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The Taylor coefficients of flavor diagonal and off-diagonal susceptibilities as well as baryon number,

isovector, and electric charge susceptibilities are considered within a phenomenological quasiparticle

model of the quark-gluon plasma and successfully compared with available lattice QCD data up to fourth-

order for two degenerate quark flavors. These susceptibility coefficients represent sensible probes of

baryon-density effects in the equation of state. The baryon charge is carried, in our model, by quark-

quasiparticle excitations for hard momenta.
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I. INTRODUCTION

The last few years witnessed two important milestones
in the realm of relativistic heavy-ion collisions and related
applied QCD: (i) Hints for a strongly coupled quark-gluon
plasma have been deduced from experiments at
Relativistic Heavy Ion Collider (RHIC) [1–3], and
(ii) lattice QCD calculations have been extended to non-
zero net baryon density. While for many observables,
at midrapidity, baryon-density effects are fairly small in
heavy-ion collisions at top RHIC and future CERN Large
Hadron Collider (LHC) energies, they become important
for the ongoing low-energy runs at RHIC, previous CERN
Super Proton Synchrotron, and future Facility for
Antiproton and Ion Research energies. Furthermore, the
debated QCD critical point seems to be located at nonzero
net baryon density according to investigations reported in
[4]. Therefore, the exploration of this part of the phase
diagram of strongly interacting matter gains increasing
attention, both experimentally and theoretically. A neces-
sary prerequisite in the search of the critical point is the
understanding of thermodynamic bulk properties of QCD
matter at nonzero net baryon density.

First-principle lattice QCD calculations include all fea-
tures of the complexity of QCD at finite temperature and
net baryon density, supposed the numerical accuracy is
appropriate. Indeed, signals of the QCD critical point
have been found [5,6], and the pseudocritical curve not
too far from the temperature axis in the T �� plane is
routinely determined today [5,7] (T and� denote tempera-
ture and chemical potential, respectively).

Basically, the partition function ZðT;�Þ or the grand
canonical potential �ðT;�Þ or the pressure pðT;�Þ con-
tain much information on thermodynamic bulk properties
of a medium. Susceptibilities are second-order derivatives
of the pressure in the chemical potential direction. Thus,
susceptibilities represent sensible quantities probing the
active baryonic degrees of freedom in a medium. Even
more, susceptibilities are related to fluctuations, which are

debated to represent signatures of deconfinement effects
[8,9], thus being of utmost experimental relevance.
Information on various susceptibilities has been ac-

cumulated from first-principle lattice QCD calculations
[6,10–17]. Keeping in mind possible limitations due to
finite size, numerical setup, and quark mass (mi) effects
they, nevertheless, are a source of important information on
baryon-density effects in the hot quark-gluon medium.
Below Tc, where Tc denotes the pseudocritical tempera-
ture for deconfinement, the hadron resonance gas model
(cf. [12,18]) has been successfully compared with the
lattice QCD data [12]. Above Tc, the situation is less
settled. Certain baryonic bound states have been consid-
ered in [19] aiming at arriving at a physical picture of the
strongly coupled quark-gluon plasma. Further develop-
ments [20,21] try to deduce also transport properties of
deconfined strongly interacting matter. In addition, sus-
ceptibilities have been studied in phenomenological ap-
proaches such as the Nambu–Jona-Lasinio model [22] or
Polyakov loop extensions thereof [23–25] as well as
quasiparticle models [26,27]. Furthermore, within the
functional approach to QCD [28], qualitative agreement
with the lattice QCD data in [10] was found for T �
1:5 Tc. All these approaches attempt to catch the relevant
excitation modes. One should keep in mind that in the
weak-coupling regime or in a medium with prominent
quasiparticle excitations, the bulk properties are governed
by excitations with hard momenta k� T, �. Soft or ultra-
hard modes are expected to influence pðT;�Þ rather less.
For the ultimate description of the very nature of the

quark-gluon plasma one has to know correlations and spec-
tral functions, propagators and related dispersion relations.
Such information is still fairly scarce, but starts accumu-
lating [29,30]. Having at our disposal only the numerical
data of thermodynamic state variables one must try to fig-
ure out which physical picture(s) is (are) compatible. Such
an endeavor is clearly phenomenological. Besides the mo-
tivation of getting an interpretation of the available lattice
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QCD data, also the applicability of such phenomenological
models represents important aspects, say for extrapolations
to larger net baryon density, or for interpolations between
different regions of the QCD equation of state (EOS) [27],
or for comparing different flavor numbers.

The aim of the present paper is to confront in some detail
the lattice QCD data from [6,12,13] for two degenerate
quark flavors with our quasiparticle model [31–33]. This
model was used up to now for one independent chemical
potential. With the goal of analyzing isovector, electric
charge, and flavor (off-)diagonal susceptibilities we are
going to generalize the model towards two independent
chemical potentials �u and �d of up and down quarks,
respectively. In fact, isovector and flavor (off-)diagonal
susceptibilities represent much more sensible tests of a
model than the baryon susceptibility alone. Furthermore,
a detailed knowledge about the dependence of bulk ther-
modynamic quantities on, at least, two separate quark
chemical potentials �u and �d is necessary in order to
discuss the impact of changes in various flavor sectors on
the baryon-density dependence of the EOS. Also, this
becomes important when discussing properties of decon-
fined quark matter such as �-stability and electric charge
neutrality in hypothetical ultradense and hot proto-neutron
stars. While for one independent chemical potential, say
�u ¼ �d, the model has been successfully compared with
various sets of lattice QCD data in [33,34], the straightfor-
ward generalization to a set of chemical potentials ~� ¼
f�u;�dg is restricted by consistency requirements [35]
given by Maxwell type relations and the stationarity con-
dition of the thermodynamic potential. We show here that
the Taylor expansion coefficients of various susceptibilities
are accessible up to a certain order in a consistent formu-
lation, contrasting our model as an alternative to the picture
developed, for instance, in [19].

Our paper is organized as follows. In Sec. II, we extend
the previous quasiparticle model [31–33] towards includ-
ing two independent chemical potentials and discuss the
consistency conditions for the resulting generalized system
of flow equations. Section III is devoted to the numerical
evaluation of various susceptibilities and the comparison
with lattice QCD data. In addition, these results are used
for discussing some properties of hot deconfined quark
matter by means of a Taylor expansion of bulk thermody-
namic quantities imposing, for instance,�-equilibrium and
electric charge neutrality. The summary and discussion can
be found in Sec. IV. Appendix A summarizes the entropy
density expression and its relation to the primary thermo-
dynamic potential, while explicit representations of coef-
ficients needed for determining the susceptibilities are
listed in Appendices B, C, and D.

II. EXTENDING THE QUASIPARTICLE MODEL

We consider the case of two degenerate quark flavors for
which the lattice QCD data [6,12,13] are at our disposal.

We choose the pressure pðT;�u;�dÞ ¼ T
V lnZðT;�u;�dÞ

as the fundamental quantity in the following with quark
flavor chemical potentials �u;d or, equivalently, quark and

isovector chemical potentials �q;I which are related via

�q ¼ 1
2 ð�u þ�dÞ, �I ¼ 1

2 ð�u ��dÞ or �u ¼ �q þ�I,

�d ¼ �q ��I. (Note that �I was defined differently as

either �I ¼ 2ð�u ��dÞ in [11] or �I ¼ 1
4 ð�u ��dÞ

in [6,13].) �q ¼ 1
3�B and �I are associated with con-

served quantum numbers (in strong interaction processes)
of baryon number and isospin, respectively. The explicit
model expression of pðT;�u;�dÞ is relegated to
Appendix A. The generalized quark number susceptibili-
ties are defined by

�ju;jdðTÞ ¼
@ðjuþjdÞpðT;�u;�dÞ

@�ju
u @�

jd
d

���������u¼�d¼0
: (1)

Because lnZðT;�u;�dÞ is symmetric under CP transfor-
mations, derivatives for odd (ju þ jd) vanish. Furthermore,
in the flavor symmetric case mu ¼ md ¼ m, we find
�ju;jdðTÞ ¼ �jd;juðTÞ.
These generalized quark number susceptibilities repre-

sent a rich test ground. Besides the mentioned physical
meaning of susceptibilities as measures for fluctua-
tions, they additionally constitute the Taylor coefficients
of the excess pressure �pðT;�u;�dÞ � pðT;�u;�dÞ �
pðT;�u ¼ 0; �d ¼ 0Þ, expanded simultaneously in pow-
ers of �u and �d via

�pðT;�u;�dÞ ¼
X
ju;jd

�ju;jdðTÞ
�ju

u

ju!

�jd
d

jd!
; (2)

thus containing information about baryon-density effects
in the EOS. (Similarly, one could consider the Taylor
expansion of the pressure pðT;�q þ�I;�q ��IÞ in

terms of �q and �I.) Various associated expansion coef-

ficients, e.g., those of flavor diagonal and off-diagonal
susceptibilities as well as relations among them, are dis-
cussed below. The excess pressure becomes increasingly
important in the domain of larger values of �u;d and lower

temperatures. For instance, imposing �-stability and elec-
tric charge neutrality of hot quark matter stars requires
knowledge about the dependence of bulk thermodynamic
quantities on �u and �d separately, at least. This under-
scores the importance of the susceptibilities �ju;jdðTÞ even
if, at small T, a Taylor expansion in�u;d directions may not

suffice.
The net quark flavor number densities ni ¼ @p=@�i

with i ¼ u, d read

ni ¼ di
2�2

Z 1

0
dkk2

�
1

eð!i��iÞ=T þ 1
� 1

eð!iþ�iÞ=T þ 1

�
;

(3)

where di ¼ du;d ¼ 2Nc refers to the spin and color degen-

eracies of the quarks. This implies that baryon charge- 13
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carriers are quasiparticles with quark quantum numbers
obeying the dispersion relations [36]

!2
i ¼ k2 þm2

i þ�i;

�i ¼ 1

3

�
T2 þ�2

i

�2

�
G2ðT;�u;�dÞ:

(4)

For later purposes, we also exhibit the corresponding ex-
pression for gluons reading

!2
g ¼ k2 þ�g;

�g ¼ 2

3

�
T2 þ 3

8�2
ð�2

u þ�2
dÞ
�
G2ðT;�u;�dÞ:

(5)

The quark mass parameters mi might comply with the
lattice calculational setup, e.g., either mi ¼ �iT with con-
stant �i to compare with [12], or constant mi to compare
with [6,13].

The crucial point is that, besides the displayed explicit
dependence of the self-energy parts �l (where l is a label
for u, d, g) on f�ig ¼ �u;d and T, there is also an implicit

dependence via the effective coupling G2ðT;�u;�dÞ. In
the case of one independent chemical potential �u ¼
�d ¼ �q (i.e., �I ¼ 0), the Maxwell relation @nq=@T ¼
@s=@�q, with entropy density s, together with the statio-

narity of the grand canonical potential, �p=��l ¼ 0, leads
to Peshier’s flow equation [32] which determines
G2ðT;�qÞ for given initial condition G2ðT;�q ¼ 0Þ. In
the case of two independent chemical potentials �u;d or,

equivalently, �q;I, a system of three coupled equations is

obtained from demanding stationarity and from the
Maxwell relations

@s

@�I
¼ @nI

@T
; (6)

@s

@�q
¼ @nq

@T
; (7)

@nI
@�q

¼ @nq
@�I

: (8)

The needed expression for the entropy density is listed in
Appendix A and, with the definitions of �u;d and �q;I

above, we note for isovector and quark number densities
nI ¼ nu � nd and nq ¼ 3nB ¼ nu þ nd, respectively. The

emerging system generalizes Peshier’s flow equation [32]
towards two independent chemical potentials propagating
G2ðT;�q ¼ 0; �I ¼ 0Þ into the thermodynamic parameter

space, i.e., to nonzero �q and �I.

The structure of the generalized system of flow equa-
tions reads in the basis ð�q;�IÞ

A1

@G2

@�I

þ B1

@G2

@T
¼ C1; (9)

A2

@G2

@�q

þ B2

@G2

@T
¼ C2; (10)

ðA3 � B3Þ @G
2

@�q

¼ ðA3 þ B3Þ @G
2

@�I

; (11)

with coefficients A1;2;3, B1;2;3, C1;2 listed in Appendix B.

From these coefficients it becomes evident how quark and
gluon sectors are coupled. It was earlier argued [35] that
the generalized system of flow equations in Eqs. (9)–(11)
cannot be solved uniquely for arbitrary values of �q and

�I, but only when assuming a side condition �u ¼
�uð�dÞ, i.e., when considering merely one independent
chemical potential. To see this, we reformulate Eqs. (9)–
(11) in the basis (�u, �d), making use of the analog of
Eq. (11) in terms of �u and �d. Then, the generalized
system of flow equations is transformed into

A 1

@G2

@�u

þB1

@G2

@T
¼ C1; (12)

A 2

@G2

@�u

þB2

@G2

@T
¼ C2: (13)

These partial differential equations are uniquely solvable if
the coefficients A1;2 and B1;2 and C1;2, as listed in

Appendix C, are pairwise equal. Indeed, A1 ¼ A2 and
B1 ¼ B2 hold in general. But, the furthermore needed
equality C1 ¼ C2 is ensured for arbitrary but small values
of �u;d, i.e., �u;d � �T. (Actually, the equality of C1 and
C2 is given up to orderOð�2

u;dÞ in a Taylor series expansion
in terms of�u and�d; the coefficients of third-order terms
start to differ.)
As the primary goal of this paper is the comparison of

susceptibility Taylor series expansion coefficients Eq. (1)
(to be calculated as derivatives of p at �u;d ¼ 0) with

lattice QCD results up to fourth-order, the necessary con-
ditions are fulfilled. The issue of potential limitations
provided by the restriction to the small �u;d region and

one possible way of circumventing them are discussed in
Appendix D. In the needed leading order for evaluating the
susceptibility coefficients of interest we note that from
Eqs. (C3) and (C4) in Appendix C

�u ¼ �d

I1

I2

; (14)

�u ¼ �d

I5

I4

I1

I2

; (15)

where Ik represent phase-space integrals listed in
Appendix B, implying also !u ¼ !d in the mass symmet-
ric case, mu ¼ md, and I4 ¼ I5.
Furthermore, by exploiting Eqs. (9)–(11), one finds

@G2

@�q
j�q¼�I¼0 ¼ @G2

@�I
j�q¼�I¼0 ¼ 0 and

FLAVOR DIAGONAL AND OFF-DIAGONAL . . . PHYSICAL REVIEW D 77, 114016 (2008)

114016-3



@2G2

@�2
q

���������q¼�I¼0
¼ 1

N

�
N 1

�
2�2

uT þ 2

3
TG2ðTÞ

þ 1

3
T2 @G

2ðTÞ
@T

�
þN 2

�
2�2

dT

þ 2

3
TG2ðTÞ þ 1

3
T2 @G

2ðTÞ
@T

�

� I3

1

�2
G2ðTÞ � I4

2

3�2
G2ðTÞ

� I5

2

3�2
G2ðTÞ

�
; (16)

while from Eqs. (12) and (13), we find @G2

@�u
j�u¼�d¼0 ¼

@G2

@�d
j�u¼�d¼0 ¼ 0 and

@2G2

@�2
u

���������u¼�d¼0
¼ 1

N

�
N 1

�
2�2

uT þ 2

3
TG2ðTÞ

þ 1

3
T2 @G

2ðTÞ
@T

�
� I3

1

2�2
G2ðTÞ

� I4

2

3�2
G2ðTÞ

�
; (17)

with coefficientsN ,N 1;2 listed in Appendix C, G
2ðTÞ ¼

G2ðT;�u ¼ 0; �d ¼ 0Þ and I3;4;5 considered at �q ¼
�I ¼ 0 or, equivalently, �u ¼ �d ¼ 0. Note that in the
flavor symmetric case considered here, Eqs. (16) and (17)
are related via @2G2=@�2

uj�u;d¼0 ¼ 1
2@

2G2=@�2
qj�q;I¼0. In

addition, odd derivatives with respect to the chemical

potentials such as @3G2

@�3
u

or mixed derivatives such as
@2G2

@�u@�d
or @2G2

@�q@�I
vanish at �u ¼ �d ¼ 0 ¼ �q ¼ �I. The

above stated expressions and equalities are uniquely ob-
tained from the generalized system of flow equations in the
region of small �u;d, and we can proceed by evaluating

various susceptibilities.

III. COMPARISON WITH LATTICE QCD DATA

A. Taylor expansions in �q=T at �I ¼ 0

In this section, we confront the above extended quasi-
particle model (QPM) with lattice QCD data of various
susceptibilities for Nf ¼ 2 degenerate quark flavors. In

[12], quark number and isovector susceptibilities as well
as flavor diagonal and off-diagonal susceptibilities have
been calculated on a lattice with temporal and spatial
extensions N� ¼ 4 and N� ¼ 16 using improved actions
and mu ¼ md ¼ 0:4T (i.e., �u ¼ �d ¼ 0:4) as quark mass
parameters. As a special case of the Taylor expansion in
terms of �q and �I, expansions in terms of �q=T at �I ¼
0 were considered.

The quark number susceptibility �qðT;�qÞ=T2 ¼
@2ðpðT;�q;�qÞ=T4Þ

@ð�q=TÞ2 ¼ 2c2 þ 12c4ð�q

T Þ2 þ 30c6ð�q

T Þ4 þ Oð�6
qÞ

with ckðTÞ ¼ 1
k!

@kðT�4pðT;�qþ�I;�q��IÞÞ
@ð�q=TÞk j�q;I¼0 has been ana-

lyzed already in detail in [33], and an impressively good
agreement of our model with the lattice QCD data from
[12] has been found. The isovector susceptibility �IðT;�qÞ
is only accessible with the present extension of our model;
it obeys the expansion

�IðT;�qÞ
T2

¼ @2ðpðT;�q þ�I;�q ��IÞ=T4Þ
@ð�I=TÞ2

¼ 2cI2 þ 12cI4

�
�q

T

�
2 þ 30cI6

�
�q

T

�
4 þOð�6

qÞ;
(18)

where the expansion coefficients read

cIkðTÞ ¼
1

k!

@kðT�4pðT;�q þ�I;�q ��IÞÞ
@ð�I=TÞ2@ð�q=TÞk�2

���������q;I¼0
:

(19)

Because of the invariance of lnZ under CP transfor-
mations, cIk vanish for odd k.
For the first coefficient of interest we find within the

extended QPM the explicit representation

cI2ðTÞ ¼
d

�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ2 ; (20)

with d ¼ du ¼ dd and 	0 ¼ !u=Tj�u;d¼0 ¼ !d=Tj�u;d¼0

which implies cI2 ¼ c2 for all temperatures (cf. [33]) in
the QPM. The next nonzero coefficient is

cI4ðTÞ ¼
d

12�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ4
�
e2	0 � 4e	0 þ 1

� ðe2	0 � 1Þ
	0

�
1

�2
G2ðTÞ þ T2

6

@2G2

@�2
q

���������q;I¼0

��
;

(21)

where @2G2

@�2
q
j�q;I¼0 is given in Eq. (16).

As in our previous studies [33], we choose for the
effective coupling G2ðT;�u ¼ 0; �d ¼ 0Þ entering
Eqs. (4), (5), and (16) the parametrization

G2ðTÞ ¼
�G2

2loopð
Þ; 
 ¼ � ðT�TsÞ
Tc

; T � Tc;

G2
2loopðTcÞ þ b

�
1� T

Tc

�
; T < Tc:

(22)

The numerically evaluated QPM results for cI2 and cI4 are
exhibited in Fig. 1 (results for c2;4 are exhibited in [33])

and compared with lattice QCD data [12], where we use
as parameters entering G2ðTÞ in Eq. (22) � ¼ 5:95, Ts ¼
0:75Tc, and b ¼ 421:5. The explicit value of Tc is not
important for the scaled quantities considered here. (Note
that these parameters differ from the parametrization em-
ployed in [33] for describing ci. This is due to the different
quark dispersion relations used in [33] and here.
Employing instead Eq. (4) as a quark dispersion relation
with the QPM parameters for G2ðTÞ stated above, we find
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an equally good agreement of QPM results for ci with the
lattice QCD data [12] as reported in [33].)

Similar to c4, the expansion coefficient cI4 slightly

underestimates the lattice QCD data [12] approaching its
Stefan-Boltzmann limit 1=ð2�2Þ, while cI2 agrees remark-

ably well with the data [12] for T � Tc approaching its
Stefan-Boltzmann limit Nf=2 asymptotically. Whereas �q,

due to the growing importance of the higher-order expan-
sion coefficients with increasing chemical potential, exhib-
its a significant peak structure close to Tc for large �q=T

indicating some critical behavior, �I does not point to such
structures. This behavior is a consequence of the much less
pronounced peak in cI4 compared to c4. Similar findings

were reported in [37], where a phenomenological sigma
model was considered. Below Tc, the agreement with lat-
tice QCD data might be accidental, but one may consider
Eq. (22) as convenient parametrization also for this region
(see also the discussion in Sec. IV).

Correlations between fluctuations in different flavor
components can be discussed by considering flavor diago-

nal and off-diagonal susceptibilities. They read

�uu

T2 ¼ 1

4

�
�q

T2
þ �I

T2

�

¼ 2cuu2 þ 12cuu4

�
�q

T

�
2 þ 30cuu6

�
�q

T

�
4 þOð�6

qÞ
(23)

for the flavor diagonal susceptibility and

�ud

T2 ¼ 1

4

�
�q

T2
� �I

T2

�

¼ 2cud2 þ 12cud4

�
�q

T

�
2 þ 30cud6

�
�q

T

�
4 þOð�6

qÞ
(24)

for the flavor off-diagonal susceptibility, where the indi-
vidual expansion coefficients are defined by cuuk ¼ ðck þ
cIkÞ=4 and cudk ¼ ðck � cIkÞ=4.
The expansion coefficients cuuk and cudk for k ¼ 2, 4 are

exhibited in Fig. 2 and compared with lattice QCD data
[12]. The diagonal expansion coefficients cuu2;4 show a

similar pattern as c2;4 and cI2;4 approaching their Stefan-

Boltzmann limits Nf=4 asymptotically in the case of cuu2
and 1=ð4�2Þ for T > 2Tc in the case of cuu4 . The pro-
nounced peak structure of the off-diagonal expansion co-
efficient cud4 is well reproduced, while in our extended

QPM cud2 is zero for all temperatures, in contrast to the

data which are numerically small and differ noticeably
from zero only in the region T & Tc. This is simply a
consequence of cI2 ¼ c2. The pattern observed for the
flavor off-diagonal susceptibility coefficients is discussed
further in Sec. III B. As the flavor off-diagonal suscep-
tibility coefficients cudk rapidly approach their Stefan-

Boltzmann limit, which is zero for all k, �ud vanishes for
large T indicating that fluctuations in different flavor chan-
nels are uncorrelated at high temperatures. On the other
hand, �ud increases rapidly with increasing �q in the

vicinity of Tc, indicating increasing correlations [8,9] be-
tween fluctuations in different flavor channels in the tran-
sition region. This also explains the observed different

0.8 1 1.2 1.4 1.6 1.8 2
T/T

0

0.1

0.2

0.3

0.4

0.5

c2
uu

c4
uu

c
0.8 1 1.2 1.4 1.6 1.8 2

T/T

-0.02

-0.01

0

0.01

0.02

0.03

0.04

c4
ud

c2
ud

c

FIG. 2 (color online). Comparison of QPM results (solid curves) for the expansion coefficients cuuk of the flavor diagonal
susceptibility �uu (left) and cudk of the flavor off-diagonal susceptibility �ud (right) with lattice QCD data [12] (circles for k ¼
2, squares for k ¼ 4).

0.8 1 1.2 1.4 1.6 1.8 2
T/T

0

0.2

0.4

0.6

0.8

1

c2
I

c4
I

c

FIG. 1 (color online). Comparison of QPM results (solid
curves) for cIk with lattice QCD data [12] (circles for k ¼ 2
and squares for k ¼ 4) for Nf ¼ 2 quark flavors.
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behavior of �q and �I: While peak structures effectively

add up in �q they approximately cancel each other in �I.

The behavior of the electric charge susceptibility �Q is

strongly related to �q and �I via �Q ¼ 1
4 ð�I þ 1

9�qÞ. The
corresponding Taylor expansion reads

�QðT;�qÞ
T2

¼ 2cQ2 þ 12cQ4

�
�q

T

�
2 þ 30cQ6

�
�q

T

�
4

þOð�6
qÞ; (25)

with expansion coefficients cQk ¼ 1
4 ðcIk þ 1

9 ckÞ ¼ ð59 cuuk �
4
9 c

ud
k Þ. The coefficients cQ2 and cQ4 are exhibited in Fig. 3.

From the definition of cQk it becomes clear that contribu-

tions of pronounced structures appearing in flavor diagonal
and off-diagonal susceptibilities do not completely cancel
in the electric charge susceptibility.

B. Taylor expansion in �u and �d

In this section, we confront the extended QPM with
lattice QCD data [6,13] of generalized quark number sus-
ceptibilities �ju;jd as defined in Eq. (1). These simulations

were also performed for Nf ¼ 2 degenerate quark flavors

on a lattice with temporal and spatial extensions N� ¼ 4
and N� ¼ 16. However, the used quark mass parameter
entering the quark dispersion relation reads now mu ¼
md ¼ 0:1Tc, in agreement with the lattice performance
[6,13], which is temperature independent in contrast to
the lattice setup considered in Sec. III A. As a result,
some of the coefficients in the generalized system of flow
equations are changed, which, consequently, affects the
derivative expressions of the effective coupling. To be
precise, the terms explicitly depending on �u and �d, which
enter Eqs. (16) and (17) and some coefficients in
Appendix B and C, have to vanish for constant mu;d.

Furthermore, nonimproved actions have been employed
in [6,13]; thus cutoff effects on the numerical results
are sizeably increased compared to improved actions. In
Sec. III A, we assumed the lattice QCD data [12] to be
rather close to the continuum limit as improved actions
were used (cf. a discussion in [38]); thus no continuum
correction factor was applied. (As discussed in [11],
continuum limit corrections to the Taylor expansion coef-
ficients ck are expected to be similar (10–20%) to correc-
tions for the pressure at zero chemical potential [39], even
though the corrections seem to increase for higher-order
expansion coefficients; see [11,40].) Here, however, we
have to rely on an estimate for the continuum extrapolation
of the lattice QCD data from [6,13]. By investigating
different temporal lattice extensions N� at fixed large
temperature in [41,42], the continuum limit of some gen-
eralized quark number susceptibilities was estimated. Even
though, in principle, correction factors could be different
for different temperatures, we apply as scaling factors

dð�2Þ
lat ¼ 0:47 in the case of �2;0=T

2 [41,42] and a larger

correction d
ð�4Þ
lat ¼ 0:32 in the case of �4;0 [42] to the data

[6,13] for all T.
Estimating the continuum limit is necessary for making

possible a meaningful comparison between the expan-
sion coefficients considered in Sec. III A and the general-
ized quark number susceptibilities �ju;jd . In fact, they are

closely related [19], e.g., the expansion coefficients of
flavor diagonal and off-diagonal susceptibilities �uu and
�ud can be expressed in terms of �ju;jd via

cuu2 ¼ 1

2

�2;0

T2
; (26)

cud2 ¼ 1

2

�1;1

T2
; (27)

cuu4 ¼ 1

24
ð�4;0 þ 2�3;1 þ �2;2Þ; (28)

cud4 ¼ 1

24
ð2�3;1 þ 2�2;2Þ: (29)

Within the extended QPM, we find from Eq. (1) and by
using Eqs. (28) and (29)

�2;0ðTÞ
T2

¼ d

�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ2 ; (30)

�1;1ðTÞ ¼ 0; (31)

�4;0ðTÞ ¼ d

�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ4
�
e2	0 � 4e	0 þ 1

� ðe2	0 � 1Þ
	0

�
1

�2
G2ðTÞ þ T2

2

@2G2

@�2
u

���������u;d¼0

��
;

(32)
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FIG. 3 (color online). Comparison of QPM results (solid
curves) for the electric charge susceptibility coefficients cQk with

lattice QCD data [12] (circles for k ¼ 2, squares for k ¼ 4).
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�3;1ðTÞ ¼ � d

�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ4
ðe2	0 � 1Þ

	0

T2

2

�
�
1

2

@2G2

@�2
q

���������q;I¼0
�@2G2

@�2
u

���������u;d¼0

�
; (33)

�2;2ðTÞ ¼ � d

�2

Z 1

0
dk

k2

T3

e	0

ðe	0 þ 1Þ4
ðe2	0 � 1Þ

	0

T2

2

�
�
@2G2

@�2
u

���������u;d¼0
� 1

3

@2G2

@�2
q

���������q;I¼0

�
; (34)

where @2G2

@�2
q
j�q;I¼0 and

@2G2

@�2
u
j�u;d¼0 are given in Eqs. (16) and

(17). As both derivatives of the effective coupling entering
these expressions are related with each other in the flavor
symmetric case, we find �3;1 ¼ 0 for all temperatures in

the QPM, while �2;2 is nonzero. Furthermore, �1;1 ¼ 0 as

cud2 vanishes for all temperatures, while cud4 is nonzero as

�2;2 is nonzero. In particular �1;1, or c
ud
2 , vanishes because

flavor-mixing effects, which describe the dependence of
one quark flavor sector on changes in another one, are
inherent in the quasiparticle model only via the quasipar-
ticle dispersion relations resulting in terms which vanish at
�u;d ¼ 0. Qualitatively, our findings, in particular, the

observed deviations in the flavor off-diagonal susceptibil-
ity coefficients, can be understood from perturbative QCD
arguments. In a perturbative expansion of the thermody-
namic potential different partonic sectors start to couple
only at order Oðg3Þ of the QCD running coupling g. How-
ever, these plasmon term contributions / g3 are not
completely reproduced in a similar expansion of the quasi-
particle model thermodynamic potential [43]. Similar
findings, pointing to the necessity of properly including
flavor-mixing effects for affecting the flavor off-diagonal
susceptibility, were reported in [44] within a Polyakov loop
extended Nambu-Jona-Lasinio model approach.

In Fig. 4, we exhibit the QPM results for �2;0=T
2 and

�4;0 and compare with the continuum extrapolated lattice

QCD data from [6,13] (circles). When using the QPM

parameters found in Sec. III A, the QPM results (dashed
curve in the left panel of Fig. 4) underestimate the lattice
QCD data (circles) of �2;0=T

2. For comparison, we also

show the lattice QCD data [12] for 2cuu2 (squares), where

the increasing deviations of the QPM results (dashed
curve) from the data (squares) for increasing temperatures
are due to the different quark mass parameters used here
and in Sec. III A. (Note that when applying continuum
limit corrections of about 10% in the considered tempera-
ture range to the lattice QCD data [12] (squares) as stated
above, both continuum extrapolated lattice QCD data sets
[6,13] (circles) and [12] would be fairly well compatible
apart from a narrow interval around T � Tc, such that one
unique QPM parametrization would be sufficient.) To
bridge the data for �2;0 to �4;0 by our model, we readjust,

therefore, the QPM parameters entering G2ðTÞ in Eq. (22)
in order to perfectly describe the lattice QCD data [6,13]
(circles) of �2;0=T

2 by using � ¼ 17, Ts ¼ 0:905Tc and

b ¼ 431. The corresponding QPM results for �2;0=T
2 and

�4;0 are exhibited by solid curves in Fig. 4. Again, very

good agreement for T > 0:9Tc is found.

C. Deconfined �-stable and electrically
neutral quark matter

Now, we turn our attention to the discussion of some
bulk properties of deconfined quark matter of Nf ¼ 2

dynamical quark flavors by means of Taylor series expan-
sions using the generalized quark number susceptibilities
discussed in the previous section. Clearly, these consider-
ations are limited by the range of validity of such an
approach, say by conservatively guessing the quark flavor
chemical potentials to be individually restricted by
�u;d=T < 1. Note that we employ again mu;d ¼ 0:1Tc as

the quark mass parameter.
Starting from the definition of the excess pressure �p in

Eq. (2), including only terms up to ju þ jd ¼ 4, the net
baryon density nB, suppressing the explicit notation of the
temperature dependence inherent in the generalized quark
number susceptibilities, reads

0.8 1 1.2 1.4 1.6 1.8 2 2.2
T/T

0

0.2

0.4

0.6
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 /T
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FIG. 4 (color online). Comparison of QPM results (dashed curves for the parametrization employed in Sec. III A and solid curves for
readjusted QPM parameters) for the generalized quark number susceptibilities �2;0=T

2 (left panel) and �4;0 (right panel) with the

continuum extrapolated lattice QCD data [6,13] (circles) and the lattice QCD data for 2cuu2 from [12] (squares).
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nBð�u;�dÞ ¼ 1

3

�
ð�2;0 þ �1;1Þð�u þ�dÞ þ

�
�4;0

3!
þ �3;1

3!

�

� ð�3
u þ�3

dÞ þ
1

2
ð�3;1 þ �2;2Þ

� ð�2
u�d þ�u�

2
dÞ
�
; (35)

nBð�B;�IÞ ¼ 1

9

�
2ð�2;0 þ �1;1Þ�B þ 1

9

�
1

3
�4;0 þ 4

3
�3;1

þ �2;2

�
�3

B þ ð�4;0 � �2;2Þ�B�
2
I

�
: (36)

Thus, the net baryon density simultaneously depends on
two independent chemical potentials, �u and �d (or,
equivalently, �B and �I). This is similarly the case for a
noninteracting gas of gluons and massless quarks with two
independent quark flavor chemical potentials. Only in the
special case of �I ¼ 0, i.e., �u ¼ �d ¼ �q, nB is a func-

tion of one chemical potential �B alone ensuring constant
net baryon density for constant baryo-chemical potential.
In general, however, detailed knowledge about the depen-
dence on different quark chemical potentials is required,
when discussing baryon-density effects on the EOS. This is
illustrated in Fig. 5, where the scaled net baryon density is
exhibited for constant �B and constant temperatures. As
by definition �d ¼ 2

3�B ��u, one chemical potential in

Eq. (35) can be replaced. We chose �B=T ¼ 1 such that
�u=T þ�d=T ¼ 2

3 , ensuring that these considerations

stay within the range of validity of the employed Taylor
expansion approach. The minimum at �u=T ¼ �d=T ¼ 1

3

exhibits the value of nB=T
3 for one independent quark

chemical potential. nB for �B ¼ T drops by 3.3% at T ¼
2Tc and by 4.6% at T ¼ 1:05Tc when changing�u=T from

0 to 1
3 . Accordingly, one is tempted to consider the detailed

knowledge about the individual �u and �d dependencies
as not so important.
However, there are physical situations where the corre-

sponding side conditions require separate knowledge about
the nontrivial �u and �d dependencies of bulk thermody-
namic quantities. First, we consider curves of constant �B,
which are given by the linear relation �d ¼ 2

3�B ��u

(see the short-dashed curve in the left panel of Fig. 6
with �B=T ¼ 1). The individual net quark number den-
sities read nu ¼ �2;0�u þ �1;1�d þ �4;0

3! �
3
u þ �3;1

2 �2
u�d þ

�3;1

3! �
3
d þ �2;2

2 �u�
2
d and nd ¼ �2;0�d þ �1;1�u þ �4;0

3! �
3
d þ

�3;1

2 �u�
2
d þ �3;1

3! �
3
u þ �2;2

2 �2
u�d. Since in the QPM �1;1 ¼

�3;1 ¼ 0, lines of constant nu or nd are approximately

given by lines of constant �u or �d, i.e., simply vertical
or horizontal lines in the left panel of Fig. 6 (not displayed).
(Only at temperatures T � Tc, where �2;2 is non-

negligible, is the simple pattern deformed somewhat.)
This situation is completely different when considering
constant scaled net baryon densities as depicted by the
solid curve in Fig. 6 (left panel) for nB=T

3 ¼ 0:187 at T ¼
1:1Tc unravelling the nontrivial dependence of�d on�u in
contrast to constant �B. In fact, here �B=T > 1 except for
the case when �u=T ¼ 0 or �d=T ¼ 0.
In heavy-ion collisions one often relates the quantum

numbers of the entrance channel with the ones of the
emerging fireball. Isospin-symmetric nuclear matter, for
instance, is characterized by an electric charge per baryon
ratio of 1:2. This translates into 2

3nu � 1
3 nd ¼ 1

2 nB which is

fulfilled for�d ¼ �u, i.e., simply a diagonal line in the left
panel of Fig. 6 (not displayed). Discussing, instead, gold
on gold collisions, the electric charge per baryon ratio is
approximately 0.4. The corresponding dependence�dð�uÞ
for T ¼ 1:1Tc is depicted by the dotted curve in the left
panel of Fig. 6. Another important issue concerns electric
charge neutrality in bulk matter. In pure Nf ¼ 2 quark

matter, electric charge neutrality would require 2
3nu �

1
3nd ¼ 0. The according dependence �dð�uÞ is depicted

in Fig. 6 (left panel) by the long-dashed curve, again for
T ¼ 1:1Tc. More relevant for hypothetical very hot neu-
tron star matter in a deconfined state is �-equilibrium.
Flavor changing weak currents give rise to the balance
equation d $ uþ eþ ��e, i.e., in weak interaction equi-
librium �e ¼ �d ��u, as the produced neutrinos are
supposed to leave the star and do not participate in the
balance. The electron net density is approximated by ne ¼
1
3�eT

2 þ 1
3�2 �

3
e, and electrically neutral bulk matter is

determined by 2
3nu � 1

3nd � ne ¼ 0. The corresponding

dependence �dð�uÞ is depicted by the dash-dotted curve
in Fig. 6 (left panel) for T ¼ 1:1Tc. The d quark net
number density decreases by requiring �-equilibrium, de-
manding also a nonzero electron density for electrically
neutral bulk matter (see Fig. 6 right panel); nu is not
affected when including electrons and �-equilibrium.

0 0.1 0.2 0.3 0.4 0.5 0.6
µ  /T

0.16

0.17
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  /

T
B

3

u

FIG. 5 (color online). Scaled net baryon density nB=T
3 from

Eq. (35) for constant �B=T ¼ 1 as a function of �u=T for
constant temperatures T=Tc ¼ 2, 1.5, 1.2, 1.1, 1.05 from top to
bottom.
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This is in contrast to findings for the cold color-flavor
locked phase of QCD [45] for Nf ¼ 2þ 1 dynamical

quarks, where no electrons are required.
The discussion can easily be extended to the physically

relevant case of two light (up and down) and one heavier
(strange) quarks, considering again two independent quark
chemical potentials for the light quarks, �l ¼ �u ¼ �d,
and for the strange quark, �s. Recently, first-principle
lattice QCD data for this case became available [38,46].
A detailed comparison of the properly extended quasi-
particle model with these lattice results and, in particular,
a discussion of finite baryon-density effects on the EOS
relevant for the hydrodynamical description of the expan-
sion stage of heavy-ion collisions demands further studies.

IV. SUMMARYAND DISCUSSION

The focus of the present paper is an analysis of isovector
and various flavor (off-)diagonal susceptibilities for two-
flavor QCD by comparing the extended quasiparticle
model with lattice QCD data [6,12,13]. The model includes
the same quark mass parameters mi as used in these lattice
simulations. (Basically, one could accomplish also a chiral
extrapolation. However, the effective coupling G2ðTÞ may
implicitly depend on these masses. This deserves separate
investigations.) A crucial point to be kept in mind concerns
finite-size effects. The lattice QCD calculations [6,12,13]
are performed on grids with finite temporal and spatial
extension, while our phenomenological model is formu-
lated in the thermodynamic continuum limit. The use of an
improved action in [12] lets us hope that the finite-size
effects are sufficiently small to make a direct comparison
meaningful. In contrast, the lattice QCD data of [6,13]
require severe continuum extrapolation factors. Thus, the
comparison of our extended QPM with these data is less
direct.

Having these limitations in mind, we emphasize the
good agreement of our model with the lattice QCD data

for c2;4, c
I
2;4, c

uu
2;4, and cud4 as well as for the related gener-

alized quark number susceptibilities. We consider this suc-
cessful comparison as encouraging. A conclusion is that
quasiparticle excitations, with a mass gap also in the chiral
limit, are able to explain those features of the strongly
coupled quark-gluon medium which are encoded in the
mentioned coefficients. In particular, baryon-density ef-
fects are probed by these coefficients. The baryon charge
is carried by quasiquark excitations, in contrast to models
[19] where di-quark and three-quark modes carry a sub-
stantial fraction of the baryon charge. Furthermore, in
several physical situations, like relativistic heavy-ion col-
lisions or in hot proto-(quark) neutron stars, the various
mentioned coefficients are needed to implement the ade-
quate side conditions.
We have applied our model also for T < Tc. Formally,

the description of the lattice QCD data below Tc requires
fairly large values of the effective coupling G2ðTÞ. (An
alternative description could rely on strongly increasing
correlations which are beyond the presently employed
approach [47].) The corresponding excitations become
very massive, ranging to hadronic mass scales. It turns
out that a few massive excitations reproduce fairly well
some of the lattice QCD data within the interval 0:8Tc–Tc.
This is numerically not too distinct from the hadron reso-
nance gas model, where one may regroup several reso-
nances into a few representative effective excitations. (Vice
versa, we mention that the resonance gas model [11,12,48]
coincides with lattice QCD data also slightly above Tc; for
an even more extreme point of view we refer the interested
reader to [49].) In this respect, it is conceivable that several
models with fairly distinct assumptions may equally well
reproduce the same lattice QCD data on thermodynamic
bulk properties—examples are [19,22–27,50–52]. Only
correlators and spectral properties of the excitations can
unreveal their real nature in the strongly interacting
system.
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µ  /T

0

0.2

0.4

0.6

µ 
 /T

u

d

Q = 0
β

Au+Au

n   / T   = const.

µ   /T = const.

B

B

3

0 0.1 0.2 0.3 0.4
µ  /T

0

0.1

0.2

0.3

0.4

0.5

n 
 /T i

3

u

FIG. 6 (color online). Left: Dependence �dð�uÞ for various side conditions or physical situations. �B ¼ T is depicted by the short-
dashed curve, whereas constant nB=T

3 ¼ 0:187 holds along the solid curve where �B � T. Electric charge neutrality is given along
the long-dashed curve for pure Nf ¼ 2 quark matter, while the dash-dotted curve includes additionally electrons, imposing �

equilibrium. The dotted curve reflects the situation in Auþ Au heavy-ion collisions. (The curves end where �u=T þ�d=T � 1.)
Right: Scaled net number densities as functions of �u=T demanding electric charge neutrality either for pure Nf ¼ 2 quark matter

(solid curves, nd=T
3 top, nu=T

3 bottom) or for including electrons and requiring �-equilibrium (dashed curves, nd=T
3, nu=T

3,
ne=T

3 from top to bottom). For T ¼ 1:1Tc.
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On the other hand, the coefficient cud2 , and accordingly
�1;1, is poorly described. This may be a hint for missing

modes or degrees of freedom in our model. Qualitatively,
our findings can be understood since flavor-mixing effects,
which are important for the correct description of the flavor
off-diagonal susceptibility, are not explicitly inherent in
our quasiparticle model, but only implicitly via the quasi-
particle dispersion relations. Progressing lattice QCD cal-
culations are welcome to resolve this issue and to get more
confidence in the baryon number carrying modes (cf. dis-
cussions in [9,18]). Also, the slight deviations between our
model and the data very close to Tc may signal a deficit of
our quasiparticle picture. Nevertheless, considering our
phenomenological model as a useful parametrization of
lattice QCD results, it may serve as QCD-based input for
hydrodynamical calculations for the expansion dynamics
of matter created in ultrarelativistic heavy-ion collisions,
cf. [34].

Finally, we stress that the utilized Taylor expansion
technique is sensitive to the region�u;d ! 0. QCD critical

point effects at larger values of �u;d may not be catched in

such an approach. For a phenomenological procedure to
supplement our model by critical point features see [53].

In summary, we extend our quasiparticle model towards
two independent chemical potentials. This allows for the
determination of various susceptibilities. We find an im-
pressive agreement (with the exception of two numerically
small flavor off-diagonal susceptibility coefficients) with
lattice QCD data. Since a special set of susceptibilities also
provides the Taylor expansion coefficients of the baryon-
driven excess pressure, we argue that our phenomenologi-
cal quasiparticle model catches relevant modes for the
equation of state at nonzero net baryon density. It may be
used, therefore, for the future determination of higher-
order Taylor expansion coefficients which become increas-
ingly important at larger net baryon densities.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with E.
Laermann, F. Karsch, R.V. Gavai, and S. Gupta. The
work is supported by BMBF 06DR136, GSI-FE, and
EU I3HP.

APPENDIX A

The pressure pðT;�u;�dÞ as the primary thermody-
namic potential of our model is constructed by assuming
a quasiparticle picture via

pðT;�u;�dÞ ¼
X

l¼u;d;g

plðT;�u;�dÞ

� Bð�u;d;g½T;�u;�d�Þ; (A1)

where B is to be determined as a line integral from ther-
modynamic consistency conditions and the stationarity
condition �p=��j ¼ 0 resulting in @pj=@�j ¼ @B=@�j.

The partial pressures pl of included excitations l referring
to u quarks, d quarks, and gluons (g) read

pl ¼ 	ldlT
Z d3k

ð2�Þ3 ½lnð1þ 	le
�ð!l��lÞ=TÞ

þ lnð1þ 	le
�ð!lþ�lÞ=TÞ�; (A2)

where the dispersion relations !l ¼ !lðT;�u;�dÞ are
given in Eqs. (4) and (5), 	l is þ1 (� 1) for fermions
(bosons), dl refers to the spin (polarization) and color
degeneracies of quasiquarks and quasigluons reading du ¼
dd ¼ 2Nc and dg ¼ N2

c � 1, and �g ¼ 0. In this way, we

count left-handed transversal quasigluons as antiparticles
of the right-handed ones. These structures emerge from the
underlying two-loop QCD � functional [54,55] by impos-
ing formal manipulations such as neglecting finite width
effects in the considered asymptotic hard thermal loop
(HTL) approximations of the one-loop self-energies, and
neglecting (anti)plasmino and longitudinal gluon excita-
tions as well as Landau damping [47]. While p is highly
nonperturbative with respect to the effective coupling G2

entering the self-energy expressions, it is this phenomeno-
logically introduced coupling which enables the model to
go beyond the �-derivable approximations in [55].
The entropy density expression entering the generalized

Peshier equations in Eqs. (6)–(8) reads s ¼ P
l¼u;d;gsl ¼

@p=@T with

si ¼ di
Z d3k

ð2�Þ3
�
lnð1þ e�ð!i��iÞ=TÞ

þ ð!i ��iÞ=T
ðeð!i��iÞ=T þ 1Þ þ ð�i ! ��iÞ

�
; (A3)

sg ¼ �2dg
Z d3k

ð2�Þ3
�
lnð1� e�!g=TÞ � !g=T

ðe!g=T � 1Þ
�
;

(A4)

where i ¼ u, d and �u ¼ �q þ�I, �d ¼ �q ��I. This

additivity in the contributions sl of the various parton
species is anchored in the underlying two-loop QCD �
functional [47,55,56].

APPENDIX B

The coefficients entering Eqs. (9)–(11) read

A1 ¼ I3

1

3

�
2T2 þ 3

2�2
ð�2

q þ�2
I Þ
�
þI4

1

3

�
T2 þ 1

�2

�ð�qþ�IÞ2
�
þI5

1

3

�
T2 þ 1

�2
ð�q ��IÞ2

�
; (B1)

B1 ¼ �I1

1

3

�
T2 þ 1

�2
ð�q þ�IÞ2

�

þ I2

1

3

�
T2 þ 1

�2
ð�q ��IÞ2

�
; (B2)
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C1 ¼ �I3

1

�2
G2�I � I4

1

3

2

�2
½�q þ�I�G2

þ I5

1

3

2

�2
½�q ��I�G2 þ I1

�
2�2

uT þ 2

3
TG2

�

� I2

�
2�2

dT þ 2

3
TG2

�
; (B3)

A2 ¼ I3

1

3

�
2T2 þ 3

2�2
ð�2

q þ�2
I Þ
�
þ I4

1

3

�
T2 þ 1

�2

� ð�q þ�IÞ2
�
þ I5

1

3

�
T2 þ 1

�2
ð�q ��IÞ2

�
; (B4)

B2 ¼ �I1

1

3

�
T2 þ 1

�2
ð�q þ�IÞ2

�

� I2

1

3

�
T2 þ 1

�2
ð�q ��IÞ2

�
; (B5)

C2 ¼ �I3

1

�2
G2�q � I4

1

3

2

�2
½�q þ�I�G2

� I5

1

3

2

�2
½�q ��I�G2 þ I1

�
2�2

uT þ 2

3
TG2

�

þ I2

�
2�2

dT þ 2

3
TG2

�
; (B6)

A3 ¼ I1

1

3

�
T2 þ 1

�2
ð�q þ�IÞ2

�
; (B7)

B3 ¼ I2

1

3

�
T2 þ 1

�2
ð�q ��IÞ2

�
; (B8)

where the phase-space integrals Ik are given by

I 1 ¼ @nu
@�u

¼ du
2�2

Z 1

0
dk

k2

2!uT

�
eð!uþ�qþ�IÞ=T

ðeð!uþ�qþ�IÞ=T þ 1Þ2

� eð!u��q��IÞ=T

ðeð!u��q��IÞ=T þ 1Þ2
�
; (B9)

I 2 ¼ @nd
@�d

¼ dd
2�2

Z 1

0
dk

k2

2!dT

�
eð!dþ�q��IÞ=T

ðeð!dþ�q��IÞ=T þ 1Þ2

� eð!d��qþ�IÞ=T

ðeð!d��qþ�IÞ=T þ 1Þ2
�
; (B10)

I 3 ¼
@sg
@�g

¼ � dg

�2

Z 1

0
dk

k2

2T2

e!g=T

ðe!g=T � 1Þ2 ; (B11)

I4 ¼ @su
@�u

¼� du
2�2

Z 1

0
dk

k2

2!uT
2

�ð!u þ�q þ�IÞeð!uþ�qþ�IÞ=T

ðeð!uþ�qþ�IÞ=T þ 1Þ2

þ ð�q;I !��q;IÞ
�
; (B12)

I5 ¼ @sd
@�d

¼� dd
2�2

Z 1

0
dk

k2

2!dT
2

�ð!d þ�q ��IÞeð!dþ�q��IÞ=T

ðeð!dþ�q��IÞ=T þ 1Þ2

þ ð�q;I !��q;IÞ
�
: (B13)

In Eqs. (14) and (15), �q and �I in the phase-space

integrals Ik are replaced by �u ¼ �q þ�I and �d ¼
�q ��I.

APPENDIX C

The coefficients in Eqs. (12) and (13) read

A1 ¼ A2

¼ 1

3
I3

�
2T2 þ 3

4�2
ð�2

u þ�2
dÞ
�
þ 1

3
I4

�
T2 þ�2

u

�2

�

þ 1

3
I5

�
T2 þ�2

d

�2

�
; (C1)

B 1 ¼ B2 ¼ � 1

3
I1

�
T2 þ�2

u

�2

�
; (C2)

and

C 1 ¼ I1

�
2�2

uT þ 2

3
TG2

�
� I3

1

2�2
G2�u

� I4

2

3�2
�uG

2; (C3)

C 2 ¼ I1

ðT2 þ�2
u=�

2Þ
ðT2 þ�2

d=�
2Þ
�
2�2

dT þ 2

3
TG2

�

� I3

1

2�2
G2�d

I1

I2

ðT2 þ�2
u=�

2Þ
ðT2 þ�2

d=�
2Þ

� I5

2

3�2
�dG

2 I1

I2

ðT2 þ�2
u=�

2Þ
ðT2 þ�2

d=�
2Þ ; (C4)

where�q and�I in the phase-space integrals Ik defined in

Appendix B have to be substituted by �u ¼ �q þ�I and

�d ¼ �q ��I. The coefficients in Eq. (16) read

N ¼ T2

�
2

3
I3 þ 1

3
I4 þ 1

3
I5

�
; (C5)
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N 1 ¼ du
2�2

Z 1

0
dk

k2

T2!u

�
e!u=T

ðe!u=T þ 1Þ2

� 2
e2!u=T

ðe!u=T þ 1Þ3
�
; (C6)

N 2 ¼ dd
2�2

Z 1

0
dk

k2

T2!d

�
e!d=T

ðe!d=T þ 1Þ2

� 2
e2!d=T

ðe!d=T þ 1Þ3
�
; (C7)

where I3;4;5 as well as!u;d have to be taken at�q ¼ �I ¼
0 or, equivalently, �u ¼ �d ¼ 0.

APPENDIX D

Let us first briefly discuss an implication of the require-
ment �u;d � �T needed for the consistency of Eqs. (12)

and (13). Second-order susceptibility coefficients depend
on G2 evaluated at �u;d ¼ 0, while fourth-order coeffi-

cients depend on G2 and @2G2=@�2
u;d at �u;d ¼ 0. In

general, nth order derivatives of G2 require up to and
including (n� 1)st derivatives of C1 or C2. This implies
that up to and including third order the derivatives of
the effective coupling can trustfully be taken. Therefore,
second- and fourth-order susceptibility coefficients and
related quantities are uniquely determined. However,
@4G2

@�4
u
j�u¼�d¼0 and higher orders cannot be evaluated

uniquely. These derivatives enter, for instance, sixth- and
higher-order susceptibility coefficients.

The origin of this insanity is the special ansatz for the
self-energy parts in the quasiparticle dispersion relations in
Eqs. (4) and (5), while our primary thermodynamic poten-
tial in Eq. (A1) together with (A2) should allow for con-
sistency in all orders of powers of �u;d. The reasoning for

our ansatz in Eqs. (4) and (5) is the contact to one-loop
expressions for the self-energies [57]. It has been shown,

however, in [58], for one (imaginary) chemical potential,
that one can discard the explicit �2 terms in the self-
energies and obtain an equally suitable description of the
lattice QCD results. In other words, the stationarity prop-
erty of the thermodynamic potential p, involved in our
quasiparticle model, causes a robustness against such mod-
ifications of the employed self-energy parametrizations.
It happens that for the modified self-energies, �i ¼

1
3T

2G2ðT;�u;�dÞ and �g ¼ 2
3T

2G2ðT;�u;�dÞ, the coef-

ficients in Eqs. (12) and (13) become

A 1 ¼ A2 ¼ T2

3
ð2I3 þ I4 þ I5Þ; (D1)

B 1 ¼ B2 ¼ �T2

3
I1; (D2)

C 1 ¼ C2 ¼ 2

3
TG2I1; (D3)

(for simplicity, we consider here the chiral limit or, as in
Sec. III B, temperature independent bare quark masses).
I.e., the generalized system of flow equations in Eqs. (9)–
(11) is uniquely solvable without restrictions, and G2 and
all its derivatives are trustfully obtained, implying also a
consistent determination of the susceptibility coefficients
of arbitrary order opening the avenue for future investiga-
tions. We have checked numerically that the result exhib-
ited for the fourth-order coefficient in Fig. 4 is changed by
less than 9% when changing the self-energy expressions
(generically a slight down shift of the curves occurs). The
result for the second-order coefficient exhibited in Fig. 4
remains unchanged as it depends only on G2 at �u;d ¼ 0
which is not affected by the modification of the self-energy
parametrizations. Similar statements are applicable for
other related susceptibilities. Consequently, the results ex-
hibited in Figs. 5 and 6 remain effectively unaltered.
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