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The nucleon electromagnetic form factors are calculated in a light cone QCD sum rules framework

using the most general form of the nucleon interpolating current. Using two models for the distribution

amplitudes, we predict the form factors. The predictions are also compared with existing experimental

data. It is shown that our results describe remarkably well the existing experimental data.
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I. INTRODUCTION

The nucleon electromagnetic (EM) form factors are the
fundamental objects for understanding nucleons’ internal
structure. The internal structure of the nucleon is usually
described in terms of the electromagnetic Dirac and Pauli
form factors F1ðq2Þ and F2ðq2Þ or equivalently the electric
and magnetic dipole Sachs form factors GEðq2Þ and
GMðq2Þ, respectively (for a recent status of experiments
and phenomenology of the form factors see [1]).

Until a few years ago, the nucleon electromagnetic form
factors were experimentally studied in unpolarized elastic
electron-nucleon scattering through a virtual photon ex-
change. It is shown in the pioneering work [2] that the
polarization effects, i.e., scattering of polarized electrons
from a polarized target, can play an essential role for a
more accurate determination of the nucleon electromag-
netic form factors. The main result of [2] is that, unlike the
unpolarized elastic cross section, which is proportional to
the sum of squares of the form factors, the polarized cross
section also contains interference terms of the form factors
GEðq2Þ and GMðq2Þ. Studying various polarization observ-
ables allows more accurate determination of these form
factors.

Recent developments in experimental instruments allow
production of polarized electron beams and polarized
protons, which gives the opportunity for a more precise
separation of the GEðq2Þ and GMðq2Þ form factors. The
electron-proton scattering experiments, which are per-
formed at Jefferson Laboratory using the polarized elec-
trons and polarized proton, show strong deviation from the
theoretical predictions [3–6], i.e., the ratio F2ðq2Þ=F1ðq2Þ
does not behave as is expected from previous experiments
and as is predicted by the perturbative QCD (for a review
see [7] and references therein). For understanding this
unexpected result, some model-independent nonperturba-
tive method is needed. Among all existing nonperturbative
approaches the QCD sum rules approach is one of the more

attractive and powerful methods, because it is based on the
fundamental QCD Lagrangian.
The goal of our work is the calculation of the electro-

magnetic form factors of the nucleon using the light cone
QCD sum rule (LCQSR) and general form of the interpo-
lating current for the nucleon. In this approach the form
factors of the nucleons are expressed in terms of distribu-
tion amplitude of the nucleon. Note that this problem is
investigated for the Ioffe current in the framework of the
LCQSR in [8] and the traditional sum rules in [9]. In [10],
an improved version of the Chernyak-Zhitnitsky current is
used. The paper is organized in following way: In Sec. II,
we present the result for the nucleon electromagnetic form
factors in the LCQSR method. Section III is devoted to the
numerical analysis, discussion, and conclusion.

II. ELECTROMAGNETIC FORM FACTORS OF
THE NUCLEON IN LCQSR

In this section EM form factors of the nucleon are
calculated within the light cone QCD sum rules method.
The electromagnetic form factors of the nucleon are de-
fined by the matrix element of the electromagnetic current
Jel� between the initial and final nucleon states hNðp0Þ j Jel� j
NðpÞi. The most general form of this matrix element
satisfying the Lorentz invariance and electromagnetic cur-
rent conservation is

hNðp0Þ j Jel� ð0Þ j NðpÞi
¼ �Nðp0Þ

�
��F1ðQ2Þ � i

2mN

���q
�F2ðQ2Þ

�
NðpÞ; (1)

whereQ2 ¼ �q2 is the negative of the square of the virtual
photon momentum, q ¼ p� p0, ��� ¼ i

2 ½��; ��� and F1

and F2 are the Dirac and Pauli form factors, respectively.
Another set of nucleon form factors is the so-called

Sachs form factors, which are defined in terms of the
F1ðQ2Þ and F2ðQ2Þ as follows:

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ;

GEðQ2Þ ¼ F1ðQ2Þ � Q2

4m2
N

F2ðQ2Þ; (2)
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at the static limit, i.e., at Q2 ¼ 0, GP
Eð0Þ ¼ 1, Gn

Eð0Þ ¼ 0,
GP

Mð0Þ ¼ �P ¼ 2:792 847 337ð29Þ, and Gn
Mð0Þ ¼ �n ¼

�1:913 042 72ð45Þ, where �P and �n are the anomalous
magnetic moments of the proton and neutron in units of the
Bohr magneton.

After these preliminary remarks, we proceed to calculate
the electromagnetic form factors of the nucleon in LCQSR.
The basic object of the LCQSR is a suitably chosen corre-
lation function. In this study, it is chosen as

��ðp; qÞ ¼ i
Z

d4xeiqxh0 j TfJNð0ÞJel� ðxÞg j NðpÞi; (3)

where Jel� is the electromagnetic current and JN is the
nucleon interpolating current. The correlation function
given in Eq. (3) describes the transition of the nucleon
NðpÞ to the nucleon Nðp� qÞ via the electromagnetic
current. The interpolating current for the nucleon is not
uniquely defined. In principle, any operator which has the
quantum numbers of the nucleon can be used. In this work,
the interpolating current is chosen as

JNðxÞ ¼ 2"abc
X2
l¼1

ðuTaðxÞCAl
1d

bðxÞÞAl
2u

cðxÞ; (4)

where A1
1 ¼ I, A2

1 ¼ A1
2 ¼ �5, A

2
2 ¼ �, and C is the charge

conjugation operator, and a, b, c are the color indices. The
parameter � is arbitrary, and the choice � ¼ �1 corre-
sponds to the Ioffe current which is also commonly used in
the literature. The electromagnetic current is

Jel� ðxÞ ¼ eu �u��uþ ed �d��d: (5)

The main idea of the LCQSR method is to calculate the
correlation function, on the one hand, in terms of the form
factors at the hadron level and, on the other hand, in terms
of the quark and gluon degrees of freedom. Equating two
representations of the correlation function and performing
a Borel transformation in order to suppress the contribu-
tions of the higher states and continuum, we get sum rules
for the EM form factors of the nucleon.

Let us first calculate the physical part of the correlator
(3). The contribution of the nucleon to the correlation

function (3) is given by

��ðp; qÞ

¼ X
s

h0 j JNð0Þ j Nðp0; sÞihNðp0; sÞ j Jel� ð0Þ j NðpÞi
m2

N � p02 :

(6)

The matrix element h0 j JNð0Þ j Nðp0; sÞi in (6) is deter-
mined in the following way:

h0 j JNð0Þ j Nðp0; sÞi ¼ �NNðp0; sÞ; (7)

where �N is the residue of the nucleon. The matrix element
hNðp0; sÞ j Jel� ð0Þ j NðpÞi is parameterized in terms of the
form factors F1 and F2 via Eq. (1). Summing over spins of
the nucleons

X
s

Nðp0; sÞ �Nðp0; sÞ ¼ p6 0 þmN; (8)

and using Eqs. (1), (6), and (7), we obtain the following
expression for the contribution of the nucleon to the corre-
lation function

��ðp; qÞ ¼ �N

m2
N � p02 ðp6 0 þmNÞ

�
��F1ðQ2Þ

� i

2mN

���q
�F2ðQ2Þ

�
NðpÞ þ � � � ; (9)

where � � � stands for the contributions to the correlation
functions from the higher states and continuum. It follows
from expression (9) that the correlation function contains
numerous structures and in principle all of them can be
used in determination of the electromagnetic form factors
of nucleons. In further analysis, we choose the independent
structures containing p� and p�q6 for obtaining F1 and F2,
respectively.
The theoretical part of the correlation function can be

calculated in LCQSR in terms of the nucleon distribution
amplitudes (DA’s) when the momentum squared, p02, is in
the deep Euclidean region. These nucleon DA’s for all three
quarks have been studied in great detail in [8,10,11]. Using
the explicit expression for the currents and carrying out all
contractions, the correlation function takes the form

ð��Þ� ¼ i

2

Z
d4xeiqx

X2
l¼1

feuðCAl
1Þ��½Al

2Suð�xÞ����	4
abch0jua�ð0Þub	ðxÞdc�ð0ÞjNðpÞi

þ euðAl
2Þ��½ðCAl

1ÞTSuð�xÞ����	4
abch0jua�ð0Þub	ðxÞdc�ð0ÞjNðpÞi
þ edðAl

2Þ�	½CAl
1Sdð�xÞ�����4
abch0jua�ð0Þub	ð0Þdc�ðxÞjNðpÞig; (10)
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in x representation, where � is a Lorentz index, and �, �,
�, and 	 are spinor indices. SðxÞ is the full light quark
propagator expanded near the light cone [12]:

SðxÞ ¼ ix6
2�2x4

� hqqi
�
1þm2

0x
2

16

�

� igs
Z 1

0
dv

�
x6

16�2x2
G���

��

� vx�G���
� i

4�2x2

�
; (11)

where m2
0 ¼ ð0:8� 0:2Þ GeV2 and G�� is the gluon field

strength tensor. The terms proportional to the gluon
strength tensor can contribute to four- and five-particle
distribution functions, but they are expected to be very
small [8,10,11], and for this reason we will neglect these
amplitudes in further analysis. The terms proportional to
h �qqi can also be omitted because Borel transformation
eliminates these terms, and hence only the first term in
Eq. (11) is relevant for our discussion. It follows from
Eq. (10) that for the calculation of ��ðp; qÞ we need the
matrix element

h0 j 4
abcua�ða1xÞub	ða2xÞdc�ða3xÞ j NðpÞi: (12)

It is shown in [11] that the general Lorentz decomposition
of this matrix element is symmetric with respect to the
interchange of the momentum fractions of the u quarks:

h0 j 4
abcua�ða1xÞub	ða2xÞdc�ða3xÞ j NðpÞi
¼ X

K��	
1 ð�2NðpÞÞ�; (13)

where NðpÞ on the right is the nucleon spinor, �1;2 are
certain Dirac structures over which the sum is carried out,
ai are positive numbers which satisfy a1 þ a2 þ a3 ¼ 1,
and K are the distribution amplitudes, depending on eight
nonperturbative parameters. Explicit expressions of all
DA’S and the values of eight nonperturbative parameters
can be found in [8,10,11,13].
Omitting the details of calculations of the theoretical

part, choosing the coefficients of the structures p�, and
p�q6 , equating both representation of the correlation func-
tion, and applying the Borel transformation with respect to
the variable p02 ¼ ðp� qÞ2, we obtain the following sum
rules for the form factors F1 and F2:

F1ðQ2Þ ¼ �1

2�N

em
2
N=M

2
B

�
eumN

Z 1

t0

dx2
Z 1�x2

0
dx1e

�sðx2;Q2Þ=M2
B½2H 5;�7ðxiÞð1� �Þ þ 4ðH 17ðxiÞ � 2H 19ðxiÞÞð1þ �Þ�

þ eumN

Z 1

t0

dx2
Z 1�x2

0
dx1

Z x2

t0

dt1
t1

e�sðt1;Q2Þ=M2
B

�
�2½H 20;�18ðxiÞð1þ �Þ �H 6ðxiÞð�1þ �Þ� � 1

M2
B

� ½f2H 20;18ðxiÞð1þ �ÞðQ2 þ sðt1; Q2Þ þm2
Nð�1þ t1ÞÞg þm2

NfH 15;�14ðxiÞt1ð1� �Þ
� 4H 21;24ðxiÞt1ð1þ �Þ þ 2H 10ðxiÞð�1þ �Þðt1 � x2Þ þ 2ðH 16ðxiÞð�1þ �Þ þ 2H 24ðxiÞð1þ �ÞÞx2g�

�

� eumN

Z 1

t0

dx2
Z 1�x2

0
dx1e

�s0=M
2
B

t0
Q2 þm2

Nt
2
0

ð2H 20;18ðxiÞð1þ �ÞðQ2 þ s0 þm2
Nð�1þ t0ÞÞ

þm2
N½fH�8;9ðxiÞð1� �Þ � ð3H 21;24ðxiÞ þ 8H 23ðxiÞÞð1þ �Þgt0 þ 2H 10ðxiÞð�1þ �Þðt0 � x2Þ

þ 2ðH 16ðxiÞð�1þ �Þ þH 24ðxiÞð1þ �ÞÞx2�Þ þ ed�
0
1ðQ2; �Þ þ eu�1ðQ2; �Þ

�
; (14)

F2ðQ2Þ ¼ �mN

�N

em
2
N=M

2
B

�
eu

Z 1

t0

dx2
Z 1�x2

0
dx1e

�sðx2;Q2Þ=M2
B

�
2H 5ðxiÞð�1þ �Þ

x2

�
ðxiÞ � eum

2
N

Z 1

t0

dx2
Z 1�x2

0
dx1

�
Z x2

t0

dt1
t1

e�sðt1;Q2Þ=M2
B

�
1

M2
B

½H 8;�9ðxiÞð1� �Þ þ 2ðH 18;20ðxiÞ þ 2H 21;22ðxiÞ þ 4H 23ðxiÞÞð1þ �Þ�

� 4

M2
Bt1

½H 22ðxiÞð1þ �Þx2�
�
þ eum

2
N

Z 1

t0

dx2
Z 1�x2

0
dx1e

�s0=M
2
B

�
1

Q2 þm2
Nt

2
0

½H 8;�9ðxiÞð�1þ �Þt0

� 2ðH 18;20ðxiÞ þ 2H 21;22ðxiÞ þ 4H 23ðxiÞÞð1þ �Þt0 þ 4H 22ðxiÞð1þ �Þx2�
�

þ ed�
0
2ðQ2; �Þ þ eu�2ðQ2; �Þ

�
; (15)

where

F ðxiÞ ¼ F ðx1; x2; 1� x1 � x2Þ; F ðx0iÞ ¼ F ðx1; 1� x1 � x3; x3Þ; sðy;Q2Þ ¼ ð1� yÞm2
N þ ð1� yÞ

y
Q2; (16)
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with t0ðs0; Q2Þ being the solution of the equation sðt0; Q2Þ ¼ s0, and

�1ðQ2; �Þ ¼ mN

�Z 1

t0

dx3
Z 1�x3

0
dx1e

�sðx3;Q2Þ=M2
B½ðH 1;17;3ðxiÞ � 2H 19ðxiÞÞð1þ �Þ þH 13;7ðxiÞð�1þ �Þ�

þ
Z 1

t0

dx3
Z 1�x3

0
dx1

Z x3

t0

dt1e
�sðt1;Q2Þ=M2

B

�
1

M4
Bt1

½�H 22ðxiÞm2
Nð�m2

N þQ2 þ sðt1; Q2ÞÞð1þ �Þx3� þ 1

M4
B

� ½H 22ðxiÞm2
Nðm2

Nð�1þ 2t1 � 2x3Þ þQ2 þ sðt1; Q2ÞÞð1þ �Þ� þ 1

2M2
Bt1

½�ðm2
N �Q2 � sðt1; Q2ÞÞ

� fðH 18ðxiÞ � 3H 20ðxiÞÞð1þ �Þ þ 2H 6;12ðxiÞð�1þ �Þg þ 2ð2H 22ðxiÞ �H 24ðxiÞÞm2
Nð1þ �Þx3�

þ 1

M2
B

½m2
NfH�12;15;�6;9ðxiÞð1� �Þ þ ðH 18;�2;24;4;21ðxiÞ þ 2H�20;�22;23ðxiÞÞð1þ �Þg� þ 1

t1

� ½H 12;6ðxiÞð1� �Þ þH�18;20ðxiÞð1þ �Þ�
�
þ

Z 1

t0

dx3
Z 1�x3

0
dx1e

�s0=M
2
B

�
1

M2
Bt0ðQ2 þm2

Nt
2
0Þ

� ½H 22ðxiÞm2
Nð1þ �Þt20ðQ2 þ s0 þm2

Nð�1þ 2t0ÞÞðt0 � x3Þ� þ 1

ðQ2 þm2
Nt

2
0Þ3

� ½2H 22ðxiÞm4
Nð1þ �Þt40ðQ2 þ s0 þm2

Nð�1þ 2t0ÞÞðt0 � x3Þ� � 1

ðQ2 þm2
Nt

2
0Þ2

� ½H 22ðxiÞm2
Nð1þ �Þt20ððQ2 þ s0Þð2t0 � x3Þ þm2

Nð2t0ð�1þ 3t0 � 2x3Þ þ x3ÞÞ� þ 1

t0ðQ2 þm2
Nt

2
0Þ

� ½2H 22ðxiÞm2
Nð1þ �Þt20x3� þ

1

2ðQ2 þm2
Nt

2
0Þ
½�H 20ðxiÞð1þ �Þt0f3ðQ2 þ s0Þ þm2

Nð�3þ 4t0Þg

þ 2H 6;12ðxiÞð�1þ �ÞðQ2 þ s0 þm2
Nð�1þ t0ÞÞt0 þ 2H 24ðxiÞm2

Nð1þ �Þt0ðt0 � x3Þ þ 2H 18ðxiÞ
� ð1þ �Þt0ðQ2 þ s0 þm2

Nð�1þ 2t0ÞÞ þ 2m2
NH 9;�15ðxiÞð�1þ �Þt20 þ 2m2

NðH 4;�2;21ðxiÞ
þ 2H 23;�22ðxiÞÞð1þ �Þt20�

��
; (17)

�2ðQ2; �Þ ¼
Z 1

t0

dx3
Z 1�x3

0
dx1e

�sðx3;Q2Þ=M2
B

�
H 11;�5ðxiÞð�1þ �Þ

x3

�
þmN

Z 1

t0

dx3
Z 1�x3

0
dx1

Z x3

t0

dt1e
�sðt1;Q2Þ=M2

B

�
��2

M4
B

½H 22ðxiÞm3
Nð1þ �Þ� þ 1

M4
Bt1

½H 22ðxiÞmNð1þ �Þð�Q2 � sðt1; Q2Þ þm2
Nð1þ 2x3ÞÞ� þ 1

M4
Bt

2
1

� ½H 22ðxiÞmNð1þ �ÞðQ2 þ sðt1; Q2Þ �m2
NÞx3� �

3

M2
Bt

2
1

½H 22ðxiÞmNð1þ �Þx3� þ mN

M2
Bt1

� ½H 12;15;6;�9ðxiÞð�1þ �Þ þ ðH 2;�20;�21;�4ðxiÞ þ 3H 22ðxiÞ � 2H 23ðxiÞÞð1þ �Þ�
�
þmN

Z 1

t0

dx3

�
Z 1�x3

0
dx1e

�s0=M
2
B

�
� mN

M2
BðQ2 þm2

Nt
2
0Þ
½H 22ðxiÞð1þ �ÞðQ2 þ s0 þm2

Nð�1þ 2t0ÞÞðt0 � x3Þ�

þ 1

ðQ2 þm2
Nt

2
0Þ3

½�2H 22ðxiÞm3
Nð1þ �Þt30ðQ2 þ s0 þm2

Nð�1þ 2t0ÞÞðt0 � x3Þ� þ 1

ðQ2 þm2
Nt

2
0Þ2

� ½H 22ðxiÞmNð1þ �Þt20ðQ2 þ s0 þm2
Nð�1þ 4t0 � 2x3ÞÞ� þ mN

ðQ2 þm2
Nt

2
0Þ
½H�12;�15;�6;9ðxiÞð1� �Þ

þ ðH 2;�20;�21;22;�4ðxiÞ � 2H 23ðxiÞÞð1þ �Þt0 �H 22ðxiÞð1þ �Þð3x3 � 2t0Þ�
�
; (18)

and �0
iðQ2; �Þ, ði ¼ 1; 2Þ are obtained from �iðQ2; �Þ by

replacing x3 with x2 and replacing F ðxiÞ with F ðx0iÞ in the
integrals. In the above equations, we have used the short-

hand notations for the functions H�i;�j;... ¼ �H i �
H j . . . , and H i are defined in terms of the distribution
amplitudes as follows:
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H 1 ¼ S1; H 2 ¼ S1;�2; H 3 ¼ P1; H 4 ¼ P1;�2; H 5 ¼ V1; H 6 ¼ V1;�2;�3; H 7 ¼ V3;

H 8 ¼ �2V1;�5 þ V3;4; H 9 ¼ V4;�3; H 10 ¼ �V1;�2;�3;�4;�5;6; H 11 ¼ A1; H 12 ¼ �A1;�2;3;

H 13 ¼ A3; H 14 ¼ �2A1;�5 � A3;4; H 15 ¼ A3;�4; H 16 ¼ A1;�2;3;4;�5;6; H 17 ¼ T1;

H 18 ¼ T1;2 � 2T3; H 19 ¼ T7; H 20 ¼ T1;�2 � 2T7; H 21 ¼ �T1;�5 þ 2T8; H 22 ¼ T2;�3;�4;5;7;8;

H 23 ¼ T7;�8; H 24 ¼ �T1;�2;�5;6 þ 2T7;8; (19)

where for any distribution amplitudes, X�i;�j;... ¼
�Xi � Xj . . . . The overlap amplitude of the nucleon inter-
polating current with the nucleon is determined from the
mass sum rules, and its expression is [14]

�2
N ¼ em

2
N=M

2
B

�
M6

B

256�4
E2ðxÞð5þ 2�þ�2Þ

þ h �uui
6

½�6ð1��2Þh �ddiþ ð�1þ�Þ2h �uui�

� m2
0

24M2
B

h �uui½�12ð1��2Þh �ddiþ ð�1þ�Þ2h �uui�
�
;

(20)

where x ¼ s0=M
2
B and the functions

EnðxÞ ¼ 1� e�x
Xn
k¼1

xk

k!
(21)

correspond to the continuum subtraction.

III. NUMERICAL RESULTS

It follows from explicit expressions of the sum rules for
the nucleon electromagnetic form factors that the nucleon
DA’s are the principal input parameters, whose explicit
expressions can be found in [8]. These DA’s contain non-
perturbative parameters which should be determined in
some framework. In the present work, we consider two
different determinations of these input parameters: (a) all
eight nonperturbative parameters fN , �1, �2, V

d
1 , A

u
1 , f

d
1 ,

fu1 , and f
d
2 are estimated within the QCD sum rules method

[8,10,11] (set1) and (b) the condition that the next to
leading conformal spin contributions vanish fixes five of
the eight parameters. This is the so-called asymptotic set.
The values of all nonperturbative parameters are (see [8])

fN ¼ ð5:0� 0:5Þ � 10�3 GeV2;

�1 ¼ �ð2:7� 0:9Þ � 10�2 GeV2;

�2 ¼ ð5:4� 1:9Þ � 10�2 GeV2;

(22)

set1 asymptotic
Au
1 ¼ 0:38� 0:15; Au

1 ¼ 0;
Vd
1 ¼ 0:23� 0:03; Vd

1 ¼ 1
3 ;

fd1 ¼ 0:40� 0:05; fd1 ¼ 3
10 ;

fd2 ¼ 0:22� 0:05; fd2 ¼ 4
15 ;

fu1 ¼ 0:07� 0:05; fu1 ¼ 1
10 :

(23)

The continuum threshold that appears in the continuum
subtraction is determined from the mass sum rules as s0 ¼
2:25 GeV2. There are two auxiliary parameters of the sum
rules: the Borel parameter M2

B and the parameter �. The
Borel mass squared M2

B is an unphysical parameter of the
sum rules, and therefore we need to find a region of M2

B,
where physically measurable quantities, in our case elec-
tromagnetic form factors, are independent of M2

B. The
lower bound of M2

B is determined from the condition that
contributions from higher states and continuum in the
correlator should be small enough; the upper bound of
M2

B is determined by requiring that the series of the light
cone expansion with increasing twist should be convergent.
Our numerical analysis shows that both conditions are
satisfied in the region 1 GeV2 � M2

B � 2 GeV2, which
we will use in numerical analysis.
The other auxiliary parameter � is chosen in a region

such that the predictions are independent of the precise
value of � in that region. In our analysis, it is shown that in
the region �0:5 � cos
 � 0:5 the form factors are practi-
cally insensitive to the variation of �, where 
 is defined as
tan
 ¼ �. Note that the analysis of mass sum rules and
magnetic moments of octet baryons [14] leads to the very
close region for cos
, i.e., �0:6 � cos
 � 0:3. Also, it is
observed in [15] that the optimal value of � is � ¼
�1:2ðcos
 ¼ �0:64Þ, which follows from the Monte
Carlo analysis.
In Fig. 1, we present the dependence of the proton

magnetic form factor Gp
M=�pGD on Q2 at s0 ¼

2:25 GeV2, M2
B ¼ 1:2 GeV2 for two sets of DA’s, at fixed

values of parameter �. In this figure, we also present the
experimental results [16–18]. From this figure, we see that
theQ2 dependencies as well as the magnitude of the proton
magnetic form factor are rather in good agreement with the
experimental data, especially for the set 1 of DA’s and Ioffe
current ð� ¼ �1Þ. The dependence of the ratio of the
proton electric form factor to the magnetic form factor
�pG

p
E=G

p
M on Q2 at s0 ¼ 2:25 GeV2, M2

B ¼ 1:2 GeV2

for two sets of DA’s, at fixed values of parameter �, is
depicted in Fig. 2. From this figure it follows that, practi-
cally, both sets of DA’s well describe the existing experi-
mental results, except for � ¼ 5 and � ¼ �1 of set 1. For
large values of Q2, Q2 > 4 GeV2, the experimental results
obtained in [4] and in [17,18] are not in agreement.
Whereas � ¼ �1 describes better the data in [4], larger
values of j�j describe better the data in [18].
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The LCQSR results for the neutron magnetic (normal-
ized to the dipole form factor) and electric form factors are
given in Figs. 3 and 4, respectively. From Fig. 3, we see
that the magnetic form factor of the neutron reproduces
experimental data very well at � ¼ �1 for both sets of
DA’s. The neutron electric form factor is in good agree-
ment with the experimental result for all cases.

Analysis of the experimental results (for a review see [7]
and references therein) reveals that the magnetic form
factors of the nucleon are very well described by the dipole
formula

Gn;p
M ðQ2Þ ¼ �n;p

ð1þ Q2

ð0:71 GeVÞ2Þ2
¼ �n;pGD: (24)

The measured values of the electric form factors of the
neutron are given in [19,20].
In [21,22], the following large Q2 behavior of the elec-

tromagnetic form factors is obtained:

F2ðQ2Þ
F1ðQ2Þ �

ln2ðQ2=�2Þ
Q2

; (25)

where � ¼ 300 MeV. In Fig. 5 (6), we present the
logarithmic scale prediction, i.e., ð1=15Þln�2ðQ2=�2Þ �
Q2F2ðQ2Þ=F1ðQ2Þ for the proton (neutron), with available
experimental data [23] at fixed values of � for two sets of
DA’s. From these figures, we see that our prediction for the
proton for ln�2ðQ2=�2ÞQ2F2ðQ2Þ=F1ðQ2Þ is in good
agreement with experimental data except for the � ¼ �1
case for both DA’s, and � ¼ �5 case for set 1. For the

2 4 6 8 10
Q

2
(GeV

2
)

0

1

2

3
|G

M

P /µ
PG

D
|

β=-1
β=-5
β=5

FIG. 1. The dependence of GP
M=�PGD on Q2 at s0 ¼

2:25 GeV2, M2
B ¼ 1:2 GeV2 for � ¼ �1, �5, and 5. The

boxes correspond to experimental data in [16], the diamonds to
[17], and the up triangles to [18]. The lines with circles corre-
spond to set 1, and the lines without any circles correspond to the
asymptotic DA’s.
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FIG. 2. The same as Fig. 1, but for �PG
P
E=G

P
M. The boxes,

diamonds, up triangles, down triangles, right triangles, left
triangles correspond to experimental data given in [16], [17],
[6], [4], [5], [3], respectively.
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FIG. 3. The same as Fig. 1 but for Gn
M=�nGD. The boxes

correspond to experimental data [24].
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FIG. 4. The same as Fig. 1 but for Gn
E. The boxes correspond

to experimental data [24].
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neutron case only set 1 for � ¼ �1 describes quite suc-
cessfully the existing experimental data.

Finally, in Fig. 7, as an example of the dependence of the
predictions on �, we present the dependence of the proton
magnetic form factor normalized to the dipole form factor
Gp

M=�pGD on cos
, for both sets of DA’s at two fixed

values of Q2. It follows from this graph that, in the chosen
region of �, i.e., in the region �0:5 � cos
 � 0:5, the
form factor Gp

M is practically insensitive to the variation
of �.

In conclusion, in the present work, we calculate the
nucleon electromagnetic form factors using the most gen-
eral form of the nucleon interpolating current in the light
cone QCD sum rules. The sum rules for these form factors
are obtained. Using two forms of the DA’s, we calculate
sum rules predictions for these form factors and compare
them with existing experimental data. We obtain that our
results are in good agreement with the existing experimen-
tal data. More precisely, at different values of�, our results
for the form factors reproduce the experimental data.
Finally, we obtained the ‘‘working region for �.’’
Our final remark is that in order to answer to the question

which � is more preferable, both theoretical and experi-
mental studies have to be refined. From the theoretical
viewpoint Oð�sÞ corrections to the distribution amplitudes
and more accurate determination of the DA’s are needed.
From experimental data, the discrepancies between various
data have to be eliminated.
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