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We discuss the average collisional energy loss dE=dx of a heavy quark crossing a quark-gluon plasma,

in the limit of high quark energy E � M2=T, where M is the quark mass and T � M is the plasma

temperature. In the fixed coupling approximation, at leading order dE=dx / �2
s , with a coefficient which

is logarithmically enhanced. The soft logarithm arising from t-channel scattering off thermal partons is

well known, but a collinear logarithm from u-channel exchange had previously been overlooked. We also

determine the constant beyond those leading logarithms. We then generalize our calculation of dE=dx to

running coupling. We estimate the remaining theoretical uncertainty of dE=dx, which turns out to be quite

large under Relativistic Heavy Ion Collider conditions. Finally, we point out an approximate relation

between dE=dx and the QCD Debye mass, from which we derive an upper bound to dE=dx for all quark

energies.
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I. INTRODUCTION

Jet quenching, as first anticipated by Bjorken [1], is a
crucial probe of the state of matter created at the
Relativistic Heavy Ion Collider (RHIC). The quenching
of light hadron spectra at large p? [2,3] is usually attrib-
uted to the radiative energy loss of the (light) parent parton
when crossing the hot or dense medium. On the other hand,
recent data on heavy flavor quenching [4,5] suggest that for
heavy quarks, purely radiative energy loss might be insuf-
ficient to explain the observed attenuation. This has re-
newed the interest in the collisional part �Ecoll of the
parton energy loss, in particular, in the case of a heavy
quark [6]. It is not clear yet whether such a collisional
contribution can help in understanding the data on heavy
flavor quenching. For instance, although some studies sup-
port the possibility of a quite large collisional loss [7–9], a
recent comparison between collisional and radiative losses
[10] indicates that the collisional contribution to parton
energy loss might be small (� 20%) compared to the
radiative one, even for heavy quarks. It should however
be noted that a relatively small average collisional loss
might be compatible with an important effect of collisions
on quenching [11,12], due to differently behaved colli-
sional and radiative energy loss probability distributions.

In any case, in the present (unclear) situation where the
importance of collisional energy loss is reconsidered, we
believe it is not useless to state the correct result for the
(average) collisional loss of an energetic heavy quark.

A basic quantity required to study collisional quenching
is the rate of energy loss per unit distance, dE=dx, of a
parton produced in the remote past and traveling in a large
size medium, as studied in Refs. [1,13,14]. For heavy-ion
collisions, where a parton initially produced in a hard
subprocess crosses a medium of finite size L, we expect
deviations from the linear law �EcollðLÞ ¼ ðdE=dxÞ � L

[15]. Nonetheless, knowing the ‘‘asymptotic’’ rate dE=dx
is a prerequisite before attempting a more refined evalu-
ation of �Ecoll, including, in particular, finite size effects.
So far, the most detailed calculation of dE=dx for a

heavy quark in a quark-gluon plasma (QGP) is due to
Braaten and Thoma (BT) [14], and is based on their
previous QED calculation of dE=dx for a muon [16]. As
we recently analyzed [17], the BT QED calculation relies
on an assumption of the momentum exchange q in elastic
scattering, namely q � E, which is incorrect in the domain
E � M2=T. Therefore, the BT results for dE=dx, both in
QED [16] and in QCD [14], need to be corrected in this
limit. This was done in [17] in the QED case. Here we
consider the QCD case of a fast heavy quark.
We assume the heavy quark to be produced in the hard

partonic subprocess of the heavy-ion collision, i.e. to be
present in the ‘‘initial’’ stage of the QGP evolution. It then
crosses the QGP (supposed thermally equilibrated) by
losing some energy, before hadronizing (within a jet) into
a heavy-flavored hadron. The situation we consider should
be appropriate when dealing with heavy-quark tagged jets,
where the energy loss is defined as the difference between
the initial and final energies of the flagged heavy quark.
This is different from light parton (or untagged heavy-
quark) energy loss, which should be defined (at the par-
tonic level) as the energy difference between the leading
partons in the initial and final states. Indeed, without tag-
ging, the flavor or even the type (quark or gluon) of the
initial energetic parton does not have to be conserved in the
‘‘energy loss’’ process.
In Sec. II we study the fixed coupling approximation

which allows us to closely follow the lines of our QED
calculation [17]. In Sec. III we show how the result with a
running coupling can be simply inferred and discuss the
theoretical uncertainty. The latter is illustrated by a nu-
merical estimate in Sec. IV.
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II. FIXED COUPLING APPROXIMATION

In this section we assume a fixed coupling, which is
justified when the running coupling does not change much
in the range of probed momenta (we will specify this
condition below). We calculate, in the limit E � M2=T,
the heavy-quark collisional loss dE=dx beyond logarith-
mic accuracy. For the sake of clarity we first focus on the
leading logarithms before calculating the constant next to
those logarithms.

A. Leading logarithmic terms

The leading logarithms in dE=dx for a heavy quark in
the quark-gluon plasma have the same origin as in the QED
analog of a muon crossing an e�� plasma. We thus make a
detour to QED and outline the derivation of [17], which is
straightforward at leading logarithmic accuracy. The QCD
result for dE=dx of a heavy quark will then be obtained
from simple considerations.

1. Muon energy loss in a QED plasma

At leading order the energy loss of a muon (of mass M
and energy E) arises from elastic scattering off ther-
mal electrons or positrons [Fig. 1(a)] and photons
[Figs. 1(b) and 1(c)]. Scattering off electrons corresponds
to t-channel exchange, whereas scattering off photons
(Compton scattering) receives contributions from s and
u-channels. The muon energy loss is given by [16]

dEð�Þ

dx
¼ X

i

1

2Ev

Z
k

niðkÞ
2k

Z
k0

�niðk0Þ
2k0

Z
p0

1

2E0 ð2�Þ4

� �ð4ÞðPþ K � P0 � K0Þ 1
d

X
spins

jMij2!; (2.1)

where ! ¼ E� E0. The tree-level amplitude Mi corre-
sponds to scattering off a thermal particle of type i ¼ eþ,
e�, and �. Each jMij2 is summed over initial and final spin
states, and we divide by the degeneracy factor d ¼ 2 of the
incoming muon. Furthermore, niðkÞ ¼ ðexpðk=TÞ � 1Þ�1

is the thermal distribution of the target particles, and �ni ¼
1� ni accounts for the Bose enhancement or Pauli block-
ing for the scattered state. We also use the shorthand
notation

R
k 	

R
d3k=ð2�Þ3.

In the E � T limit, (2.1) can be simplified to [17]

dEð�Þ

dx
¼ X

i

di
Z
k
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; (2.2)

where di is the degeneracy factor of the target parti-
cles, and

d�i

dt
¼ 1

16�~s2
1

ddi

X
spins

jMij2 (2.3)

is the corresponding differential cross section. We also
define ~s 	 s�M2, as well as for later reference ~u 	 u�
M2. In Eq. (2.2) the bounds on t are set by kinematics,
tmin ¼ �~s2=s, and tmax ¼ 0. We will focus on the limit
E � M2=T, which implies s ¼ ðPþ KÞ2 ¼ M2 þ
2PK �OðETÞ � M2, so that tmin ’ �s.
To obtain the leading logarithm from the t-channel con-

tribution we can assume jtj � s and approximate

X
i¼e�

X
spins

jMij2 ’ 32e4
~s2

t2
: (2.4)

This contributes to (2.2) as

e4
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’ e4T2
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To obtain the right-hand side (rhs), we replaced tmin ’
�s ! �ET, which is justified to logarithmic accuracy.
Strictly speaking, with tmax ¼ 0 the integral in (2.5) would
be infrared divergent. As is well known, this divergence is
screened by medium effects. To logarithmic accuracy it is
sufficient to take tmax ¼ �m2

D as an effective infrared cut-

off, where mD ¼ eT=
ffiffiffi
3

p
is the Debye screening mass in

the QED plasma [18]. The logarithm in (2.5) thus arises
from the domain m2

D � jtj � s� ET. A more accurate
description of screening requires using the resummed hard
thermal loop (HTL) [18,19] photon propagator in the
t-channel (instead of the bare one with effective cutoff),
as pictured in Fig. 1(a). This is needed to control the
constant �Oð1Þ in (2.5), as will be recalled in Sec. II B.
Finally, in order to obtain (2.5) we used

Z
k

nFðkÞ
2k

¼ T2

48
: (2.6)

The contribution from Compton scattering to the muon
energy loss brings another logarithm, arising from the
square of the u-channel amplitude, more specifically
from the domain ~umin � ~u � ~umax [17]. In this domain
the Compton scattering amplitude squared can be approxi-
mated as

X
spins

jM�j2 ’ 8e4
~s

�~u
: (2.7)

Changing variables from t to ~u in (2.2), and using the

P P

KK ’

’

(a) (b) (c) (d)

FIG. 1. Amplitudes for heavy muon (quark) elastic scattering
in a QED (QCD) plasma. A curly line denotes a photon (QED) or
a gluon (QCD). The amplitude (d) is specific to the QCD case.
The blob in (a) and (d) denotes the resummed hard thermal loop
boson propagator, which is necessary to screen the t-channel
contribution in the infrared.
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bounds ~umin ¼ �~s ’ �s and ~umax ¼ �M2~s=s ’ �M2,
(2.7) contributes to dE=dx as

e4
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nBðkÞ
2k

Z ~umax
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d~u

�~u
’ e4T2

96�

�
ln
ET

M2
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�
; (2.8)

where we used

Z
k

nBðkÞ
2k

¼ T2

24
: (2.9)

Adding (2.5) and (2.8) we obtain the muon energy loss to
logarithmic accuracy,

dEð�Þ

dx
¼ e4T2

48�

�
ln
ET

m2
D

þ 1

2
ln
ET

M2
þOð1Þ

�
: (2.10)

2. Heavy-quark energy loss in a QGP

The heavy-quark collisional energy loss arises from
elastic scattering off thermal quarks [Fig. 1(a)] and gluons
[Figs. 1(b)–1(d)]. Compared to the QED case, there is
one additional amplitude [Fig. 1(d)], corresponding to
t-channel scattering off thermal gluons. Using the cross
sections [20] corresponding to the QCD amplitudes of
Fig. 1 (with tree-level gluon propagators in the t-channel
amplitudes), we can easily identify the origin of a loga-
rithmic enhancement in the QCD analog of (2.2). There is a
soft logarithm �R

dt=t arising from jMqj2 and jMt
gj2,

and a collinear logarithm �R
d~u=~u from jMu

gj2. The

interference terms are not enhanced by any logarithm—
they however contribute to the constant to be evaluated in
Sec. II B.

The heavy-quark energy loss is readily derived from the
QED result as follows. The contribution from jMqj2 is

obtained by multiplying (2.5) by the number of quark
flavors nf and by the color factor ðN2

c � 1Þ=ð4NcÞ ¼ 2=3.

To get the t-channel contribution from jMt
gj2 for scattering

off thermal gluons, we also start from (2.5) and multiply by
1=2 since contrary to the electron, a gluon is its own
antiparticle. This factor is compensated by a factor 2 aris-
ing from the difference between bosons and fermions when
performing the integral over k [compare (2.6) and (2.9)].
The color factor for this contribution is ðN2

c � 1Þ=2 ¼ 4.
Finally, the u-channel contribution from jMu

gj2 is obtained
from (2.8) by multiplying by the color factor C2

F ¼ 16=9.
Introducing the QCD coupling by e2 ! g2 ¼ 4��s, we
obtain the heavy-quark energy loss in a QGP by summing
all contributions,

dE

dx
¼ 4��2

sT
2

3

��
1þ nf

6

�
ln
ET

m2
D

þ 2

9
ln
ET

M2
þ cðnfÞ

�
:

(2.11)

Here m2
D ¼ 4��sT

2ð1þ nf=6Þ [18] is the Debye mass

squared in the QGP. The constant cðnfÞ �Oð1Þ is eval-

uated in the next section, see (2.17).

B. The constant beyond leading logarithms

In the QED case, the constant �Oð1Þ in (2.10) was
determined in Ref. [17]. Here we infer from the QED
calculation the constant cðnfÞ appearing in the QCD ex-

pression (2.11).
The logarithms lnðET=m2

DÞ and lnðET=M2Þ arise from
the ranges m2

D � jtj � s and M2 � j~uj � s, with s�
ET. This is why they could be easily obtained in Sec. II A,
using approximate expressions for the squared amplitudes
[see (2.4) and (2.7)] in those kinematical domains. Con-
trolling the constant next to the leading logarithms, how-
ever, requires considering the complete phase space
0 
 jtj 
 jtminj ’ s and j~umaxj ’ M2 
 j~uj 
 j~uminj ’ s.
In order to treat correctly the domain jtj �m2

D, it is
convenient to introduce an intermediate scale t? chosen
as m2

D � jt?j � T2 [17]. The contribution to dE=dx from
jtj< jt?j is determined by the HTL self-energy of the
exchanged gluon in Figs. 1(a) and 1(d), similar to the
QED case where it depends on the photon HTL self-energy
[and where only Fig. 1(a) contributes]. In both cases, the
HTL self-energies have the same form, up to the replace-
ment of the QED Debye mass by its QCD counterpart.
Introducing the overall color factor CF ¼ 4=3, the QCD
result is thus inferred from [17] to be

dE

dx

��������jtj<jt?j
¼ �sm

2
D

3

�
ln
jt?j
m2

D

þ ln2

�
: (2.12)

We stress that the latter equation is valid beyond logarith-
mic accuracy, i.e. the constant next to the leading logarithm
(written as ln2 here) is meaningful.
The contribution from jtj> jt?j can be evaluated by

using tree-level internal propagators in the amplitudes of
Fig. 1. [Since j~uj � M2 � T2, HTL corrections to the
internal quark propagator in Figs. 1(b) and 1(c) are irrele-
vant.] However, in order to control the constant beyond the
leading logarithms, accurate expressions for the tree-level
cross sections have to be used.
For the contribution from scattering off light quarks

[Fig. 1(a)], the calculation is similar to the QED case,
which is done by using

X jMqj2 /
�
~s2

t2
þ s

t
þ 1

2

�
(2.13)

instead of (2.4), and by performing the integrals in (2.2)
with jt?j 
 jtj 
 s. The QCD result reads

dEq

dx

��������jtj>jt?j
¼ 4��2

sT
2

3

nf
6

�
ln
8ET

jt?j �
3

4
þ c

�
; (2.14)

where c ¼ � 0ð2Þ=�ð2Þ � � ’ �1:147, with � ’ 0:577
being Euler’s constant.
Similarly, scattering off gluons [Figs. 1(b)–1(d)] should

in principle be evaluated with the exact tree-level cross
section [20]. However, in the limit s� ET � M2 we are
considering, this cross section can be approximated as
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X jMgj2 /
�
~s2

t2
þ s

t
þ 1

2

�
þ 2

9

��~u

~s
þ ~s

�~u

�
: (2.15)

The contribution of the first term of (2.15) to dE=dx is
evaluated as for scattering off quarks [see (2.13)], except
for the factor nBðkÞ instead of nFðkÞ in (2.2). Up to the color
factor 2=9, the second term of (2.15) has the same form as
QED Compton scattering, and its contribution to dE=dx
can be directly obtained from [17]. Summing the two
contributions we get

dEg

dx

��������jtj>jt?j
¼ 4��2

sT
2

3

��
ln
4ET

jt?j �
3

4
þ c

�

þ 2

9

�
ln
4ET

M2
� 5

6
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��
: (2.16)

Adding now the contributions from (2.12), (2.14), and
(2.16) we obtain for the constant cðnfÞ in (2.11)

cðnfÞ ¼ anf þ b ’ 0:146nf þ 0:050; (2.17)

where the exact values of a and b are a ¼ ð2=3Þ ln2�
1=8þ c=6 and b ¼ ð31=9Þ ln2� 101=108þ 11c=9.

III. IMPLEMENTING RUNNING COUPLING

Implementing the running of �s in the calculation of
dE=dx has already been done in Ref. [21] for the logarith-
mically enhanced contribution from t-channel exchange.
Here we will generalize the argument to the collinear
logarithm stemming from the u-channel. We also discuss
the influence of running on the term / �2

scðnfÞ in (2.11),

which allows us to define precisely the level of accuracy of
our final result, see (3.7).

We first note that the QCD result (2.11) [together with
(2.17)] obtained with a fixed coupling suffers from a lack of
predictability. Indeed, the fixed coupling calculation does
not specify at which scale �s should be evaluated. As in
PQCD calculations at zero temperature, ‘‘fixing the scale’’
in �s demands to calculate the next order in the perturba-
tive series for the observable of interest. This next-to-
leading order (NLO) generally brings large logarithms,
which can be ‘‘absorbed,’’ via renormalization, by setting
the scale of �s in the leading order result. In the case of
t-channel scattering [Figs. 1(a) and 1(d)], the vacuum
contributions to the self-energy and vertex corrections
conspire to yield a logarithmic dependence on the invariant
transfer t. In order to avoid a large NLO contribution, one
must set the scale of �s to �OðjtjÞ [22].

In order to obtain a predictive result for the t-channel
contribution to dE=dx, we consider the term derived in
Sec. II A, which is logarithmically enhanced with a fixed
coupling, and recalculate it with a running coupling�sðjtjÞ.
The procedure is rather trivial,

�2
s

Z ET

m2
D

djtj
jtj !

Z ET

m2
D

djtj
jtj �

2
sðjtjÞ: (3.1)

Using

�sðjtjÞ ¼ ½4��0 lnðjtj=�2Þ��1; (3.2)

where �0 ¼ ð11� 2
3nfÞ=ð4�Þ2 is the leading coefficient of

the QCD �-function, we see that using a running coupling
amounts to perform the replacement

�2
s ln

ET

m2
D

! �sðm2
DÞ�sðETÞ lnET

m2
D

: (3.3)

As noted in [21], the latter result becomes E independent in
the E ! 1 limit, where the logarithmic enhancement of
the fixed coupling result (2.11) is invalid.
The accuracy of the above procedure is inferred by

noting that the scale of �s in the rhs of (3.1) can be in
principle chosen as Cjtj rather than jtj, with C a constant
of order unity. This implies an ambiguity of order
�3
s lnET=m

2
D to the rhs of (3.3) [24]. Thus specifying

the term / �2
scðnfÞ in (2.11) is meaningful provided we

assume

�sðm2
DÞ ln

ET

m2
D

� 1() ln
ET

m2
D

� ln
m2

D

�2
: (3.4)

For the u-channel contribution [Fig. 1(c)] to the cross
section, �s should be evaluated at a scale�Oðj~ujÞ. Similar
to the above discussion, the logarithmic integral appearing
in (2.8) is modified to �R

dj~uj�2
sðj~ujÞ=j~uj, and the col-

linear logarithm in (2.11) becomes

�2
s ln

ET

M2
! �sðM2Þ�sðETÞ lnET

M2
: (3.5)

Since M � mD and we already assumed (3.4), the uncer-
tainty when choosing j~uj as the scale in �s is of relative
order �sðM2Þ lnET=M2 � 1 compared to the contribution
/ �2

scðnfÞ in (2.11).

After we have shown how the leading logarithmic terms
in the fixed coupling result (2.11) are modified when the
running is taken into account [see (3.3) and (3.5)], we now
discuss the modification of the constant term / �2

scðnfÞ.
Since this term is the difference between the full result
(2.11) and the leading logarithmic terms, it should be clear
from Sec. II B that it is determined by integrals over t
dominated by either jtj �m2

D or jtj � ET, and by integrals
over ~u dominated by j~uj � ET [25]. There is no logarith-
mic spread there. Thus with running coupling, the term
�2
scðnfÞ should be evaluated at a scale chosen arbitrarily

[26] between m2
D and ET.

We can now give the result for dE=dx of a fast heavy
quark, at leading order in the running coupling,

dE

dx
¼ 4�T2

3

��
1þ nf

6

�
�sðm2

DÞ�sðETÞ lnET
m2

D

þ 2

9
�sðM2Þ�sðETÞ lnET

M2
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scðnfÞ
�
: (3.6)
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This result has been derived for E � M2=T and assuming
(3.4). The constant cðnfÞ is given in (2.17). As discussed

above, we are free to set the scale in �2
scðnfÞ as �2

s !
�sðm2

DÞ�sðETÞ, in order to rewrite (3.6) as

dE

dx
¼ 4�T2

3
�sðm2

DÞ�sðETÞ
��

1þ nf
6

�
ln
ET

m2
D

þ 2

9

�sðM2Þ
�sðm2

DÞ
� ln

ET

M2
þ cðnfÞ þO

�
�sðm2

DÞ ln
ET

m2
D

��
; (3.7)

where we displayed the order of neglected terms.
As a final remark, we note that when the logarithmic

term / lnET=m2
D from t-channel exchange is dominant in

(3.7), we obtain an interesting relation between the fast
heavy-quark collisional loss and the gluon Debye mass,

dE

dx
’ m2

D

3
�sðETÞ lnET

m2
D

: (3.8)

We used the self-consistent equation for the QCD Debye
mass derived with running coupling [27],

m2
D ¼ 4�

�
1þ nf

6

�
�sðm2

DÞT2: (3.9)

Using (3.2), the E ! 1 limit of (3.8) yields an upper bound
for dE=dx,

dE

dx

 m2

D

12��0

¼ 4�

33� 2nf
m2

D: (3.10)

For nf ¼ 3 and mD ’ 0:66 GeV (at T ¼ 0:2 GeV, see

below), this gives the bound dE=dx 
 1:0 GeV=fm.

IV. A NUMERICAL ESTIMATE

Our final result (3.7) for the fast heavy-quark collisional
energy loss is predictive: the scales at which to evaluate the
different factors of �s are determined, and the order of its
theoretical uncertainty is known. Consider the condition
(3.4), in the limit of very high energy E and very high
temperature T, such that the logarithm lnET=m2

D � lnE=T
is kept fixed. Then the neglected contributions in (3.7) are
indeed small, due to �sðm2

DÞ � 1 in the (very) high tem-
perature limit. The explicit terms in (3.7) are then all
meaningful, including that / cðnfÞ.
In practice, say under RHIC conditions, the values ofm2

D

and ET are not very different (on a logarithmic scale) from
�2. Therefore, the condition (3.4) is not satisfied in the
strict sense, and the theoretical uncertainty affecting (3.7)
is rather large. We take nf ¼ 3 and the generic values (in

GeV)� ¼ 0:2, T ¼ 0:2,M ¼ 1:3 (charm quark), and E ¼
20. We use (3.2) and (3.9) and find mD ’ 0:66 GeV (in
good agreement with lattice QCD calculations, cf. [27]),
�sðm2

DÞ ’ 0:58 and dE=dx ’ 0:6 GeV=fm. The separate
contributions in the bracket of Eq. (3.7) read ½3:31þ
0:12þ 0:49�, to be compared to the magnitude of ne-
glected terms �sðm2

DÞ lnET=m2
D ’ 1:29.

Thus the theoretical uncertainty is larger than the col-
linear logarithm from u-channel exchange and than the
constant cðnfÞ in (3.7)—making the approximation (3.8)

reasonable under RHIC conditions. In the absence of an
explicit calculation of the neglected terms, our result
dE=dx ’ 0:6 GeV=fm in the above conditions might be
accurate only up to a factor �2 or so, and should be
considered at best as a sound estimate.
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