.2 �35:0 �60:3 0.214 0.284 422þ 246i
7. 21.5 14.6 �14:8 0.214 0.281 443þ 262i
8. 21.7 5.8 �18:8 0.215 0.278 455þ 261i
9. 21.8 �25:3 �47:9 0.216 0.276 465þ 260i
10. 21.6 15.2 �12:8 0.215 0.280 451þ 264i
11. 21.8 7.8 �15:5 0.216 0.277 466þ 264i
12. 21.5 15.0 �15:3 0.214 0.281 448þ 264i
13. 21.7 5.9 �19:5 0.216 0.277 459þ 262i
14. 21.8 7.8 �15:5 0.216 0.277 465þ 263i
15. 21.6 15.1 �12:8 0.215 0.280 450þ 263i
16. 21.4 14.5 �14:8 0.214 0.282 443þ 261i

FIG. 2. Left: phase shift �0
0 derived from Ke4 decay, fitted with the 16 parametrizations described in the text. Right: extrapolation of

the fits above the experimental range.
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sheet, obtained by analytic extrapolation to the threshold
and into the complex plane (as shown in [4], s� is the
solution of the equation S00ðs�Þ ¼ 0 on the first sheet).

Taking the average of the 16 admissible values form� ¼ffiffiffiffiffi
s�

p ¼ M� � i��=2, I obtain

M� ¼ 447� 7ðstatÞþ25
�46ðsystÞ MeV;

��=2 ¼ 258� 6ðstatÞþ10
�26ðsystÞ MeV;

(30)

where the systematic error is defined, as in [8], such as to
cover all the admissible fits (the uncertainty in the Adler
zero produces a small error, of about 4 MeV in M� and
3 MeV in ��=2).

The pole positions given in Table I are shown in Fig. 3,
together with the results reported in [4,8,23]. Note that the
three isolated points, with small values of M� and ��,
correspond to the fits 4, 5, and 6 in Table I, which are
based on the parametrization (12)–(14). As I mentioned,
they lead to bad behavior of the phase shift at higher
energies, in spite of the fact that they provide very good
fits of the data from Ke4 decay. From Table I it is seen that
these parametrizations (especially 4 and 5) give low values
for a00 and large values for b00.

In this section I obtained good fits of the phase shift
measured from Ke4 decay. However, the extrapolation of
the phase shift above the experimental region is not accept-
able for many of them. Therefore, I cannot take the results
of this section as final. In particular, the narrow range
spanned by most of the widths �� in Fig. 3 may signal a
bias. In the next section I shall improve the description of
t00ðsÞ by including data on the phase shift at higher energies.

IV. INCLUSION OF HIGH ENERGY DATA

The difference �0
0ðsÞ � �2

0ðsÞ is measured at s ¼ M2
K

from the decay K ! �� [24]. However, in this case the
radiative corrections are very large [25] and the extraction

of the strong phase shift �0
0 is still uncertain [26]. For this

reason, I shall not use this datum as input in my analysis.
Experimental data at higher energies are available from

the �N ! ��N process [27,28]. I considered two sets of
data below the K �K threshold:
(i) set I, which consists of 40 data points: 21 from Ke4

decay [5–7] and 19 from the CERN-Munich experi-
ment [27];

(ii) set II, which consists of 32 data points: 21 from Ke4
decay [5–7] and a collection of 11 data points from
�N ! ��N [28], given in Eq. (2.13) of [20].

As in the previous section, I investigated a large number
of parametrizations, but rejected many of them since they
gave bad fits. For instance, the choice � ¼ 0:36 (or other
values �< 1) in the expansions (8) and (14) was not
admissible, leading to high values of �2 (such parametri-
zations can not exhibit the rapid increase of the phase shift
above 900 MeV). Also, the parametrization (9), considered
in [8], proved to be not acceptable: with 3 free parameters,
�0, B0, and B1, I obtained �

2 ¼ 45:6 for the 40 points of
set I, and �2 ¼ 34:6 for the 32 points of set II. We recall
that expressions which display the energy where the phase
shift passes through �=2 are often used for fitting narrow
resonances. However, they are not suitable for broad reso-
nances like �.
I finally retained 13 admissible parametrizations: the

first three are based on Eqs. (4) and (8), with � ¼ 1, � ¼
4, and � ¼ 6, respectively. The next two are based on
Eqs. (12) and (14), with the choices � ¼ 1 and � ¼ 4.
The remaining eight parametrizations are based on the
S-matrix factorization discussed in Sec. II C: in four cases
I use the values � and ki from (21), and either the expan-
sion (25) with � ¼ 1, � ¼ 4, and � ¼ 0:5, respectively, or
the expansion (26) with � ¼ 1. In the next three cases I use
the parameters � and ki from (22), and either the expansion
(25) with� ¼ 0:2, or the expansion (26), with� ¼ 0:5 and
� ¼ 1. Finally, in the last parametrization I take the values
of � and ki from (23) and the expansion (26) with � ¼ 4.
For the first five parametrizations I used 3 nonzero

coefficients, B0, B1, and B2, in the expansion in powers
of the conformal variables, and for the last eight I obtained
good fits with 2 nonzero coefficients, B0 and B1. As in the
previous section, I took into account the uncertainty in the
position of the Adler zero, by allowing in each case sA to
vary between 0:4M2

� and 0:6M2
�.

The results of the fits (for sA or s1 fixed at 0:5M2
�) are

presented in Tables II and III, for the sets I and II, respec-
tively. For completeness, I show also in column 3 the
contribution to the �2 of the 21 points from Ke4 decay.
By comparing Tables II and III with Table I one notices
that the description of the Ke4 data, measured by their
contribution to the total �2, is now slightly worse than in
the fits restricted to the data from Ke4 decay: constraining
the behavior at high energies leads to a small deterioration
of the description of the low energy data. The quality of the

FIG. 3. Positions of the � pole obtained by the analytic
extrapolation of the parametrizations used for fitting various
sets of data, compared with Refs. [4,8,23] (from the last refer-
ence I show the value obtained with isospin corrected Ke4 data).
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fits is shown in Fig. 4, and in Fig. 5 I show an expanded
view of the energy region covered by Ke4 decay. As
expected from the previous discussion, the various parame-
trizations are no longer indistinguishable, as were those
obtained from fitting only the Ke4 data in Fig. 2.

Taking the average of the values of the threshold pa-
rameters a00 and b

0
0 given in Tables II and III, weighted with

the ratio �2=Ndof , I obtain, for the two sets

a00 ¼ 0:220� 0:005ðstatÞ� 0:013ðsystÞ� 0:003ðsAÞ ðIÞ;
a00 ¼ 0:215� 0:005ðstatÞ� 0:011ðsystÞ� 0:003ðsAÞ ðIIÞ;

(31)

and

b00 ¼ 0:275� 0:006ðstatÞþ0:009
�0:014ðsystÞ � 0:004ðsAÞ ðIÞ;

b00 ¼ 0:277� 0:006ðstatÞþ0:007
�0:010ðsystÞ � 0:004ðsAÞ ðIIÞ:

(32)

If I combine these determinations I obtain the values

a00 ¼ 0:218� 0:014; b00 ¼ 0:276� 0:013; (33)

which are fully consistent with the results obtained from
ChPT and low energy theorems for �� scattering [3],
quoted in (1).
Before discussing the results for the � pole, let me make

a few comments on the phase shift �0
0ðsÞ shown in Fig. 4. It

was advocated in some papers, for instance [23], that the
phase shift of the isoscalar S wave exhibits a ‘‘hump’’ at
energies around 800 MeV, before starting the rapid in-
crease near the K �K threshold. As seen from Fig. 4, no
hump is seen in the fits of the data in the set I, while a weak
hump appears only in a few fits of the data in set II. This
proves that the hump seems to be an artifact of special
parametrizations used for fitting the data (in particular, the
expression (9) displays a pronounced hump if a small
number of coefficients Bi is kept in the expansion). As

TABLE III. Results of the fits of the 32 data points of set II, using the 13 parametrizations
described in the text.

Number �2 �2
Ke4

B0 B1 B2 a00 b00
ffiffiffiffiffi
s�

p ðMeVÞ
1. 28.6 22.8 5.4 �29:0 �20:9 0.225 0.267 494þ 279i
2. 24.8 22.4 �26:6 �71:8 �27:1 0.223 0.272 470þ 287i
3. 24.4 22.3 �45:9 �97:4 �33:0 0.223 0.273 469þ 285i
4. 25.1 22.0 �0:3 �56:6 �41:3 0.218 0.273 466þ 251i
5. 24.6 22.2 �56:6 �111:1 �26:9 0.205 0.284 446þ 229i
6. 23.9 21.8 7.4 �16:3 � � � 0.215 0.277 466þ 259i
7. 24.3 22.5 �6:2 �25:3 � � � 0.224 0.272 462þ 293i
8. 24.7 22.1 12.5 �16:9 � � � 0.208 0.281 463þ 242i
9. 26.6 22.9 1.0 �28:8 � � � 0.204 0.282 465þ 225i
10. 23.2 21.6 20.1 �16:8 � � � 0.210 0.284 448þ 254i
11. 23.2 21.8 11.6 �18:7 � � � 0.209 0.283 453þ 246i
12. 23.1 21.8 4.8 �20:8 � � � 0.213 0.279 458þ 253i
13. 23.5 22.0 �21:1 �43:3 � � � 0.219 0.274 466þ 272i

TABLE II. Results of the fits of the 40 data points of set I, using the 13 parametrizations
described in the text.

Number �2 �2
Ke4

B0 B1 B2 a00 b00
ffiffiffiffiffi
s�

p ðMeVÞ
1. 37.7 24.3 7.8 �23:5 �20:6 0.233 0.261 486þ 312i
2. 32.9 22.8 �20:3 �61:5 �23:9 0.226 0.271 462þ 298i
3. 32.6 22.6 �37:3 �84:6 �29:6 0.225 0.272 461þ 296i
4. 32.7 22.2 1.3 �52:3 �39:9 0.222 0.271 458þ 265i
5. 33.9 21.8 �52:8 �105:8 �26:0 0.207 0.283 442þ 234i
6. 32.4 22.1 9.3 �12:0 � � � 0.220 0.274 457þ 281i
7. 33.7 22.9 �2:2 �20:3 � � � 0.228 0.272 454þ 303i
8. 33.9 21.8 13.1 �12:2 � � � 0.215 0.278 454þ 267i
9. 38.0 21.8 5.2 �19:9 � � � 0.213 0.278 456þ 256i
10. 32.1 21.5 18.8 �12:9 � � � 0.216 0.281 441þ 272i
11. 31.9 21.6 12.4 �13:9 � � � 0.216 0.279 446þ 267i
12. 32.1 21.9 7.4 �15:5 � � � 0.219 0.276 450þ 274i
13. 32.7 22.6 �9:5 �29:3 � � � 0.225 0.272 455þ 295i
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discussed in [29], this shape is in conflict with the forward
dispersion relation for the �� amplitude of isospin I ¼ 0.

It is of interest to calculate with my parametrizations the
value of �0

0 at
ffiffiffi
s

p ¼ MK. We recall that the phase shift

difference �0
0ðsÞ � �2

0ðsÞ at this energy can be extracted

from the decay K ! ��. However, as I mentioned in
Sec. IV, in this case the isospin breaking corrections are
large and the extraction of the strong phase shift �0

0 is still

unclear. For this reason I did not use this information as
input in my fits. Using the parameters given in Tables II
and III and taking the averages of the admissible values in
the two sets I obtain

�0
0ðM2

KÞ ¼ 38:9� � 0:6�ðstatÞþ1:7�
�1:4�ðsystÞ ðIÞ;

�0
0ðM2

KÞ ¼ 40:4� � 0:8�ðstatÞþ2:6�
�1:8�ðsystÞ ðIIÞ: (34)

In [8] the authors used as input in their fits the value

�0
0ðM2

KÞ ¼ 48:7� 4:9�, which is significantly larger than

the output values given in (34).
The phase shift at 0.8 GeV is also of interest, since it is a

key input in solving Roy equations [2]. We recall that in [2]
the range is �0

0ð0:8 GeVÞ ¼ 82:3� 3:4� was adopted as

input, while in [3] the more conservative choice
�0
0ð0:8 GeVÞ ¼ 82:3þ10�

�4� was made. From the parametri-

zations discussed above and the parameters Bi given in
Tables II and III, I obtained the average values

�0
0ð0:8 GeVÞ ¼ 81:8� � 0:6�ðstatÞ � 1:3�ðsystÞ ðIÞ;
�0
0ð0:8 GeVÞ ¼ 85:9� � 0:7�ðstatÞþ3:3�

�2:6�ðsystÞ ðIIÞ;
(35)

which are consistent with the ranges adopted in [2,3].
I turn now to the predictions for the � pole obtained by

the analytic continuation of the parametrizations consid-
ered above. The � pole positions given in Tables II and III

FIG. 4. Left: fits of the data in set I (Ke4 data [5–7] plus the CERN-Munich data [27] below the K �K threshold). Right: fits of the data
in set II (Ke4 data plus a selection of data from �N ! ��N, given in [20]).

FIG. 5. Expanded view of the low energy region from Fig. 4.
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are shown in Fig. 3. The three isolated points obtained with
some fits of the Ke4 data are no longer allowed, but in the
same time the tight correlation exhibited by the other fits of
the Ke4 data is now softened. This is due to the fact that the
description of the Ke4 data, measured by their contribution
to the total �2, is slightly worse than in the fits restricted
only to the Ke4 data, and the various parametrizations are
not as indistinguishable at low energies as in Fig. 2.

The averages of the values given in Tables II and III,
respectively, weighted with the corresponding �2=Ndof ,
give

M� ¼ 455� 6ðstatÞþ31
�13ðsystÞ MeV;

��=2 ¼ 278� 6ðstatÞþ34
�43ðsystÞ MeV ðIÞ;

M� ¼ 463� 6ðstatÞþ31
�17ðsystÞ MeV;

��=2 ¼ 259� 6ðstatÞþ33
�34ðsystÞ MeV ðIIÞ:

(36)

As above, the systematic errors cover the values in the
admissible samples. The uncertainty in the position of the
Adler zero sA has now a smaller effect, of 2 MeV for M�

and 1 MeV for ��=2. Alternatively, I can define the central
values from the optimal fits with the lowest �2 (fit 11 in
Table II and fit 12 in Table III). This procedure gives

M� ¼ 446� 6ðstatÞþ40
�4 ðsystÞ MeV;

��=2 ¼ 267� 6ðstatÞþ44�33ðsystÞ MeV ðIÞ;
M� ¼ 458� 6ðstatÞþ36

�11ðsystÞ MeV;

��=2 ¼ 253� 6ðstatÞþ39
�28ðsystÞ MeV ðIIÞ:

(37)

However, this definition is not very sharp since, as seen
from Tables II and III, there are several fits with very close
values of �2, which lead to different values forM� and ��.
Equations (36) and (37) represent my final results for the

� pole position, obtained using the data on Ke4 decay and
two, rather complementary, sets of scattering data at higher
energies. The differences between them indicate the sensi-
tivity of the pole location to the behavior of the phase shift
near the K �K threshold.
The comparison of (36) and (37) with (2) shows that the

analytic extrapolation of experimental data leads to values
for the mass and width of � which are consistent with
ChPT and Roy equations, but have larger theoretical un-
certainties. The errors are produced by the well-known
instability of analytic continuation [22]: functions very
close along a limited part of the boundary may differ
drastically outside the initial range. I illustrate this feature
in Fig. 6, where I show the elasticity 	0

0 calculated with the

13 parametrizations fitting the data of set I, given in
Table II, extrapolated above the inelastic threshold. Also,
in Fig. 7, I show the real and the imaginary parts of the
same parametrizations along a range covering a part of the
left-hand cut. Note that I am calculating now the amplitude
on the cuts of the s plane, while, strictly speaking, the
expansions in powers of conformal variables converge only

FIG. 6. Elasticity 	0
0 obtained with the 13 parametrizations of

the data in set I (cf. Table II), compared with the experimental
data from [16,17].

FIG. 7. Ret00ðsÞ (left) and Imt00ðsÞ (right) obtained by the extrapolation of the 13 parametrizations of the data in set I.
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at points inside the analyticity domain [10]. However, the
expansions are truncated at low orders and are far from the
asymptotic regime, so we may view them as effective
parametrizations which have a meaning also on the
boundary.

We recall that information about t00ðsÞ along the left-

hand cut (rigorously speaking, only on a part of it) is
obtained from crossing symmetry. The dominant contribu-
tion is given by the � resonance, which does not make a
narrow peak. Of course, in the present approach crossing
symmetry is not explicitly implemented. Figure 7 shows
the differences in the values on the left-hand cut of ampli-
tudes which are almost indiscernible in the physical region.
Since the � pole is rather close to the left-hand cut, the
spread in the positions of the � pole shown in Fig. 3 is not
surprising.

V. CONCLUSIONS

The new accurate data on �� scattering at low energies
obtained from Ke4 decay by the NA48=2 Collaboration [5]
revived the interest in finding the � pole by the standard
method used for narrow resonances, i.e., by the analytic
extrapolation of a suitable parametrization of the partial
wave with the quantum numbers of the resonance.

In the present work I extended the investigation done in
[8], by using a larger class of analytic functions for the
parametrization of the �� isoscalar S wave at low ener-
gies. The purpose was to reduce the theoretical bias and to
provide a more realistic estimate of the systematic uncer-
tainties on the pole position.

My analysis shows that, in spite of the remarkable
accuracy of the new data obtained from Ke4 decay [5],
the inclusion of data at higher energies is necessary in
order to reduce the theoretical bias and to exclude parame-
trizations which do not have a suitable behavior above the
experimental range.

The values (36) represent my prediction for the mass and
width of �, obtained by the analytic extrapolation of a

large number of admissible parametrizations of the isosca-
lar S wave. I present separately the results obtained by
fitting with the same parametrizations the two sets of data
from the process �N ! ��N, in order to illustrate the
sensitivity of the pole position to the behavior near the K �K
threshold. I emphasize that, although I used a large number
of parametrizations, the admissible sample is still limited.
Therefore, the procedure is not entirely model independent
(for a parametrization-free method for the detection of
resonances from error-affected data given along a finite
range see [30]).
My results (36) are consistent with the mass and width of

� obtained from ChPT and Roy equations, quoted in (2).
However, the method employed here has larger theoretical
uncertainties due to the phenomenon of instability of ana-
lytic extrapolation from a part on the boundary [22]: the
differences between the various parametrizations are am-
plified by the extrapolation from the physical region to a
distant point in the complex plane.
The extrapolation error can be kept under control by

using additional information about the physical amplitude,
besides the low energy experimental data. In the method
based on Roy equations, this information is provided
mainly by crossing symmetry and low energy theorems
for �� scattering [3]. As shown in [4], this tames the
instability of the extrapolation to the � pole, leading to
the small errors quoted in (2) (for a detailed discussion see
also [31]). I conclude that Roy equations provide the most
precise determination of � from �� elastic scattering.
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