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We derive the cross section for the diffractive gluon production in high energy onium-nucleus collisions

that includes the low-x evolution effects in the rapidity interval between the onium and the produced gluon

and in the rapidity interval between the gluon and the target nucleus. We analyze our result in two limiting

cases: when the onium size is much smaller than the saturation scale and when its size is much larger than

the saturation scale. In the later case the gluon multiplicity is very small in the quasiclassical case and

increases when the low-x evolution effects in onium become significant. We discuss the implications of

our result for the Relativistic Heavy Ion Collider, Large Hadron Collider, and Electron Ion Collider

phenomenology.
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I. INTRODUCTION

Diffractive gluon production in high energy pA colli-
sions and in deep inelastic scattering (DIS) is a sensitive
probe of the color glass condensate [1–10] characterized by
high parton density and gluon saturation [11,12].
Diffractive processes played a pivotal role in identifying
the first signatures of the gluon saturation in DIS at HERA
[13–21]. They are of great interest as a tool for studying the
low-x dynamics in pA collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
as well as in DIS at the proposed Electron Ion Collider
(EIC). The study of high parton densities in deuteron–gold
collisions at RHIC, has provided many novel insights into
the structure of nuclear matter and has been focused on
inclusive processes. By triggering on hadrons in the deu-
teron fragmentation region (‘‘forward’’ rapidity) one is
able to access very low values of Bjorken x that are
sensitive to the gluon saturation. Investigation of energy,
rapidity, centrality, and transverse momentum dependence
of various production channels offers an opportunity to
attain a better understanding of the nuclear and hadron
structure at low x. Among the channels which have been
discussed in this context are total hadron multiplicities
[22–25], inclusive production of gluons [26–35], heavy
quarks [36–42], valence quarks [43,44], prompt photons
[45], dileptons [46–48], and identified hadrons [49] (for a
review, see, e.g., [50,51]). Diffractive production in pA
collisions offers another avenue for exploring the low-x
dynamics. Motivated by a possibility to measure the dif-
fractive production in pA collisions at RHIC and LHC, we
analyze in this paper diffractive gluon production in
onium–heavy nucleus collisions. We intentionally avoid
discussing the ‘‘dipole content’’ of the proton light-cone
‘‘wave function’’ and concentrate entirely on quantities
that can be calculated in perturbation theory. Our results
can be equally well applied to diffractive gluon production
in DIS in which the light-cone ‘‘wave function’’ of the

virtual photon is well-known. Diffractive gluon production
in DIS has been discussed in many publications [14,52–59]
and has been limited to the quasiclassical approximation
and/or phenomenological models. In this paper we go
beyond the quasiclassical approximation and include the
low-x evolution effects at all rapidity intervals.
The paper is structured as follows. In Sec. II we review

the result for diffractive gluon production in the quasiclass-
ical approximation derived in [55,60,61]. In Sec. III we
generalize these results by including the effect of quantum
evolution. We consider separately the case when the rapid-
ity gap Y0 between the produced gluon and the target
equals the gluon’s rapidity y (Fig. 2) and a more general
case when y � Y0 (Fig. 3). The corresponding cross sec-
tions are given by (14) and (16) in terms of the dipole
distribution in proton npðr; r0;b; yÞ, the forward dipole-

nucleus scattering amplitude Nðr;b; yÞ, and diffractive
dipole-nucleus scattering amplitude NDðr;b; y;Y0Þ. In
Sec. IV we review the main properties of npðr; r0;b; yÞ
and Nðr;b; yÞ in the linear regime and in the saturation
regime and demarcate the kinematic landscape. We then
proceed in Sec. V by performing analysis of the diffractive
gluon production in the quasiclassical approximation in
various kinematic regions. The results are displayed in
(51) and (56). In Sec. VI we do similar analysis in the
case of low-x evolution, see (62) and (65). We summarize
and discuss the phenomenological importance of the ob-
tained results in Sec. VII.

II. DIFFRACTIVE GLUON PRODUCTION IN THE
QUASI-CLASSICAL APPROXIMATION

The quasiclassical approximation of the hadron-nucleus
interactions is valid when a typical parton coherence length
lc is much larger than the nuclear sizeRA in the nucleus rest
frame. The former is approximately given by lc � 1

2mNx
,

where mN is a nucleon mass. It follows that the quasiclass-
ical approximation holds for x & 1

RAmN
. Owing to the large
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coherence length, the process of diffractive production can
be considered as proceeding in two stages: gluon emission
long time before the collision followed by the instanta-
neous interaction. This picture is particularly simple in the
transverse configuration space since the parton transverse
coordinates do not change in the course of instantaneous
interaction. As the result, the cross section can be repre-
sented as a convolution of the proton’s light-cone ‘‘wave
function’’ and the scattering amplitude in the transverse
configuration space, see Fig. 1. In the quasiclassical ap-
proximation, the cross section for the diffractive gluon
production in onium-heavy nucleus collisions has been
derived in [55,60,61]. Using notations of [55], see Fig. 1,
it reads

d�ðk; yÞ
d2kdy

¼ �sCF
�2

1

ð2�Þ2
Z
d2bd2z1d

2z2e
�ik�ðz1�z2Þ

�
�
z1 � x

jz1 � xj2 �
z1 � y

jz1 � yj2
�

�
�
z2 � x

jz2 � xj2 �
z2 � y

jz2 � yj2
�

� ðe�Pðx;y;z1Þ � e�ðCF=4NcÞðx�yÞ2Q2
s0Þ

� ðe�Pðx;y;z2Þ � e�ðCF=4NcÞðx�yÞ2Q2
s0Þ; (1)

where x and y are the transverse coordinates of quark and
antiquark, z1, z2 are the transverse coordinates of the gluon
in the amplitude and the complex-conjugate amplitude
correspondingly, see Fig. 1. The q �qg propagator reads
[37,61,62]

expf�Pðx; y; zÞg ¼ exp

�
� 1

8
ðx� zÞ2Q2

s0 �
1

8
ðy � zÞ2Q2

s0

þ 1

8N2
c

ðx� yÞ2Q2
s0

�
: (2)

The gluon saturation scale is given by

Q2
s0 ¼

4�2�sNc
N2
c � 1

�TðbÞxGðx; 1=r2Þ; (3)

where � is the nuclear density, TðbÞ is the nuclear thick-
ness function as a function of the impact parameter b. The
gluon distribution function reads

xGðx; 1=r2Þ ¼ �sCF
�

ln
1

r2�2
; (4)

with� being some nonperturbative momentum scale char-
acterizing the nucleon’s wave function.
In the framework of the dipole model [63], the gluon

evolution is easily accounted for in the large Nc approxi-
mation. Let us introduce the forward elastic dipole-nucleus
scattering amplitude Nðr;b; YÞ. In the quasiclassical ap-
proximation it reads [64]

Nðr;b; 0Þ ¼ 1� e�ð1=8Þr2Q2
s0 : (5)

At large Nc, (1), (2), and (5) yield

d�ðk; yÞ
d2kdy

¼ �sCF
�2

1

ð2�Þ2
Z
d2bd2z1d

2z2e
�ik�ðz1�z2Þ

�
z1 � x

jz1 � xj2 �
z1 � y

jz1 � yj2
�
�
�
z2 � x

jz2 � xj2 �
z2 � y

jz2 � yj2
�

� ½Nðx� y;b; 0Þ � Nðx� z1;b; 0Þ � Nðy � z1;b; 0Þ þ Nðx� z1;b; 0ÞNðy � z1;b; 0Þ�
� ½Nðx� y;b; 0Þ � Nðx� z2;b; 0Þ � Nðy � z2;b; 0Þ þ Nðx� z2;b; 0ÞNðy � z2;b; 0Þ�: (6)

Integrating (6) over all transverse momenta yields delta function ð2�Þ2�ðz1 � z2Þ. Hence, the total cross section per unit
rapidity reads after a simple calculation

d�ðyÞ
dy

¼�sCF
�2

Z
d2bd2z

ðx�yÞ2
ðx�zÞ2ðy�zÞ2 ½Nðx�y;b;0Þ�Nðx�z;b;0Þ�Nðy�z;b;0ÞþNðx�z;b;0ÞNðy�z;b;0Þ�2:

III. INCLUDING QUANTUM EVOLUTION

When the collision energy becomes high enough, multiple gluon emission becomes possible. Parametrically, each gluon

emission brings in a factor �s lnð1=xÞ. Accordingly, quantum evolution takes place when x & e�ð1=�sÞ. Let the incident
onium be characterized by the two-vector r. In the course of evolution, dipoles of different sizes are produced until

2

k

x

y
P

A

z z1

FIG. 1 (color online). One of the diagrams contributing to the
diffractive gluon production in onium (P)—heavy nucleus (A)
collisions in the quasiclassical approximation. Notations are
explained in the text.
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eventually a dipole of size r0 emits a gluon at rapidity y
with transverse momentum k. In terms of the Regge the-
ory, evolution in the rapidity interval between the original
onium and the emitted gluon corresponds to exchange of a
single Pomeron, in agreement with the Abramovsky-
Gribov-Kancheli cutting rules [27,65]. Afterwards, i.e., in
the rapidity interval between the emitted gluon and the
target nucleus, evolution is nonlinear and corresponds to
exchange of diffractively cut fan diagram, see Fig. 2 and 3.
The general method for including the nonlinear low-x
evolution into inclusive processes in the dipole model
framework was derived in [27] and is applied later in this
section.

We would like to separately consider the following two
cases: (i) rapidity gap Y0 equals the produced gluon rapid-
ity y, see Fig. 2, and (ii) a more general case Y0 � y, see
Fig. 3. In later sections we will focus our attention on the
former case. The reason is that experimentally, diffractive
production is usually measured per unit of invariant mass

of the diffractively produced system (rather than per dk2).
The invariant mass is given by M2 ¼ k2=x where k and

x ¼ e�ðY�yÞ refer to the slowest particle in the gluon
cascade originating from proton. That being the case, it
is sufficient to consider production of a gluon adjacent to
the rapidity gap as depicted in Fig. 2. This case corresponds
to the rapidity gap Y0 being equal to the rapidity of the
produced gluon Y0 ¼ y.

A. Gluon production with y ¼ Y0

The relevant fan diagram is displayed in Fig. 2. We
include the evolution effects using the method derived in
[27]. We obtain the following generalization of (6):

d�ðk; yÞ
d2kdy

¼ �sCF
�2

1

ð2�Þ2
Z
d2bd2B

�
Z
d2r0n1ðr; r0;B� b; Y � yÞjIðr0;k; yÞj2;

(7)

where

Iðx0 � y0;k; yÞ ¼
Z
d2z1e

�ik�z1
�
z1 � x0

jz1 � x0j2 �
z1 � y0

jz1 � y0j2
�
½Nðx0 � y0;b; yÞ � Nðx0 � z1;b; yÞ � Nðy0 � z1;b; yÞ

þ Nðx0 � z1;b; yÞNðy0 � z1;b; yÞ�: (8)

Here n1ðx� y;x0 � y0;B� b; Y � yÞ has the meaning of the number of dipoles of size x0 � y0 at rapidity Y � y and
impact parameter b generated by evolution from the original dipole x� y having rapidity Y and impact parameter B [63].
It satisfies the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [66,67]

@n1ðx� y;x0 � y0;b; yÞ
@y

¼ �sNc
2�2

Z
d2z

ðx� yÞ2
ðx� zÞ2ðy � zÞ2 ½n1ðx� z;x0 � y0;b; yÞ þ n1ðy � z;x0 � y0;b; yÞ

� n1ðx� y;x0 � y0;b; yÞ�; (9)

Y

P

k

A
Y0

y

FIG. 3 (color online). Fan diagram for the diffractive gluon
production in onium (P)—heavy nucleus (A) collisions with
rapidity gap Y0 smaller than the gluon rapidity y.

A

P

k

y

Y

FIG. 2 (color online). Fan diagram describing the diffractive
gluon production in onium (P)—heavy nucleus (A) collisions
with the rapidity gap being equal to the rapidity of the produced
gluon.
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with the initial condition

n1ðr; r0;b; 0Þ ¼ �ðr� r0Þ�ðbÞ; (10)

where we denoted r ¼ x� y and r0 ¼ x0 � y0.
The forward elastic dipole-nucleus scattering amplitude

satisfies the nonlinear Balitsky-Kovchegov (BK) equation
[68,69]

@Nðx� y;b; yÞ
@y

¼ �sNc
2�2

Z
d2z

ðx� yÞ2
ðx� zÞ2ðy � zÞ2

� ½Nðx� z;b; yÞ þ Nðy � z;b; yÞ
� Nðx� y;b; yÞ � Nðx� z;b; yÞ
� Nðy � z;b; yÞ�; (11)

with the initial condition given by (5). In writing both
Eqs. (9) and (11), we assumed that the absolute value of
impact parameter b is much larger than the typical dipole
size. This is a justified approximation for a scattering off a
heavy nucleus.

In order to keep expressions as compact as possible, it is
convenient to assume that the nuclear profile is cylindrical.
This simple model allows correct identification of the
atomic number (i.e., centrality) dependence of the cross
sections. An explicit impact parameter dependence, which
is required for numerical analysis, can be easily restored in
the final expressions. Since we are not concerned here with
the details of the impact parameter dependence, we inte-
grate (9) over b. The quantity

npðr; r0; yÞ ¼
Z
d2bn1ðr; r0;b; yÞ (12)

in turn satisfies the BFKL equation with the initial condi-
tion

npðr; r0; 0Þ ¼ �ðr� r0Þ: (13)

In terms of npðr; r0; yÞ, (7) reads

d�ðk; yÞ
d2kdy

¼ �sCF
�2

1

ð2�Þ2 SA
Z
d2r0npðr; r0; Y � yÞ

� jIðr0;k; yÞj2; (14)

where SA is the cross sectional area of the interaction
region.
The total cross section for diffractive gluon production is

convenient to write in the following form:

d�ðyÞ
dy

¼ �sCF
�2

SA
Z
d2r0npðr;r0;Y� yÞ

�
Z
d2w

r02

ðw� r0Þ2w2
½Nðr0;b; yÞ�Nðw� r0;b; yÞ

�Nðw;b; yÞþNðw� r0;b; yÞNðw;b; yÞ�2; (15)

where we introduced a new variable w ¼ z� y0 such that
w is the size of one of the daughter dipoles formed by
emission of a gluon at point z by a parent dipole r0 ¼
x0 � y0.

B. Diffractive production with Y0 < y

So far we have been concentrating on a case in which the
rapidity of the produced gluon y coincides with the rapidity
gap Y0 in a diffractive event. In this case, the diffractive
scattering amplitude NDðr;b; y; Y0Þ coincides with the
square of the forward elastic scattering amplitude
Nðr;b; yÞ. In principle, a question may arise about the
diffractive production of a gluon with y > Y0. Such process
is shown in Fig. 3. For the processes in which the transverse
coordinate of the gluon in the amplitude z1 is approxi-
mately the same as the its coordinate in the c.c amplitude
z2, the corresponding cross section is still given by (14)

d�ðk; yÞ
d2kdy

¼ �sCF
�2

1

ð2�Þ2 SA
Z
d2r0npðr; r0; Y � yÞ

� jIðr0;k; y;Y0Þj2; (16)

where now in place of (8) we write

I ðx0 � y0;k; y;Y0Þ ¼
Z
d2z1e

�ik�z1
�
z1 � x0

jz1 � x0j2 �
z1 � y0

jz1 � y0j2
�
½Nð1=2Þ

D ðx0 � y0;b; y;Y0Þ � N1=2
D ðx0 � z1;b; y;Y0Þ

� N1=2
D ðy0 � z1;b; y;Y0Þ þ N1=2

D ðx0 � z1;b; y;Y0ÞN1=2
D ðy0 � z1;b; y;Y0Þ�: (17)

The amplitudeNDðr;b; y;Y0Þ equals to the cross section of single diffractive dissociation of a dipole of transverse size r,
rapidity y, and impact parameter b on a target nucleus. It satisfies the Kovchegov–Levin evolution equation [70]

@NDðx� y;b; y;Y0Þ
@y

¼ 2�sCF
�2

Z
d2z

� ðx� yÞ2
ðx� zÞ2ðy � zÞ2 � 2��ðy � zÞ lnðjx� yj�Þ

�
NDðx� z;b; y;Y0Þ

þ �sCF
�2

Z
d2z

ðx� yÞ2
ðx� zÞ2ðy � zÞ2 ½NDðx� z;b; y;Y0ÞNDðy � z;b; y;Y0Þ

� 4NDðx� z;b; y;Y0ÞNðy � z;b; yÞ þ 2Nðx� z;b; yÞNðy � z;b; yÞ�; (18)
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with the initial condition

NDðr;b; y ¼ Y0;Y0Þ ¼ N2ðr;b; Y0Þ: (19)

Diffractive gluon production of the kind shown in Fig. 3
requires a dedicated study and will certainly lead to a
number of interesting observations. We are going to per-
form such analysis in future publications. In this paper we
concentrate on the case y ¼ Y0.

IV. DIPOLE EVOLUTION IN ONIUM AND
NUCLEUS

A. Dipole evolution in onium

Dipole evolution in onium is encoded in the function
n1ðr; r0;b; yÞ and is determined by solving Eq. (9) with the
initial condition (10). In the case of a cylindrical profile we
use function npðr; r0; yÞ instead. The general solution of the
BFKL equation for npðr; r0; yÞ reads

npðr; r0; yÞ ¼
Z 1

�1
d�e2 ��s�ð�Þyðr=r0Þ1þ2i�Cp�; (20)

where ��s ¼ �sNc=� and the leading BFKL eigenvalue

�ð�Þ ¼  ð1Þ � 1
2 

�
1
2 � i�

�
� 1

2 

�
1
2 þ i�

�
; (21)

with  ð�Þ being the digamma function

 ð�Þ ¼ �0ð�Þ
�ð�Þ : (22)

The Mellin image Cp� can be found using the formula

�ðr� r0Þ ¼ 1

2�2r02
Z 1

�1
d�ðr=r0Þ1þ2i�: (23)

The result is

npðr; r0; yÞ ¼ 1

2�2r02
Z 1

�1
d�e2 ��s�ð�Þyðr=r0Þ1þ2i�: (24)

The integral over � can be done analytically in two
important limits. In the leading logarithmic approximation
(LLA) we expand the function �ð�Þ near the minimum at
� ¼ 0 as

�ð�ÞLLA � 2 ln2� 7�ð3Þ�2; (25)

where �ðzÞ is the Riemann zeta function. Substituting (25)
into (24) and integrating around the saddle point

�?p ¼ i lnðr=r0Þ
14�ð3Þ ��sy ; (26)

we derive

npðr; r0; yÞLLA � 1

2�2rr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

14�ð3Þ ��sy
s

� eð�P�1Þye�ðln2ðr0=rÞ=14�ð3Þ ��syÞ;

�sy� ln2ðr=r0Þ; (27)

where �P � 1 ¼ 4 ��s ln2.
Alternatively, we can expand �ð�Þ near one of its two

symmetric poles at 2i� ¼ 	1. This corresponds to the
double-logarithmic approximation (DLA). The choice of
a particular pole depends on the relation between r and r0.
Expanding near 2i� ¼ 1 we attain

�ð�ÞDLA � 1

1� 2i�
: (28)

Plugging this into (24) we have

npðr; r0; yÞDLA � 1

2�2r02
Z 1

�1
d�eð2 ��sy=1�2i�Þþð1þ2i�Þ lnðr=r0Þ:

(29)

The saddle point of the expression in the exponent is

�
p ¼ 1

2i

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

lnðr0=rÞ

s �
; (30)

which is valid only if r < r0. Expanding the argument of
the exponential near the saddle point �
p to the second order
and integrating gives the double-logarithmic approxima-
tion

npðr; r0; yÞDLA � r2

4�3=2r04
ð2 ��syÞ1=4
ln3=4ðr0=rÞ e

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðr0=rÞ

p
;

r < r0; lnðr0=rÞ � �sy:

(31)

To derive an analogous expression at r > r0 we expand
�ð�Þ near the symmetric pole

�ð�ÞDLA � 1

1þ 2i�
: (32)

In analogy to (30) and (31) we derive the saddle point

~� 

p ¼ 1

2i

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

lnðr=r0Þ

s �
; (33)

and the dipole density

npðr; r0; yÞDLA � 1

4�3=2r02
ð2 ��syÞ1=4
ln3=4ðr=r0Þ e

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðr=r0Þ

p
;

r > r0; lnðr=r0Þ � �sy:

(34)

B. Dipole evolution in a heavy nucleus

1. Leading twist approximation

Consider the forward elastic dipole-nucleus scattering
amplitude Nðr;b; YÞ satisfying the nonlinear evolution
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Eq. (11). If the dipole size is much smaller than the
saturation scale Qs, then the quantum evolution of the
amplitude is governed by the BFKL equation. Therefore
in this case, the general solution is

Nðr;b; yÞLT ¼
Z 1

�1
d�e2 ��s�ð�ÞyðrQs0Þ1þ2i�CA�: (35)

The Mellin image CA� of the amplitude Nðr;b; 0ÞLT is
calculated as follows

CA� ¼ Qs0

�

Z 1

0
drðrQs0Þ�2�2i�Nðr;b; 0ÞLT

¼ Qs0

�

Z 1

0
drðrQs0Þ�2�2i� 1

8
r2Q2

s0

¼ 1

8�

1þ ð1� 2i�Þ lnQs0

�

ð1� 2i�Þ2 : (36)

In the last line of (36) we used the fact thatQs0 logarithmi-
cally depends on r, see (3) and (4). Analogously to the
derivation of (27) we obtain in the leading logarithmic
approximation

Nðr;b; yÞLLA ¼ rQs0

8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

14�ð3Þ ��sy
s

ln

�
Qs0

�

�

� eð�P�1Þye�ðln2ðrQs0Þ=14�ð3Þ ��syÞ;

�sy� ln2
�

1

rQs0

�
; (37)

where the saddle point is

�?A ¼ i lnðrQs0Þ
14�ð3Þ ��sy : (38)

In the double-logarithmic approximation (28) the saddle
point for the case r < 1=Qs0 is

�
A ¼ 1

2i

�
1�

ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln 1
rQs0

vuut �
: (39)

Repeating the by now familiar procedure we write

Nðr;b; yÞDLA ¼
ffiffiffiffi
�

p
16�

ln1=4ð 1
rQs0

Þ
ð2 ��syÞ3=4

r2Q2
s0

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
2�sy

ln 1
rQs0

vuut ln
Qs0

�

�

� e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnð1=rQs0Þ

p
;

r < 1=Qs0; ln
1

rQs0

� �sy: (40)

Next, we consider the case r > 1=Qs.

2. Deep saturation region

The solution to the BK Eq. (11) deeply in the saturation
regime was found in [71–73]. With the logarithmic accu-
racy the dominant dipole splitting corresponds to the con-
figuration in which the size of one of the daughter dipoles

(� 1=Qs) is much smaller than the other (see Sec. VI).
Denote again r ¼ x� y and w ¼ z� y. In the saturation
region we have either w� r � jw� rj or the symmetric
configuration jw� rj � r � w. Both give equal contribu-
tion to the integral over w. Restricting ourself to the case
w� r and doubling the integral we write the BK equation
as follows:

@Nðr;b; yÞ
@y

� �sCF
�

2
Z r2

1=Q2
s

dw2

w2
½Nðw;b; yÞ

� Nðw;b; yÞNðr;b; yÞ�: (41)

Now, for the reason that in the saturation region, the
amplitude Nðr;b; yÞ is close to unity we render (41) as

� @f1� Nðr;b; yÞg
@y

� �sCF
�

2
Z r2

1=Q2
s

dw2

w2
f1� Nðr;b; yÞg

¼ 2�sCF
�

lnðr2Q2
sÞf1� Nðr;b; yÞg:

(42)

The saturation scale QsðyÞ can be found by equating the
argument of the exponent in (40) to a constant which yields
[71,74]

QsðyÞ � Qs0e
2 ��sy: (43)

Introducing a new scaling variable 	 ¼ lnðr2Q2
sÞ we solve

(42) and find the high energy limit of the forward scattering
amplitude (in the fixed coupling approximation). It reads
[71]

Nðr;b; yÞ ¼ 1� S0e
�	2=8 ¼ 1� S0e

�ð1=8Þln2ðr2Q2
s Þ; (44)

where we approximated CF � Nc=2 in the large Nc limit.
S0 is the integration constant. It determines the value of the
amplitude at the critical line rðyÞ ¼ 1=QsðyÞ.

V. DIFFRACTIVE CROSS SECTION IN THE
QUASICLASSICAL APPROXIMATION

Careful inspection of (1) reveals that the cross section
vanishes when the size of the onium r ¼ x� y is much
larger than the characteristic scale 1=Qs0. This is in a sharp
contrast with the inclusive gluon production case [26]
where the cross section stays finite at r! 1. To under-
stand the reason for such different behavior, consider a
sample diagrams contributing to each of the processes
shown in Fig. 4. In diagram 4(a), corresponding to the
inclusive case, the propagator of the q �qg system in the

nucleus is proportional to e�ð1=4Þðx�z1Þ2Q2
s0 while the gluon

emission amplitude is proportional to gðx�z1Þ
jx�z1j2 . Both do not

involve the y coordinate at all and are finite at y ! 1. On
the contrary, in diagram 4(b), corresponding to the diffrac-
tive case, the propagator involves both x and y coordinates,
see (2), no factorization of y dependence similar to the
inclusive case happens. All other diagrams contributing to
these two processes can be analyzed in the same way. Let
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us look at the color structure of the q �qg system in the two
cases. By the Pomeranchuk theorem, the exchanged
(Coulomb) gluons are in the color singlet state.
Therefore, we notice that in diagram 4(a) the q �qg system
is in the color octet state and its propagator through the
nucleus equals the propagator of a gluon dipole, whereas in
diagram 4(b) the q �qg system is always in the color singlet
state corresponding to the quark dipole. This feature can be
seen also in expressions for the propagator, one involving
the gluon saturation scale Q2

s0 (inclusive case), another

involving the quark saturation scale CF
Nc
Q2
s0 � 1

2Q
2
s0 (dif-

fractive case).
Now we would like to determine how does the diffrac-

tive cross section behave in the quasiclassical approxima-
tion. Consider the following integral appearing in the right-
hand side (r.h.s.) of (7) and (15):

Jðr; yÞ ¼ 1

�

Z
d2w

r2

ðw� rÞ2w2
½Nðr;b; yÞ �Nðw� r;b; yÞ

�Nðw;b; yÞ þNðw� r;b; yÞNðw;b; yÞ�2: (45)

Let us analyze its behavior in the quasiclassical case (y ¼
0) for small r < 1=Qs0 and large r > 1=Qs0 onium sizes.

A. Dilute regime r < 1=Qs0

In the case of small onium we divide the entire integral
over w into three terms as follows:

Jðr; 0Þ �
Z r

0

dw2

w2
½1� Nðr;b; 0Þ�2N2ðw;b; 0Þ

þ r2
Z 1=Qs0

r

dw2

w4
½Nðr;b; 0Þ � 2Nðw;b; 0Þ

þ N2ðw;b; 0Þ�2 þ r2
Z 1

1=Qs0

dw2

w4
½Nðr;b; 0Þ

� 2Nðw;b; 0Þ þ N2ðw;b; 0Þ�2; (46)

where (46) holds in logarithmic approximation. We can
estimate each term utilizing the fact that according to (5)

Nðr;b; 0Þ �
�
1; r� 1=Qs0;
1
8r

2Q2
s0; r� 1=Qs0:

(47)

Moreover, in the last two terms in (47) Nðr;b; 0Þ can be
neglected since in most of the integration regions w� r.
Indeed, in the second term in the r.h.s. of (46) it can be seen

once we neglect N2ðw;b; 0Þ and expand Nðw;b; 0Þ at small
w. In the third term in the r.h.s. of (46) we have
2Nðw;b; 0Þ � N2ðw;b; 0Þ � 1 while Nðr;b; 0Þ � 1.
Accordingly, expanding the integrands using (47) we find
that the first term in the r.h.s. of (46) is of the order
Oðr8Q8

s0Þ, whereas the second and the third ones are of

the order Oðr2Q2
s0Þ. Therefore, the last two terms in (46)

dominate in the regime rQs0 � 1. It is customary to
denote

NGðr;b; yÞ ¼ 2Nðr;b; yÞ � N2ðr;b; yÞ; (48)

which has the meaning of the gluon dipole forward elastic
scattering amplitude. In terms of this quantity the function
Jðr; 0Þ reads

Jðr; 0Þ � r2
Z 1

0

dw2

w4
N2
Gðw;b; 0Þ; r� 1=Qs0; (49)

where the lower limit of integration (r) has been set to zero
with logarithmic accuracy (note that the second integral in
the r.h.s. of (46) is dominated by dipoles of size w�
1=Qs0 � r).
It is useful to notice, that (49) holds also in the case the

low-x evolution is taken into account. In the quasiclassical
approximation the integral (49) can be done if we treat Qs0

as a w-independent constant neglecting its logarithmic
variation. In that case, substituting (5) we derive

Jðr; 0Þ � 1
4 ln2r

2Q2
s0; r� 1=Qs0; (50)

The cross section is obtained using (7) and (45). We have

d�

dy
¼ �sCF

�
SAJðr; 0Þ ¼ �sCF ln2

4�
SAr

2Q2
s0;

r� 1=Qs0:

(51)

B. Dense regime r > 1=Qs0

As in the previous case we divide the integral into three
parts

Jðr; 0Þ �
Z 1=Qs0

0

dw2

w2
½1� Nðr;b; 0Þ�2N2ðw;b; 0Þ

�
Z r

1=Qs0

dw2

w2
½1� Nðr;b; 0Þ�2N2ðw;b; 0Þ

þ r2
Z 1

r

dw2

w4
½Nðr;b; 0Þ � 2Nðw;b; 0Þ

þ N2ðw;b; 0Þ�2: (52)

Utilizing (47) we simplify (52) in the logarithmic approxi-
mation as follows

Jðr; 0Þ � ½Nðr;b; 0Þ � 1�2
�Z 1=Qs0

0

dw2

w2

1

64
w4Q4

s0

þ
Z r

1=Qs0

dw2

w2
þ r2

Z 1

r

dw2

w4

�
: (53)

x
P

A

z1 z2

k

y y
P

A

z1 z2

k
x

(a) (b)

FIG. 4 (color online). An example of diagrams contributing to
(a) inclusive gluon production and (b) diffractive gluon produc-
tion.
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� ½Nðr;b; 0Þ � 1�2 lnðr2Q2
s0Þ; r� 1=Qs0: (54)

Going from (53) to (54) we kept only the second term in the
brackets in (53) as it is logarithmically enhanced.
Formula (54) is valid in the case of low-x evolution as
well. Substituting (5) into (54) yields

JðrÞ ¼ lnðr2Q2
s0Þe�ð1=4Þr2Q2

s0 ; r� 1=Qs0: (55)

Finally, the cross section follows from (7), (45), and (55) as

d�

dy
¼ �sCF

�
SA lnðr2Q2

s0Þe�ð1=4Þr2Q2
s0 ; r� 1=Qs0:

(56)

The striking feature of this formula is strong exponential
suppression of diffractive gluon production for large
onium. We will see in the next section that this result
completely changes when the quantum evolution in the
onium becomes an important effect.

VI. DIFFRACTIVE CROSS SECTION INCLUDING
LOW-x EVOLUTION

Using (15) and (45) we write

d�

dy
¼ �sCF

�
SA

Z
d2r0npðr; r0; Y � yÞJðr0; yÞ: (57)

A. Dilute regime r < 1=QsðyÞ
As in the quasiclassical case, first we are going to find

the kinematic region which gives the largest (logarithmic)
contribution to the integral. We have

d�

dy
¼ �sCF

�
SA2�

�Z r

0
dr0r0npðr; r0; Y � yÞJðr0; yÞ

þ
Z 1=Qs

r
dr0r0npðr; r0; Y � yÞJðr0; yÞ

þ
Z 1

1=Qs

dr0r0npðr; r0; Y � yÞJðr0; yÞ
�
: (58)

As has been noted in the previous sections, Eqs. (49) and
(54) hold also in the evolution case, provided the y depen-
dence is explicitly indicated in the arguments of Jðr; yÞ and
Nðr;b; yÞ. Generalization of (50) reads

Jðr0; yÞ � C0r
02Q2

sðyÞ; r0 � 1=QsðyÞ; (59)

where C0 is a constant which depends on a particular
functional form of NGðr;b; yÞ and can be found numeri-
cally from (11). Using (44) in (54) gives another limit of
function Jðr0; yÞ
Jðr0; yÞ � S20e

�ln2ðr0QsÞ lnðr02Q2
sÞ; r0 � 1=QsðyÞ:

(60)

Accordingly, using (31) or (34) depending on the rela-
tion between r and r0, i. e., np � r2=r04 if r < r0 or np �
1=r02 if r > r0, as well as (59) and (60), we estimate that the

second integral in (58) is enhanced by ln 1
rQs

with respect to

the first one, whereas the third integral is vanishingly
small. Thus,

d�

dy
� �sCF

�
SA2�

Z 1=Qs

r
dr0r0npðr; r0; Y � yÞJðr0; yÞ

¼ 2C0�sCFSA

4�3=2
r2Q2

s

Z 1=Qs

r

dr0

r0
ð2 ��sðY � yÞÞ1=4

ln3=4 r
0
r

� e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnðr0=rÞ

p
: (61)

Changing to a new integration variable 
 defined as 
2 ¼
lnr

0
r the integral in (61) can be taken explicitly in terms of

the imaginary error function. In the double-logarithmic
approximation the result reads

d�

dy
¼ C0�sCFSA

4�3=2

r2Q2
s

ð2 ��sðY� yÞ ln 1
rQs

Þ1=4 e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnð1=rQsÞ

p
;

r� 1=QsðyÞ: (62)

Both the quasiclassical result (51) and its quantum counter-
part (62) show that the cross section is proportional to r2 as
required by the color transparency.

B. Dense regime r > 1=Qs

Analogously to (58) we get

d�

dy
¼ �sCF

�
SA2�

�Z 1=Qs

0
dr0r0npðr; r0; Y � yÞJðr0; yÞ

þ
Z r

1=Qs

dr0r0npðr; r0; Y � yÞJðr0; yÞ

þ
Z 1

r
dr0r0npðr; r0; Y � yÞJðr0; yÞ

�
: (63)

The logarithmically enhanced contribution arises from the
second integral which—upon substitution of (60) and
(34)—becomes

d�

dy
¼ �sCFSA

2�3=2
S20ð2 ��sðY � yÞÞ1=4

Z r

1=Qs

dr0

r0

� lnðr02Q2
sÞ

ln3=4 rr0
e� lnðr0QsÞe2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnðr=r0Þ

p
: (64)

Note that in the relevant kinematic region 1=Qs � r0 � r
we can approximate ln rr0 ¼ lnðrQsÞ þ ln 1

r0Qs
� lnðrQsÞ.

The integral over r0 then becomes trivial yielding the final
result

d�

dy
¼ �sCFSA

2�3=2
S20

ð2 ��sðY � yÞÞ1=4
ln3=4ðrQsÞ

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnðrQsÞ

p
;

r� 1=QsðyÞ: (65)

We observe that the cross section given by (65) is an
increasing function of the rapidity interval Y � y between
the onium and the nucleus. Together with the quasiclassical
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expression (56) it implies that the total cross section for the
diffractive gluon production in a scattering of a large
onium off the heavy nucleus is nonvanishing only if the
low-x evolution in onium is an important effect. This can
be seen directly in Fig. 2: the gluon multiplicity arises from
the cut Pomeron attached to the onium. This observation
has important phenomenological consequences as we dis-
cuss in the next section.

VII. DISCUSSION AND SUMMARY

In this paper we discussed the coherent diffractive gluon
production in high energy onium-nucleus collisions. The
gluon multiplicity in the case of onium of small size r <
1=Qs is given by (51) and (62) and can be summarized as
follows

dNDðyÞ
dy

/ r2Q2
sðyÞxGðexpðy� YÞ; Q2

sÞ; r� Qs;

(66)

where xGðx;Q2Þ is a gluon distribution function at mo-
mentum scale Q2. Gluon multiplicity vanishes in the limit
r! 0 as is required by the color transparency.

In the other limit of large onium, the gluon production
cross section vanishes in the quasiclassical approximation
as implied by (56). At ��sðY � yÞ * 1 the evolution effects
in onium play an increasingly important role. It is the cut
Pomeron, connecting the onium and the dipole (r0) emit-
ting the triggered gluon, which contributes to the fast
increase in gluon multiplicity as interval Y � y increases.
One way to see it is to recall that during the linear evolution
dipoles of various sizes are produced from the parent
onium of size r. We explained in (63) and (64) that the
main contribution to the multiplicity stems from the di-
poles of size r0 � 1=Qs no matter how big the initial dipole
r is. The resulting expression (65) has the following be-
havior

dNDðyÞ
dy

/ xGðexpðy� YÞ; Q2
sÞ; r� Qs;

ðY � yÞ * 1=�s:

(67)

Dependence of the diffractive gluon multiplicity on the
onium size is summarized in Fig. 5.

To the extent that the large onium can serve as a model
for proton, (56) and (65) describe the diffractive gluon
production in proton-nucleus collisions. As such it has a
direct implications to the RHIC and LHC phenomenology.
Phenomenological studies show that the gluon saturation at
RHIC starts to impact the gluon and valence quark spectra
at rapidities 
 ’ 1 (and larger). In our notations it corre-
sponds to the rapidity interval y ’ 6 between the gluon and
the heavy nucleus and Y � y ’ 4 between the proton and
the gluon. This corresponds to xp ’ e�4 � 0:02 which is

perhaps insufficient to have a sizable low-x effect in proton
implying a very low multiplicity of diffractive gluon pro-

duction. On the other hand, exploring the backward rapid-
ity region 
< 0 will not allow one to probe the gluon
saturation in the nucleus. Therefore, if the typical inter-
quark distance in proton is larger than �1=Qs ’ 0:2 fm,
then we do not expect a significant multiplicity of gluons in
coherent diffraction of a proton on nucleus at RHIC, see
Fig. 5.1

The situation radically changes at LHC where an addi-
tional rapidity window�
 ’ 6 opens up. From the point of
view of gluon saturation, the midrapidity in pA at LHC is
expected to be similar to the rapidity 
 ¼ 3 at RHIC
[32,40]. At the same time, at the LHC midrapidity, xp ’
e�7 ¼ 0:001 which is certainly sufficient for the low-x
evolution to take place in proton. Therefore, we expect
that measurements of the diffractive gluon production in
pA collisions at LHC will be a sensitive probe of the low-x
dynamics. At EIC the typical dipole size r is determined by
the photon virtualityQ as r� 1=Qwhich makes it possible
the detailed study gluon saturation using the diffractive
gluon production in different kinematical regions (see, e.g.,
[75,76]).
An interesting extension of our work is a case of dif-

fractive production with small rapidity gap Y0 < y, which
will be relevant at LHC. Of special interest is dependence
of the differential cross section for diffractive gluon pro-
duction on transverse momentum of produced gluon. We

FIG. 5 (color online). Relative multiplicity of diffractive glu-
ons as a function of the onium size r in the quasiclassical
approximation (labeled y ¼ 0) and at very low x (y ¼ 2). The
rapidity values correspond to those at RHIC as explained in the
text. We chose Qs0 ¼ 1 GeV and Qs ¼ 1:35 GeV. N1 is a
normalization constant.

1Clearly, this conclusion does not hold if proton’s valence
quarks form a diquark-quark configuration where the diquark has
small size. From this perspective the diffractive gluon production
at RHIC is a sensitive probe of the valence quark configuration in
proton.
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are addressing this and other issues in the forthcoming
publication.
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