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We calculate chiral corrections to the semileptonic vector and axial quark coupling constants using a

manifestly Lorentz covariant chiral quark approach up to order Oðp4Þ in the two- and three-flavor

pictures. These couplings are then used in the evaluation of the corresponding couplings which govern the

semileptonic transitions between octet baryon states. In the calculation of baryon matrix elements we use

a general ansatz for the spatial form of the quark wave function, without referring to a specific realization

of hadronization and confinement of quarks in baryons. Matching the physical amplitudes calculated

within our approach to the model-independent predictions of baryon chiral perturbation theory allows us

to deduce a connection between our parameters and those of baryon chiral perturbation theory.
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I. INTRODUCTION

The study of the semileptonic decays of the baryon octet
Bi ! Bje ��e presents an opportunity to shed light on the

Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus.
At zero momentum transfer, the weak baryon matrix ele-
ments for the Bi ! Bje ��e transitions are determined by

just two constants—the vector coupling g
BiBj

V and its axial

counterpart g
BiBj

A . In the limit of exact SU(3) symmetry,

g
BiBj

V and g
BiBj

A are expressed in terms of basic parame-
ters—the vector couplings are given in terms of well-
known Clebsch-Gordan coefficients which are fixed due
to the conservation of the vector current (CVC), while the
axial couplings are given in terms of the simple SU(3) octet
axial-vector couplings F and D. The Ademollo-Gatto
theorem (AGT) [1] protects the vector form factors from
leading SU(3)-breaking corrections generated by the mass
difference of strange and nonstrange quarks. The first non-
vanishing breaking effects start at second order in symme-
try breaking. As stressed in Ref. [2] this vanishing of the
first-order correction to the vector hyperon form factors

g
BiBj

V presents an opportunity to determine Vus from the

direct measurement of Vusg
BiBj

V . The axial form factors, on
the other hand, contain symmetry-breaking corrections al-
ready at first order. Note that the experimental data on
baryon semileptonic decays [3] are well described by
Cabibbo theory [4], which assumes SU(3) invariance of
strong interactions. However, for a precise determination
of Vus one needs to include leading and perhaps subleading
SU(3)-breaking corrections.

The theoretical analysis of SU(3)-breaking corrections
to hyperon semileptonic decay form factors has been per-
formed in various approaches [5–22], including quark and
soliton models, 1=Nc expansion of QCD, chiral perturba-

tion theory (ChPT), lattice QCD, etc. Quark models, in
particular, have had a major impact on the understanding of
the phenomenology of hyperon semileptonic decays. The
original predictions of the naive SU(6) model [23] have
been substantially improved by inclusion of relativistic
[24] and SU(3) symmetry-breaking effects [8,12,13], and
gluon [25] and meson-cloud corrections [12,26]. However,
a fully consistent presentation of chiral corrections [both
SU(3) symmetric and SU(3) breaking] to semileptonic
form factors of baryons is still awaited, although a
model-independent inclusion of some chiral corrections
to semileptonic form factors of baryons has been per-
formed using different versions of the chiral effective
theory of baryons (including baryon ChPT and heavy
baryon ChPT) [16–22]. Recently a complete calculation
of the SU(3)-breaking corrections to the hyperon vector
form factors up to Oðp4Þ in covariant baryon ChPT has
been presented in [22]. Note that a detailed ChPT analysis
of the nucleon axial coupling/form factor has also been
performed in Refs. [27–33].
In the present paper we evaluate chiral corrections to the

semileptonic vector and axial quark coupling constants,
using a manifestly Lorentz covariant chiral quark approach
up to order Oðp4Þ in the two- and three-flavor pictures.
Here SU(3)-breaking corrections are generated by the mass
difference of strange (s) and nonstrange ðu; dÞ current
quarks. We proceed as follows. First, we calculate the
vector and axial quark couplings including chiral effects.
Then we use the weak quark transition operators contain-
ing these couplings to evaluate the octet baryon matrix
elements involved in the semileptonic transitions.
Performing the matching of the baryon matrix elements
to those derived in baryon ChPT, we deduce relations
between the parameters of the two approaches. This match-
ing guarantees inclusion of chiral corrections to baryon
observables, which is consistent with QCD. In the calcu-
lation of the baryon matrix elements, we employ a general
ansatz for the spatial form of the quark wave function,
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without referring to any specific realization of hadroniza-
tion and confinement of quarks in baryons. In a forthcom-
ing paper [34] we will consider the evaluation of the
baryon matrix elements within a specific Lorentz- and
gauge-invariant quark model [35] explicitly including the
internal quark dynamics. Note that in Refs. [36,37] we
performed an analogous study of the electromagnetic prop-
erties of the baryon octet and the �ð1230Þ resonance. In
particular, we developed an approach based on a nonlinear
chirally symmetric Lagrangian, which involves constituent
quarks and chiral fields. In a first step, this Lagrangian was
used to dress the constituent quarks by a cloud of light
pseudoscalar mesons and other (virtual) heavy states using
the calculational technique of infrared dimensional regu-
larization [38]. Then within a formal chiral expansion, we
calculated the dressed transition operators relevant for the
interaction of the quarks with external fields in the pres-
ence of a virtual meson cloud. In a following step, these
dressed operators were used to calculate baryon matrix
elements including internal dynamics of valence quarks.
(Note that a simpler and more phenomenological quark
model based on similar ideas regarding the dressing of
constituent quarks by the meson cloud has been developed
in Refs. [39].) We treat the constituent quarks as the
intermediate degrees of freedom between the current
quarks (building blocks of the QCD Lagrangian) and the
hadrons (building blocks of ChPT). This concept dates
back to the pioneering works of Refs. [40,41]. Further-
more, our strategy in dressing the constituent quarks by a
cloud of pseudoscalar mesons is motivated by the proce-
dure pursued in Ref. [41]. Recent analyses of experiments
at Jefferson Lab (TJLAB), Fermilab, BNL, and IHEP
(Protvino) renewed the interest in the concept of constitu-
ent quarks. The obtained data can be interpreted in a
picture, where the hadronic quasiparticle substructure is
assumed to consist of constituent quarks with nontrivial
form factors. These experiments also initiated new
progress in the manifestation of constituent degrees of
freedom in hadron phenomenology (see, e.g., Refs. [42]).

The present approach has the intrinsic advantage that it
is a priori not restricted to small energy or momentum
transfers. In a full evaluation, when taking into account the
effects of the internal dynamics of valence quarks, one can
describe hadron form factors at much higher Euclidean
momentum squared when compared to ChPT. When re-
stricting to the inclusion of valence quark effects, our
approach was successfully applied to different problems
of light baryons and also heavy baryons containing one,
two, and three heavy quarks (see Refs. [35,37]). We
achieved good agreement with existing data and gave
certain predictions for future experiments. For example,
our predictions for the semileptonic, nonleptonic, and
strong decays of heavy-light baryons were later confirmed
experimentally. On the other hand, in Refs. [36,37] we
developed the formalism in order to include chiral effects

in a way consistent with low-energy theorems and the
infrared structure of QCD. Consistency in the present
formalism with ChPT is limited since we cannot consider
baryonic matrix elements in Minkowski space. Also, our
approach does not provide any constraints for the expan-
sion parameter of standard ChPT.
In the present manuscript we proceed as follows. First, in

Sec. II, we discuss the basic notions of our approach, which
is in direct line with our previous work of Refs. [36,37].
That is, we derive a chiral Lagrangian motivated by baryon
ChPT [38,43], and formulate it in terms of quark and
mesonic degrees of freedom. Using constituent quarks
dressed with a cloud of light pseudoscalar mesons and
other heavy states, we derive dressed transition operators
within the chiral expansion, which are in turn used in the
quark model to produce baryon matrix elements. In Sec. III
we derive specific expressions for the vector and axial
baryon semileptonic decay constants, while in Sec. IV
we give the numerical analysis of the axial nucleon charge
and the vector and axial hyperon semileptonic couplings.
Finally, in Sec. V we present a short summary of our
results.

II. APPROACH

A. Chiral Lagrangian

The SU(3) chiral quark Lagrangian LqU [up to Oðp3Þ],
which dynamically generates dressing of the constituent
quarks by mesonic degrees of freedom, consists of three
primary pieces, Lq, Lqq, and LU:

LqU ¼ Lq þLqq þLU;

Lq ¼ Lð1Þ
q þLð2Þ

q þLð3Þ
q þ � � � ;

Lqq ¼ Lð3Þ
qq þ � � � ;

LU ¼ Lð2Þ
U þ � � � :

(1)

The superscript ðiÞ attached to LðiÞ
U and LðiÞ

qðqqÞ denotes the
low-energy dimension of the Lagrangian:

Lð2Þ
U ¼ F2

4
hu�u� þ�þi; Lð1Þ

q ¼ �q

�
i 6D�mþ 1

2
gu6 �5

�
q;

(2a)

Lð2Þ
q ¼ Cq

3

2
hu�u�i �qqþCq

4

4
�qi���½u�;u��qþ�� � ; (2b)

Lð3Þ
q ¼Dq

16

2
�qu6 �5qh�þiþDq

17

8
�qfu6 �5; �̂þgqþ�� � ; (2c)

Lð3Þ
qq ¼Dqq

1

2
�qu6 �5q �qqh�þiþDqq

2

8
�qfu6 �5; �̂þgq �qq

þDqq
3

2
�qu6 �5q �q�̂þqþ�� � ; (2d)

where the symbols h i, ½ �, and f g occurring in Eq. (2) denote
the trace over flavor matrices, commutator, and anticom-
mutator, respectively. In Eq. (2) we display only the terms
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involved in the calculation of vector and axial quark/
baryon coupling constants. In addition to the one-body
quark Lagrangian we included also the two-body part
Lqq. The detailed form of the chiral Lagrangian used in

the calculations of electromagnetic properties of baryons
can be found in Refs. [36,37].

The Lagrangians (2) contain the basic building blocks of
our approach. The couplings m and g denote the quark
mass and axial charge in the chiral limit [i.e., they are
counted as quantities of order Oð1Þ in the chiral expan-
sion], q is the triplet of u-, d-, s-quark fields, Cq

i andD
q
i are

the second- and third-order, one-body quark, low-energy
coupling constants (LEC’s), respectively, whileDqq

i are the
third-order, two-body quark LEC’s. The LEC’s encode the
(virtual) contributions due to heavy states. We denote the
SU(3) quark LEC’s by capital letters in order to distinguish
them from the SU(2) LEC’s cqi and dqi . Also, for the one-
body quark LEC’s we use the additional superscript ‘‘ q’’
to differentiate them from the analogous ChPT LEC’s: Ci,
Di in SU(3) and ci, di in SU(2). For the two-body quark
LEC’s we attach the superscript ‘‘ qq.’’ The octet of
pseudoscalar fields

�¼X8
i¼1

�i�i

¼ ffiffiffi
2

p �0=
ffiffiffi
2

p þ	=
ffiffiffi
6

p
�þ Kþ

�� ��0=
ffiffiffi
2

p þ	=
ffiffiffi
6

p
K0

K� �K0 �2	=
ffiffiffi
6

p

0
B@

1
CA

(3)

is contained in the SU(3) matrix U ¼ u2 ¼ expði�=FÞ
where F is the octet decay constant. We use the standard
notations [38,43]

D� ¼ @� þ ��;

�� ¼ 1

2
½uy; @�u� � i

2
uyr�u� i

2
ul�u

y;

u� ¼ ifuy; @�ug þ uyr�u� ul�u
y;

�� ¼ uy�uy � u�yu;

� ¼ 2BMþ � � � ;
�̂þ ¼ �þ � 1

3
h�þi:

(4)

The fields r� and l� include external vector ðv�Þ and axial
ða�Þ fields: r� ¼ v� þ a�, l� ¼ v� � a�. M ¼
diagfm̂; m̂; m̂sg is the mass matrix of current quarks (we
work in the isospin symmetry limit with m̂u ¼ m̂d ¼
m̂ ¼ 7 MeV, and the mass of the strange quark m̂s is
related to the nonstrange one via m̂s ’ 25m̂). The quark
vacuum condensate parameter is denoted by B ¼
�h0j �uuj0i=F2 ¼ �h0j �ddj0i=F2. To distinguish between
constituent and current quark masses we attach the symbol
^ (‘‘hat’’) when referring to the current quark masses. We
rely on the standard picture of chiral symmetry breaking

(B � F). To leading order in the chiral expansion the
masses of pseudoscalar mesons are given by M2

� ¼ 2m̂B,
M2

K ¼ ðm̂þ m̂sÞB, M2
	 ¼ 2

3 ðm̂þ 2m̂sÞB. For the numeri-

cal analysis we will use M� ¼ 139:57 MeV, MK ¼
493:677 MeV (the charged pion and kaon masses), M	 ¼
547:51 MeV, F ¼ F� ¼ 92:4 MeV in SU(2), and F ¼
ðF� þ FKÞ=2 in SU(3) with FK=F� ¼ 1:22 [44].
Reduction of the SU(3) Lagrangian to its SU(2) counter-

part is straightforward. The quark triplet ðu; d; sÞ and me-
son octet are replaced by the quark doublet ðu; dÞ and the
pion triplet, respectively. Likewise, the LEC’s Cq

i , D
q
i , and

Dqq
i should be replaced by their SU(2) analogues cqi , d

q
i ,

and dqqi . Note that the SU(2) Lagrangian does not contain
the LEC’s dq17 and dqq2ð3Þ. Also, we should use M ¼
diagfm̂; m̂g and �̂þ ¼ �þ � 1

2 h�þi instead of the corre-

sponding quantities defined in Eq. (4).

B. Dressing of quark operators

Any bare quark operator can be dressed by a cloud of
pseudoscalar mesons and heavy states in a straightforward
manner by use of the effective chirally invariant
Lagrangian LqU. In Refs. [36,37] we illustrated the tech-

nique of dressing in the case of the electromagnetic quark
operator and performed a detailed analysis of the electro-
magnetic properties of the baryon octet and of the� ! N�
transition. Here we extend our method to the case of vector
and axial quark operators. First, we define the bare vector
and axial quark transition operators constructed from quark
fields of flavor i and j as

J�;VðqÞ ¼
Z

d4xe�iqxj�;VðxÞ;
j�;VðxÞ ¼ �qjðxÞ��qiðxÞ;
J�;AðqÞ ¼

Z
d4xe�iqxj�;AðxÞ;

j�;AðxÞ ¼ �qjðxÞ���5qiðxÞ:

(5)

Next, using the chiral Lagrangian derived in Sec. II A, we
construct the vector/axial currents with quantum numbers
of the bare quark currents which include mesonic degrees
of freedom. Then these currents are projected on corre-
sponding quark (initial and final) states in order to evaluate
the dressed vector and axial quark form factors encoding
the chiral corrections. Finally, using the dressed quark form
factors in momentum space, we can determine their
Fourier transform in coordinate space.
The dressed quark operators jdress�;VðAÞðxÞ include one-body,

jdressð1Þ�;VðAÞ ðxÞ, and two-body, jdressð2Þ�;VðAÞ ðxÞ, operators:

jdress�;VðAÞðxÞ ¼ jdressð1Þ�;VðAÞ ðxÞ þ jdressð2Þ�;VðAÞ ðxÞ: (6)

In Refs. [36,37] we restricted to the consideration of one-
body quark operators only. Here we discussed also the two-
body operators. In Figs. 1–4 we display the tree and loop
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diagrams which contribute to the dressed one- and two-
body vector and axial operators, respectively, up to and
including third order in the chiral expansion.

The dressed one-body quark operators jdressð1Þ�;VðAÞ ðxÞ and

their Fourier transforms Jdressð1Þ�;VðAÞ ðqÞ have the forms

jdressð1Þ�;V ðxÞ ¼ fij1 ð�@2Þ½ �qjðxÞ��qiðxÞ�

þ fij2 ð�@2Þ
mi þmj

@�½ �qjðxÞ���qiðxÞ�

� fij3 ð�@2Þ
mi þmj

i@�½ �qjðxÞqiðxÞ�;

Jdressð1Þ�;V ðqÞ ¼
Z

d4xe�iqx �qjðxÞ
�
��f

ij
1 ðq2Þ

þ i���q
�

mi þmj

fij2 ðq2Þ þ
q�

mi þmj

fij3 ðq2Þ
�
qiðxÞ;

(7)

and

jdressð1Þ�;A ðxÞ ¼ gij1 ð�@2Þ½ �qiðxÞ���5qjðxÞ�

þ gij2 ð�@2Þ
mi þmj

@�½ �qjðxÞ����5qiðxÞ�

� gij3 ð�@2Þ
mi þmj

i@�½ �qjðxÞ�5qiðxÞ�;

Jdressð1Þ�;A ðqÞ ¼
Z

d4xe�iqx �qjðxÞ
�
���5g

ij
1 ðq2Þ

þ i���q
�

mi þmj

�5g
ij
2 ðq2Þ

þ q�
mi þmj

�5g
ij
3 ðq2Þ

�
qiðxÞ;

(8)

where miðjÞ is the dressed constituent quark mass of iðjÞth
flavor generated by the chiral Lagrangian (2) (see details in

Ref. [36]); fij1;2;3ðq2Þ and gij1;2;3ðq2Þ are the one-body quark

vector and axial i ! j flavor changing form factors encod-
ing the chiral corrections. In Figs. 1 and 2 we only show the
one-body diagrams which are relevant for the calculation

of the vector fij1 ¼ fij1 ð0Þ and axial gij1 ¼ gij1 ð0Þ couplings
at the order of accuracy to which we are working in. The
ellipses � � � in Figs. 1 and 2 denote higher-order diagrams,
i.e., diagrams which contribute only to the q2 dependence

of fij1 ðq2Þ and gij1 ðq2Þ and/or to the remaining four form

factors fij2ð3Þðq2Þ and gij2ð3Þðq2Þ. The full analysis of all six

form factors goes beyond the scope of the present paper.
The contributions of the various graphs in Figs. 1 and 2 to
the vector and axial couplings are discussed in Appendix A
and are listed in Tables I and II. Evaluation of the one-body
diagrams in Figs. 1 and 2 was performed using the method
of infrared dimensional regularization suggested in
Ref. [38] in order to guarantee a straightforward connec-
tion between loop and chiral expansions in terms of quark
masses and small external momenta. We relegate a detailed
discussion of the calculational technique to Ref. [36].
In Figs. 3 and 4 we display the two-body diagrams

(contributions to the vector and axial operators, respec-
tively) which are generated by the chiral Lagrangian (2) at
the order of accuracy we are working in. These diagrams
include the terms generated by meson exchange and by the
contact terms representing contributions due to heavy
states and generated by the two-body Oðp3Þ chiral

(a) (b) (c)

(d)

+

(e)

+

(f)

+ · · ·

FIG. 2 (color online). Diagrams contributing to the one-body
axial quark transition operator up to fourth order. Solid, dashed,
and wiggly lines refer to quarks, pseudoscalar mesons, and the
external axial field, respectively. Vertices denoted by a black
filled circle and box correspond to insertions from the second
and third order chiral Lagrangians.

(a) (b) (c) (d)

(e)

+

(f)

+ · · ·

FIG. 1 (color online). Diagrams contributing to the one-body
vector quark transition operator up to fourth order. Solid, dashed,
and wiggly lines refer to quarks, pseudoscalar mesons, and the
external vector field, respectively.
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Lagrangian Lð3Þ
qq (2d). Inclusion of the two-body quark

operators in the evaluation of the vector and axial cou-
plings of baryons goes beyond the scope of the present
paper and will be done in the future (therefore, in the
numerical calculations we will restrict to the one-body
approximation). Here we just give the general expressions
for the Fourier transforms of the two-body operators

Jdressð2Þ�;VðAÞ ðqÞ:

jdressð2Þ�;V ðqÞ ¼
Z

d4xe�iqx
X
m

ð �qjðxÞ�V
ij;mqiðxÞ �qlðxÞ

� �V
kl;mqkðxÞÞ�fijklm ðq2Þ; (9a)

jdressð2Þ�;A ðqÞ ¼
Z

d4xe�iqx
X
m

ð �qjðxÞ�A
ij;mqiðxÞ �qlðxÞ

� �A
kl;mqkðxÞÞ�gijklm ðq2Þ; (9b)

where �VðAÞ
ij;m reflects the corresponding spin structures,

fðgÞijklm ðq2Þ are the two-body quark form factors encoding
chiral effects, and m is the summation index over possible
contributions to the two-body operators. We discuss the
two-body operators in Appendix B.

In order to calculate the vector and axial current tran-
sitions between baryons, we project the dressed quark
operators between the corresponding baryon states. The
master formulas are

hBjðp0ÞjJdress�;VðAÞðqÞjBiðpÞi ¼ ð2�Þ4
4ðp0 � p� qÞ
�M

BiBj

�;VðAÞðp; p0Þ; (10)

M
BiBj

�;V ðp;p0Þ ¼ X3
k¼1

fijk ðq2ÞhBjðp0ÞjVij
�;kð0ÞjBiðpÞi

þX
m

fijklm ðq2ÞhBjðp0ÞjVijkl
�;mð0ÞjBiðpÞi

¼ �uBj
ðp0Þ

�
��F

BiBj

1 ðq2Þþ i���q
�

mBi
þmBj

F
BiBj

2 ðq2Þ

þ q�
mBi

þmBj

F
BiBj

3 ðq2Þ
�
uBi

ðpÞ; (11)

M
BiBj

�;A ðp; p0Þ ¼ X3
k¼1

gijk ðq2ÞhBjðp0ÞjAij
�;kð0ÞjBiðpÞi

þX
m

gijklm ðq2ÞhBjðp0ÞjAijkl
�;mð0ÞjBiðpÞi

¼ �uBj
ðp0Þ

�
���5G

BiBj

1 ðq2Þ þ i���q
�

mBi
þmBj

� �5G
BiBj

2 ðq2Þ þ q�
mBi

þmBj

�5G
BiBj

3 ðq2Þ
�

� uBi
ðpÞ; (12)

where BiðpÞ and uBi
ðpÞ are the baryon state and spinor,

respectively, normalized via

hBiðp0ÞjBiðpÞi ¼ 2EBi
ð2�Þ3
3ð ~p� ~p0Þ;

�uBi
ðpÞuBi

ðpÞ ¼ 2mBi
(13)

with EBi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bi
þ ~p2

q
being the baryon energy and mBi

the baryon mass. The index iðjÞ attached to the baryon
state/field indicates the flavor of the quark involved in the

semileptonic transition. Here, F
BiBj

k ðq2Þ andGBiBj

k ðq2Þ with

(a) (b) (c) (d)

(e) (f) (g)

+ · · ·

FIG. 4 (color online). Diagrams contributing to the two-body
axial quark transition operator up to fourth order. Solid, dashed,
and wiggly lines refer to quarks, pseudoscalar mesons, and the
external axial field, respectively. Vertices denoted by a big
(small) black filled circle and box correspond to insertions of
the two-body mass counterterm due to one-meson exchange,
from the second and third order chiral Lagrangians.

(a) (b) (c) (d)

(e) (f)

+ · · ·

FIG. 3 (color online). Diagrams contributing to the two-body
vector quark transition operator up to fourth order. Solid, dashed,
and wiggly lines refer to quarks, pseudoscalar mesons, and the
external vector field, respectively. The vertex denoted by a black
filled circle corresponds to insertion of the two-body mass
counterterm due to one-meson exchange.
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k ¼ 1, 2, 3 are the vector and axial semileptonic form
factors of baryons.

The main idea of the above relations is to express the
matrix elements of the dressed quark operators in terms of
the matrix elements of the one- and two-body valence

quark operators Vij
�;kð0Þ, Aij

�;kð0Þ, Vijkl
�;mð0Þ, and Aijkl

�;mð0Þ,
and encode the chiral effects in the form factors fijk ðq2Þ,
gijk ðq2Þ, fijklm ðq2Þ, and gijklm ðq2Þ. The set of valence quark

operators is defined as

Vij
�;kð0Þ ¼ �qjð0Þ�V

�;kqið0Þ; Aij
�;kð0Þ ¼ �qjð0Þ�A

�;kqið0Þ;
(14a)

Vijkl
�;mð0Þ ¼ ð �qjð0Þ�V

ij;mqið0Þ �qlð0Þ�V
klqkð0ÞÞ�;

Aijkl
�;mð0Þ ¼ ð �qjð0Þ�A

ij;mqið0Þ �qlð0Þ�A
kl;mqkð0ÞÞ� (14b)

where

�V
�;1 ¼ ��; �V

�;2 ¼
i���q

�

mi þmj

; �V
�;3 ¼

q�
mi þmj

;

�A
�;1 ¼ ���5; �A

�;2 ¼
i���q

�

mi þmj

�5;

�A
�;3 ¼

q�
mi þmj

�5: (15)

The set of Eqs. (10)–(15) contains our main result: we
perform a separation of the effects of internal dynamics
of valence quarks contained in the matrix elements of the

bare quark operators VðAÞij�;kð0Þ, VðAÞijkl�;mð0Þ and the effects
dictated by chiral dynamics which are encoded in the

relativistic form factors fijk ðq2Þ, gijk ðq2Þ, fijklm ðq2Þ, and

gijklm ðq2Þ. In particular, the results for the baryon properties
(static characteristics and form factors in the Euclidean
region) derived using the above formulas satisfy the low-
energy theorems and identities dictated by the infrared
singularities of QCD (see, e.g., the detailed discussion in
Refs. [36,37]). Let us stress that consistency in the present
formalism with ChPT is limited since we cannot consider
baryonic matrix elements in Minkowski space. Because of
the factorization of the chiral effects and effects of internal
dynamics of valence quarks, the calculation of the form

factors fðgÞijk ðq2Þ and fðgÞijklm ðq2Þ encoding chiral dynam-

ics, on one side, and the matrix elements of VðAÞij�;kð0Þ and
VðAÞijkl�;mð0Þ encoding effects of valence quarks, on the
other side, can be done independently. The evaluation of

the matrix elements VðAÞij�;kð0Þ and VðAÞijkl�;mð0Þ is not

restricted to the small squared momenta and, therefore,
can shed light on baryon form factors at higher Euclidean
momentum squared in comparison with ChPT. In particu-
lar, as a first step we employ a formalism motivated by the
ChPT Lagrangian, which is formulated in terms of con-
stituent quark degrees of freedom, for the calculation of

fðgÞijk ðq2Þ and fðgÞijklm ðq2Þ. The calculation of the matrix

elements of the bare quark operators can then be relegated
to quark models based on specific assumptions about in-
ternal quark dynamics, hadronization, and confinement.
Note that Eqs. (10)–(15) are valid for the calculations of
dressed vector and axial quark operators of any flavor
content.

C. Chiral expansion of vector and axial quark couplings

In this section we present the results for the chiral

expansion of the vector fij1 ¼ fij1 ð0Þ and axial gij1 ¼
gij1 ð0Þ quark couplings for various i ! j flavor transitions
in the SU(2) (isospin) limit. We begin by defining the quark
wave function renormalization constant Z. In particular,
the tree graphs Ttree in Figs. 1(a) and 2(a) should be
renormalized in terms of Z via 1=2fTtree; Zg. Details of
the calculation of Z can be found in [36]. In SU(2) we find

Z ¼ 1� 9
4R� (16)

while in SU(3) we have

diag fZ; Z; Zsg ¼ I� X
P¼�;K;	

�PRP; (17)

where in both cases Z � Zu � Zd and

RP ¼ g2

F2
�P þ g2M2

P

24�2F2

�
1� 3�

2
�P

�
; �P ¼ MP

m
;

P ¼ �;K; 	; �� ¼ 9

2
Qþ 3

2
I � 9

4
�3;

�K ¼ �3Qþ 2I þ 3

2
�3; �	 ¼ � 3

2
Qþ 1

2
I þ 3

4
�3:

(18)

Here Q ¼ diagf2=3;�1=3;�1=3g and the quantity �P is
defined as

�P ¼ 2M2
P�P;

�P ¼ Md�4
P

16�2

�
1

d� 4
� 1

2
ðln4�þ �0ð1Þ þ 1Þ

�
:

(19)

In Appendix A we explicitly list the contributions of the
various graphs to the vector (Fig. 1) and axial (Fig. 2)
couplings. First, we discuss the vector couplings. For com-
pleteness, we consider vector currents conserving the
quark flavor, i.e., corresponding to electric and isospin
charge, as well as those involving d ! u and s ! u tran-
sitions. Because of charge conservation and isospin invari-
ance, the total contribution of the diagrams of Fig. 1
properly reproduces the quark electric and isospin charges.
In addition, the vector coupling governing the d ! u tran-
sition is equal to unity— fdu1 ¼ 1 [a detailed discussion for
both SU(2) and SU(3) is presented in Appendix A]. As
stressed in Ref. [20] the total contribution of diagrams
shown in Fig. 1 to these quantities is finite, and no un-
known LEC’s appear at the order of accuracy to which we
are working in. In the case of the s ! u transition, the total
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contribution of the diagrams given in Fig. 1 to the corre-
sponding vector coupling fsu1 is finite but contains
symmetry-breaking corrections of second order in SU
(3)— OððMK �M�Þ2Þ and OððMK �M	Þ2Þ. Note, that
the Ademollo-Gatto theorem (AGT) protects the coupling
fsu1 from first-order symmetry-breaking corrections. As
shown explicitly (cf. Appendix A) the AGT holds for the
two sets of diagrams, set I and set II, independently. For set
I, including the diagrams of Figs. 1(a), 1(b), 1(e), and 1(f),
and for II, including the diagrams of Figs. 1(c) and 1(d),
we have

fsu;I1 ¼ X
i¼a;b;e;f

fsu;ðiÞ1

¼ 1� 9g2

16
ðH�K þH	K þG�K þG	KÞ (20)

and

fsu;II1 ¼ X
i¼c;d

fsu;ðiÞ1 ¼ � 3

16
ðH�K þH	KÞ: (21)

The Oðp2Þ functions Hab and Gab, which show up in the
context of ChPT (see, e.g., Refs. [9,16,17,19,20,22,45]) are
defined as

Hab ¼ 1

ð4�FÞ2
�
M2

a þM2
b �

2M2
aM

2
b

M2
a �M2

b

ln
M2

a

M2
b

�
¼ OððM2

a �M2
bÞ2Þ;

Gab ¼ � 1

ð4�FÞ2
2�

3m

ðMa �MbÞ2
Ma þMb

ðM2
a þ 3MaMb þM2

bÞ
¼ OððM2

a �M2
bÞ2Þ: (22)

Therefore, the final result for the s ! u quark transition
vector coupling is

fsu1 ¼ fsu;I1 þ fsu;II1

¼ 1þ 
fsu1 ¼ 1� 3

16
ðð1þ 3g2ÞðH�K þH	KÞ

þ 3g2ðG�K þG	KÞÞ (23)

where 
fsu1 is the total SU(3)-breaking correction.

Next we turn to the discussion of the axial couplings
governing the d ! u and s ! u quark flavor transitions.
The expressions for the axial (isovector) charge g1 and the
axial couplings responsible for the d ! u and s ! u tran-
sitions gdu1 and gsu1 are given in the following
(cf. Appendix A for the expressions of the separate dia-
grams in Fig. 2). In SU(2) we have

g1 ¼ gdu1 ¼ g

�
1� g2M2

�

16�2F2
þ M3

�

24�mF2

� ð3þ 3g2 � 4cq3mþ 8cq4mÞ
�

þ 4M2
�

�
dq16 �

g

F2

�
1

2
þ g2

�
��

�
: (24)

Absorbing the infinity in the LEC dq16,

dq16 ¼ �dq16 þ
g

F2

�
1

2
þ g2

�
��; (25)

we arrive at the ultraviolet-finite expression for g1:

g1 ¼ gdu1 ¼ gþ 
g�2

1

¼ g

�
1� g2M2

�

16�2F2
þ M3

�

24�mF2
ð3þ 3g2 � 4cq3m

þ 8cq4mÞ
�
þ 4M2

�
�dq16; (26)

where 
g
�2

1 is the SU(2) chiral correction.

In SU(3) the corresponding expression for the isovector
axial coupling g1 is

g1 ¼ gdu1 ¼ g

�
1� g2

16�2F2

�
M2

� þM2
K þM2

	

3

�

þ M3
�

24�mF2
ð3þ 3g2 � 4Cq

3mþ 8Cq
4mÞ þ M3

K

48�mF2

�
3þ 9

2
g2 þ 8Cq

4m

�
þ g2M3

	

48�mF2

�

þ 2M2
�

�
Dq

16 þ
1

3
Dq

17 �
g

F2

�
1þ 17

9
g2
�
��� gð1þ 2g2Þ

32�2F2
ln
M2

�

m2
þ g3

288�2F2
ln
M2

	

m2

�

þ 2M2
K

�
2Dq

16 �
1

3
Dq

17 �
g

2F2

�
1þ 35

9
g2
�
��� gð1þ 3g2Þ

64�2F2
ln
M2

K

m2
� g3

72�2F2
ln
M2

	

m2

�
; (27)

where the divergent quantity,

�� ¼ md�4

16�2

�
1

d� 4
� 1

2
ðln4�þ �0ð1Þ þ 1Þ

�
; (28)

coincides with �P when m ¼ MP. The last two lines in Eq. (27), containing divergences, can be written in more compact
form in terms of one of the divergent quantities �P (P ¼ �, K, 	)—e.g., in terms of �	, these lines have the succinct form
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2M2
�

�
Dq

16þ
1

3
Dq

17�
g

F2

�
1þ 17

9
g2
�
�	 �ð1þ 2g2ÞL�	

�
þ 2M2

K

�
2Dq

16 �
1

3
Dq

17 �
g

2F2

�
1þ 35

9
g2
�
�	 � 1

2
ð1þ 3g2ÞLK	

�
;

(29)

where

Lab ¼ g

32�2F2
ln
M2

a

M2
b

: (30)

Again we remove the divergences in g1 using the renormalized LEC’s �Dq
16 and

�Dq
17:

Dq
16 ¼ �Dq

16 þ
g

2F2

�
1þ 23

9
g2
�
�	; Dq

17 ¼ �Dq
17 þ

3g

2F2

�
1þ 11

9
g2
�
�	: (31)

Therefore, the result for the renormalized coupling gdu1 in SU(3) is expressed in terms of the axial charge and quark mass in
the chiral limit, the meson masses, and two unknown LEC’s, �D16 and �D17:

g1 ¼ gdu1 ¼ gþ 
g�3

1 ¼ g

�
1� g2

16�2F2

�
M2

� þM2
K þM2

	

3

�
þ M3

�

24�mF2
ð3þ 3g2 � 4Cq

3mþ 8Cq
4mÞ

þ M3
K

48�mF2

�
3þ 9

2
g2 þ 8Cq

4m

�
þ g2M3

	

48�mF2

�
þ 2M2

�

�
�Dq
16 þ

1

3
�Dq
17 � ð1þ 2g2ÞL�	

�

þ 2M2
K

�
2 �Dq

16 �
1

3
�Dq
17 �

1

2
ð1þ 3g2ÞLK	

�
(32)

where 
g�3

1 is the SU(3) chiral correction.
Also we perform an expansion of g1 ¼ gdu1 in powers of the SU(3)-breaking parameter ms � m̂:

g1 ¼ gdu1 ¼ g
SU3

1 þ 
g1 (33)

where

g
SU3

1 ¼ g

�
1� 7g2 �M2

48�2F2
þ �M3

48�mF2

�
9þ 23

2
g2 � 8Cq

3mþ 24Cq
4m

��
þ 6 �M2 �Dq

16 (34)

is the SU(3) symmetric term, and


g1 ¼ ðM2
K �M2

�Þ
�

g

96�2F2

�
9þ 59

3
g2
�
� g �M

96�mF2

�
9þ 11

2
g2 � 16Cq

3mþ 24Cq
4m

�
� 2

3
�Dq
17

�
þOððM2

K �M2
�Þ2Þ

� h1ðM2
K �M2

�Þ þOððM2
K �M2

�Þ2Þ (35)

is the SU(3)-breaking term, where we display the first-order term. Here for convenience we define the so-called SU(3)
symmetric octet mass �M of pseudoscalar mesons as �M ¼ 2 �mB with �m ¼ ðmu þmd þmsÞ=3 ¼ ð2m̂þmsÞ=3.

Likewise, we have the result for the s ! u flavor transition axial coupling gsu1 in terms of �Dq
16 and

�Dq
17:

gsu1 ¼ gþ 
g
�su

1 ¼ g

�
1� 3g2

64�2F2

�
M2

� þ 2M2
K þM2

	

9

�
þ M3

�

64�mF2

�
3þ 9

2
g2 þ 16Cq

4m

�

þ M3
K

32�mF2

�
3þ 9

2
g2 � 16

3
Cq
3mþ 16

3
Cq
4m

�
þ M3

	

64�mF2

�
3þ 11

6
g2 þ 16

3
Cq
4m

��

þ 2M2
�

�
�Dq
16 �

1

6
�Dq
17 �

3

8
ð1þ 3g2ÞL�	

�
þ 2M2

K

�
2 �Dq

16 þ
1

6
�Dq
17 �

3

4
ð1þ 3g2ÞLK	

�
; (36)

where 
g
�su

1 is the strangeness changing chiral correction. The ms � m̂ expansion for the gsu1 coupling reads

gsu1 ¼ gSU3

1 þ 
gsu1 (37)

where
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gsu1 ¼ ðM2
K �M2

�Þ
�

g

192�2F2

�
9þ 79

3
g2
�
þ g �M

192�mF2

�
9þ 11

2
g2 � 16Cq

3m� 16Cq
4m

�
þ 1

3
�Dq
17

�
þOððM2

K �M2
�Þ2Þ � h2ðM2

K �M2
�Þ þOððM2

K �M2
�Þ2Þ: (38)

D. Bare quark matrix elements

Now we are in the position to discuss the calculation of
the matrix elements of the bare quark operators derived in
Eqs. (11) and (12) and restrict in the following to the one-
body approximation:

Vij
�;1ð0Þ ¼ �qjð0Þ��qið0Þ; Aij

�;1ð0Þ ¼ �qjð0Þ���5qið0Þ:
(39)

As stressed earlier, the evaluation of these matrix elements
can be done independently of the calculation of chiral
effects. Therefore, it can be relegated to a quark model
based on a specific scenario about hadronization and con-
finement of quarks within baryons, including internal
quark dynamics.

As mentioned in the Introduction, in the calculation of

the baryon matrix elements hV�;1i¼ hBjðp0ÞjVij
�;1ð0ÞjBiðpÞi

and hA�;1i ¼ hBjðp0ÞjAij
�;1ð0ÞjBiðpÞi, we employ a general

ansatz for the spatial form of the quark wave functions,
without referring to any specific realization. In a forth-
coming paper [34] we will evaluate the baryon matrix
elements using a Lorentz- and gauge-invariant quark
model based on a specific hadronization ansatz—i.e. mod-
eling internal quark dynamics, which goes beyond the
additive quark model. Note that in Ref. [37] we did an
analogous study of the electromagnetic properties of the
baryon octet and the �ð1230Þ resonance. One should stress
that the approach [37] is restricted to the evaluation of
baryon matrix elements in the Euclidean space to avoid
unphysical cuts. Therefore, it pretends to the evaluation of
the baryon matrix elements only for the Euclidean trans-
ferred momentum squared.

In the evaluation of the bare matrix elements hV�;1i and
hA�;1i, we follow, e.g., Refs. [5,39]. We begin by introduc-

ing the ground-state wave function of the quark with flavor
f moving in a spin-independent central potential:

qfðxÞ ¼ qfð ~xÞe�iEt; qfð ~xÞ ¼
ufðrÞ

ilfðrÞ ~�� ~x
r

 !
�s�f�c;

(40)

where ufðrÞ and lfðrÞ signify the upper and lower compo-

nents of the quark wave function (in the nonrelativistic
limit lf vanishes); �s, �f, �c are the spin, flavor, and color

quark wave functions, respectively. Note that this form of
the quark wave function also appears in relativistic har-
monic oscillator models utilizing a central potential (see
references in [39]). In the following we use the notation
ðu ¼ uu ¼ ud; l ¼ lu ¼ ldÞ for nonstrange and ðus; lsÞ for
strange quark wave functions. In practice it is also conve-

nient to introduce ratios between the two sets of wave
functions via

�u ¼ us
u
; �l ¼ ls

l
: (41)

The normalization condition for the spatial wave function
is Z

d3xqyf ð ~xÞqfð ~xÞ ¼
Z

d3xðu2fðrÞ þ l2fðrÞÞ ¼ 1: (42)

Now we are in the position to pin down the matrix elements
hV�;1i and hA�;1i by considering quark operators with

different flavor structure. We begin by calculating the
vector matrix elements for the respective initial and final
baryon states:

V
BiBj

1 ¼
�
Bj "

								
Z

d3x �qjðxÞ�0qiðxÞ
								Bi "




¼
Z

d3x½uiðrÞujðrÞþ liðrÞljðrÞ�
�
Bj "

								X
3

k¼1

�k
ji

								Bi "


;

(43)

where the spin-flavor matrix elements hBj "jP3
k¼1 �

k
jijBi "i

are evaluated using the simple SU(6) quark model:

�
Bj "

								X
3

k¼1

�k
ji

								Bi "


¼

8>>>>>>>>>><
>>>>>>>>>>:

1 for n ! p;

� ffiffiffiffiffiffiffiffi
3=2

p
for � ! p;

�1 for �� ! n;
0 for �� ! �;ffiffiffiffiffiffiffiffi
3=2

p
for �� ! �;ffiffiffiffiffiffiffiffi

1=2
p

for �� ! �0;
1 for �0 ! �þ;

(44)

�k
ji are the linear combinations of the Gell-Mann flavor

matrices, and relativistic effects are included in the overlap
of the spatial quark wave functions. It is clear that
Fnp
1 ð0Þ ¼ 1 as required by conservation of the vector cur-

rent (CVC)—the CVC prediction of unity emerges as the
normalization condition (42) for the spatial quark wave
functions. Note that in the SU(3) limit, wherein quarks,
independent of their flavor, have identical wave functions,
the ‘‘spatial’’ integral in Eq. (43) is identical to the wave
function normalization condition (42). As a result, in�S ¼
1 transitions the corresponding vector current is also con-
served to the extent that the s and u quarks are degenerate
in mass.
In the case of the corresponding baryon axial matrix

elements, we have
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A
BiBj

1 ¼
�
Bj "

								
Z

d3x �qjðxÞ�3�5qiðxÞ
								Bi "




¼
Z

d3x

�
uiðrÞujðrÞ � 1

3
liðrÞljðrÞ

�

�
�
Bj "

								X
3

k¼1

�k
3�

k
ji

								Bi "


; (45)

where the spin-flavor matrix elements
hBj " j

P
3
k¼1�

k
3�

k
jijBi "i are evaluated using SU(6):

�
Bj "

								X
3

k¼1

�k
3�

k
ji

								Bi "


¼

8>>>>>>>>>><
>>>>>>>>>>:

5=3 for n ! p;

� ffiffiffiffiffiffiffiffi
3=2

p
for � ! p;

1=3 for �� ! n;ffiffiffiffiffiffiffiffi
2=3

p
for �� ! �;ffiffiffiffiffiffiffiffi

1=6
p

for �� ! �;
5=ð3 ffiffiffi

2
p Þ for �� ! �0;

5=3 for �0 ! �þ;
(46)

and, again, relativistic effects are included in the overlap of
the spatial quark wave functions.

Using the normalization condition the integrals over the
spatial quark wave functions can be simplified. There are
three possible situations: (1) overlap of nonstrange quark
wave functions; (2) overlap of strange quark wave func-
tions; (3) overlap of nonstrange with strange quark wave
functions. In the first case we have

IV ¼
Z

d3x½u2ðrÞ þ l2ðrÞ� ¼ 1; (47)

IA ¼
Z

d3x

�
u2ðrÞ � 1

3
l2ðrÞ

�
¼ 1� 4

3

Z
d3xl2ðrÞ: (48)

In the second case,

IssV ¼
Z

d3x½u2sðrÞþ l2sðrÞ� ¼
Z
d3x½�2

uu
2ðrÞþ�2

l l
2ðrÞ� ¼ 1;

(49)

IssA ¼
Z

d3x

�
u2sðrÞ � 1

3
l2sðrÞ

�
¼ 1� 4

3
�2
l

Z
d3xl2ðrÞ

¼ 1þ �2
l ðIA � 1Þ; (50)

where �u and �l can be written in terms of the axial
structure integral IA via

�u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ð1� �2

l Þ
1� IA
1þ 3IA

s
: (51)

It is clear that in the SU(3) limit— �u ¼ �l ! 1—the

expressions for the overlap integrals IssV and IssA reduce to
IV and IA, respectively.
In the third case we have

IsV ¼
Z

d3x½uðrÞusðrÞ þ lðrÞlsðrÞ�

¼
Z

d3x½�uu
2ðrÞ þ �ll

2ðrÞ�

¼ �u þ 3

4
ð�u � �lÞðIA � 1Þ; (52)

IsA ¼
Z

d3x

�
uðrÞusðrÞ � 1

3
lðrÞlsðrÞ

�

¼ �u �
�
�u þ �l

3

�Z
d3xl2ðrÞ

¼ �u þ
�
3�u

4
þ �l

4

�
ðIA � 1Þ: (53)

Here the parameter �u can be rewritten by using identity
(51). Therefore, all structure integrals (IV , IA, I

s
V , I

s
A, I

ss
V ,

IssA ) involving spatial quark wave functions are either fixed
precisely (like IV ¼ IssV ¼ 1) or are expressed in terms of
IA and the parameter �l. In the case of exact SU(3) sym-
metry the vector and axial integrals are degenerate— IV ¼
IsV ¼ IssV ¼ 1 and IA ¼ IsA ¼ IssA . In the nonrelativistic

limit IA ¼ 1, �u ¼ 1, and all these structure integrals are
unity—

IV ¼ IsV ¼ IssV ¼ IA ¼ IsA ¼ IssA ¼ 1: (54)

It should be stressed that all the vector integrals satisfy the
AGT—either they are exactly equal to unity (like IV and
IssV ), or deviate from 1 by the corrections of second order in
SU(3) breaking. Specifically,

IsV ¼ 1þ 3

2

IA � 1

1þ 3IA

2 þOð
3Þ; (55)

where 
 ¼ �l � 1 is an SU(3)-breaking parameter. In the
case of the axial overlap integrals IsA and IssA , the SU(3)-

breaking corrections begin at order Oð
Þ.
Finally we note that the bare matrix elements (which

contain the effects of valence quarks) can be expressed in
terms of the axial structure integral IA and the parameter 
,
which encode the effects of SU(3) breaking, i.e., distin-
guish the lower components of the strange and nonstrange
quarks—

IV ¼ IssV ¼ 1; IsV ¼ 1þ 
IsV;

IsA ¼ IA þ 
IsA; IssA ¼ IA þ 
IssA ;
(56)

where
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IsV ¼ �u � 1þ 3

4
ð�u � �lÞðIA � 1Þ

¼ 3

2

IA � 1

1þ 3IA

2 þOð
3Þ ¼ Oð
2Þ;


IsA ¼ �u � 1þ ð1� IAÞ
�
1� 3�u

4
� �l

4

�
¼ ðIA � 1Þ
þOð
2Þ ¼ Oð
Þ;


IssA ¼ ð1� IAÞð1� �2
l Þ ¼ 2ðIA � 1Þ
þOð
2Þ

¼ Oð
Þ:

(57)

In Sec. III [see Eqs. (62), (65), and (88)] doing the match-
ing of our results to the model-independent expressions
derived in ChPTand by Ademollo and Gatto in Ref. [1], we
express the quantities IA and 
 ¼ �l � 1 in terms of pa-
rameters of the chiral Lagrangian (1).

III. SEMILEPTONIC VECTOR AND AXIAL
COUPLINGS OF BARYONS

In this section we combine chiral and valence quark

effects in order to derive the expressions for vector g
BiBj

V

and axial g
BiBj

A couplings which govern the semileptonic

transitions between octet baryons. Note, we use the phase
convention [9] which gives e.g. the positive sign for the
axial coupling gnpA of the neutron  decay. In particular,

neglecting contributions of order q ¼ p0 � p the matrix
elements of semileptonic decays of the baryon octet are

determined by two constants, g
BiBj

V and g
BiBj

A , as

M
BiBj

�;V�Aðp; pÞ ¼ M
BiBj

�;V ðp; pÞ �M
BiBj

�;A ðp; pÞ
¼ �uBj

ðpÞ��ðgBiBj

V � �5g
BiBj

A ÞuBi
ðpÞ: (58)

Using Eqs. (11) and (12), and the expressions for the
couplings encoding chiral effects and valence quark con-

tributions, the quantities g
BiBj

V and g
BiBj

A are defined as

g
BiBj

V ¼ F
BiBj

1 ð0Þ ¼ fij1 V
BiBj

1 ;

g
BiBj

A ¼ G
BiBj

1 ð0Þ ¼ gij1 A
BiBj

1 :
(59)

A. Nucleon axial charge

First we examine the nucleon axial charge and perform
the matching to ChPT—we relate the parameters of our
Lagrangian to those of ChPT. In SU(2) the expression for
the nucleon axial charge is

gA ¼ g
�
A � g

�3
AM

2
�

16�2F2
þ g

�
AM

3
�

24�m
�
NF

2

� ð3þ 3g
�2
A � 4c3m

�
N þ 8c4m

�
NÞ þ 4M2

�
�d16 (60)

in ChPT [27–29], and

gA ¼ g1A
np
1

¼ 5

3
IA

�
g� g3M2

�

16�2F2
þ gM3

�

24�mF2

� ð3þ 3g2 � 4cq3mþ 8cq4mÞ þ 4M2
�
�dq16

�
(61)

in our approach, where g
�
A and m

�
N are the values of the

nucleon axial charge and nucleon mass in the chiral limit.
Matching these expressions for the axial charge up to order
Oðp4Þ, we derive the following relations between the
parameters of the two approaches:

g
�
A ¼ gR ¼ 5

3
gIA ¼ 5

3
g

�
1� 4

3

Z
d3xl2ðrÞ

�
; (62)

�d 16 � g
�3
A

64�2F2
¼ 5

3
IA

�
�dq16 �

g3

64�2F2

�
; (63)

1þ g
�2
A

8m
�
N

þ c4
3
� c3

6
¼ 1þ g2

8m
þ cq4

3
� cq3

6
: (64)

Here, for convenience, we introduce the definition R ¼
g
�
A=g. Then from the first matching condition we can

derive constraints on the ‘‘axial’’ integral IA (48) and on
the integral over the square of the lower/upper components
of the spatial quark wave functions—

IA ¼ 3
5R (65)

and Z
d3xl2ðrÞ ¼ 1�

Z
d3xu2ðrÞ ¼ 3

4

�
1� 3

5
R

�
: (66)

Therefore, the second matching condition (63) reduces to

�d 16 � g
�3
A

64�2F2
¼ R

�
�dq16 �

g3

64�2F2

�
: (67)

Taking into account the relation between the mass and
axial charge of both the nucleon and the quark in the chiral
limit,

m
�
N

m
¼
�
g
�
A

g

�
2 ¼ R2 (68)

as derived in Ref. [36] from the matching of the nucleon
mass in the two approaches, the third condition (64) can be
simplified as

c3 � 2c4 ¼ cq3 � 2cq4 þ
3

4m
�
N

ð1� R2Þ: (69)

We have two essential remarks: (1) the matching condition
(68) is very important in our approach, because it allows us
to remove the unknown scale parameter—constituent
quark mass—from the explicit expressions of the matrix

CHIRAL CORRECTIONS TO THE VECTOR AND AXIAL . . . PHYSICAL REVIEW D 77, 114007 (2008)

114007-11



elements; (2) for the evaluation of the nucleon axial charge we do not require an explicit form for the spatial quark wave
functions [see Eq. (66)].

Having dealt with SU(2), we note the corresponding expression for the nucleon axial charge in SU(3):

gA ¼ gR

�
1� g2

16�2F2

�
M2

� þM2
K þM2

	

3

�
þ M3

�

24�mF2
ð3þ 3g2 � 4Cq

3mþ 8Cq
4mÞ þ M3

K

48�mF2

�
3þ 9

2
g2 þ 8Cq

4m

�

þ g2M3
	

48�mF2

�
þ 2M2

�R

�
�Dq
16 þ

1

3
�Dq
17 � ð1þ 2g2ÞL�	

�
þ 2M2

KR

�
2 �Dq

16 �
1

3
�Dq
17 �

1

2
ð1þ 3g2ÞLK	

�
: (70)

Substituting g ¼ g
�
A=R and m ¼ m

�
N=R

2 we finally get

gA ¼ g
�
A

�
1� g

�2
A

16�2F2R2

�
M2

� þM2
K þM2

	

3

�
þ M3

�

8�m
�
NF

2

�
R2 þ g

�2
A � 4

3
Cq
3m
�
N þ 8

3
Cq
4m
�
N

�

þ M3
K

16�m
�
NF

2

�
R2 þ 3

2
g
�2
A þ 8

3
Cq
4m
�
N

�
þ g

�2
AM

3
	

48�m
�
NF

2

�
þ 2M2

�R

�
�Dq
16 þ

1

3
�Dq
17 �

R2 þ 2g
�2
A

R3
L
�
�	

�

þ 2M2
KR

�
2 �Dq

16 �
1

3
�Dq
17 �

R2 þ 3g
�2
A

2R3
L
�
K	

�
; (71)

where

L
�

ab ¼ g
�
A

32�2F2
ln
M2

a

M2
b

: (72)

B. Baryon octet semileptonic couplings

Now we turn to the discussion of the vector and axial

couplings g
BiBj

V and g
BiBj

A (59) governing the semileptonic

decays of the octet baryons. Our results are summarized in
Table III, and have a relatively simple structure.

In the case of the vector coupling g
BiBj

V , our results are
unchanged from those of the SU(3) limit in the case of the
two �S ¼ 0 transitions, while in the case of the five �S ¼
1 transitions, our predictions are found by multiplying the
simple SU(3) limit forms by the common factor 1þ 
V .
Here


V ¼ 
fsu1 þ 
IsV þ 
fsu1 
IsV (73)

where the factors 
fsu1 and 
IsV have been defined in
Eqs. (23) and (57) and are both second order in SU(3)
breaking, in accord with the Ademollo-Gatto theorem [1].

In the case of the axial coupling g
BiBj

A the SU(3) sym-

metry breaking is first order and, as derived in Ref. [1] and
discussed e.g. in Refs. [7,11], can be described in terms of
an effective Lagrangian containing two SU(3) symmetric
terms proportional to the conventional couplings D plus F
and four first order SU(3)-breaking terms proportional to
the couplings Hi (i ¼ 1 � � � 4):

L ¼ Dh �B���5fa�Bgi þ Fh �B���5½a�B�i
þ H1ffiffiffi

3
p h �B���5Bfa��8gi þ H2ffiffiffi

3
p h �B���5fa��8gBi

þ H3ffiffiffi
3

p h �B���5a�B�8 � �B���5�8Ba�i

þ H4ffiffiffi
3

p ðh �Ba�i���5hB�8i þ h �B�8i���5hBa�iÞ

where

B ¼
�0=

ffiffiffi
2

p þ�=
ffiffiffi
6

p
�þ p

�� ��0=
ffiffiffi
2

p þ�=
ffiffiffi
6

p
n

�� �0 �2�=
ffiffiffi
6

p

0
B@

1
CA

(74)

is the octet of baryon fields, while a� denotes the external

axial field

a� ¼
0 adu� Vud asu� Vus

0 0 0
0 0 0

0
B@

1
CA; (75)

with Vud and Vus being the usual CKM matrix elements.
The axial semileptonic couplings of baryons are then

expressed in terms of the constants D, F, and Hi as (see
also Refs. [7,11])
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gnpA ¼ Dþ Fþ 2

3
ðH2 �H3Þ;

g�p
A ¼ �

ffiffiffi
3

2

s �
FþD

3
þ 1

9
ðH1 � 2H2 � 3H3 � 6H4Þ

�
;

g�
�n

A ¼ D� F� 1

3
ðH1 þH3Þ;

g�
��

A ¼
ffiffiffi
2

3

s �
Dþ 1

3
ðH1 þH2 þ 3H4Þ

�
;

g�
��

A ¼
ffiffiffi
3

2

s �
F�D

3
þ 1

9
ð2H1 �H2 � 3H3 þ 6H4Þ

�
;

g�
��0

A ¼
ffiffiffi
1

2

s �
Dþ F� 1

3
ðH2 �H3Þ

�
;

g�
0�þ

A ¼ Dþ F� 1

3
ðH2 �H3Þ:

(76)

In our approach the axial couplings are expressed in terms

of the SU(3) symmetric contribution gSU3

A ¼ 5
3g

SU3

1 IA and

two symmetry-breaking factors, 
A1
and 
A2

, using the

definitions (see also Table III)

5
3g1IA ¼ g

SU3

A ð1þ 
A1
Þ; (77)

5
3g

su
1 IsA ¼ gSU3

A ð1þ 
A2
Þ: (78)

The basic symmetry-breaking pattern is then similar to that
in the case of the vector current—the two �S ¼ 0 transi-
tions are altered from their SU(3) values by one factor 1þ

A1

, while the five �S ¼ 1 transitions are modified by a

different factor 1þ 
A2
, where


A1
¼ 
g1

g
SU3

1

; 
A2
¼ 
gsu1

g
SU3

1

þ 
IsA
IA

þ 
gsu1

g
SU3

1


IsA
IA

: (79)

Note that both factors 
Ai
include not only leading—

Oðms � m̂Þ—but also higher-order SU(3)-breaking correc-
tions. In order to identify the effective couplings D, F, and
Hi in the Lagrangian (74), we reduce the expressions (79)
to the pieces first order in SU(3) breaking. Then the
leading-order factors are given by [see Eqs. (35), (38),
and (57)]


ð1Þ
A1

¼ h1

gSU3

1

ðM2
K �M2

�Þ; (80)


ð1Þ
A2

¼ h2

gSU3

1

ðM2
K �M2

�Þ � 1� IA
IA


; (81)

where the superscript (1) indicates that we have truncated
the full expressions to include only the pieces first order in
SU(3) breaking. Matching our results then for the axial

couplings g
BiBj

A to the model-independent predictions (76),
we find

D ¼ 3
2F ¼ 3

5g
SU3

A (82)

for the SU(3) symmetric contribution, and

H1 ¼ 1
5H2 ¼ 1

2IAh1ðM2
K �M2

�Þ
¼ �IAh2ðM2

K �M2
�Þ þ g

SU3

1 ð1� IAÞ
; (83)

H3 ¼ H4 ¼ 0 (84)

for the SU(3)-breaking terms. Therefore, to first order in

SU(3) breaking the factors 
ð1Þ
A1

and 
ð1Þ
A2

are not indepen-

dent and are related via 
ð1Þ
A1

¼ �2
ð1Þ
A2
, which, in terms of

parameters of chiral Lagrangian (1) or the model-
independent Lagrangian (74), can be written as


ð1Þ
A ¼ 2H1

D
¼ h1

gSU3

1

ðM2
K �M2

�Þ

¼ �2

�
h2

g
SU3

1

ðM2
K �M2

�Þ � 1� IA
IA




�
: (85)

Then using the relation (83) or (85) we deduce the follow-
ing constraint involving the parameters of the chiral
Lagrangian and the quantities defining the matrix elements
of valence quarks (bare quark matrix elements):

G
M2

K �M2
�

ð4�FÞ2 ¼ 1� IA
IA


; (86)

where

G ¼ g

g
SU3

1

�
3

2
þ 23

6
g2 � 10�

3
�MCq

4

�
: (87)

The latter equation can be used to express the unknown
quantity 
 in terms of the parameters of the chiral
Lagrangian (1)—


 ¼ GIA
1� IA

M2
K �M2

�

ð4�FÞ2 : (88)

Substituting Eqs. (57) and (88) into Eqs. (73) we can then

in turn express 
ð2Þ
V [the leading contribution to 
V includ-

ing second-order SU(3) breaking] in terms of the parame-
ters of the chiral Lagrangian (1):


ð2Þ
V ¼ 
fsu1 � 3

2

G2I2A
ð1� IAÞð1þ 3IAÞ

ðM2
K �M2

�Þ2
ð4�FÞ4 : (89)

IV. NUMERICAL ANALYSIS

Now we perform the numerical analysis of the vector
and axial couplings of quarks and baryons. First, we de-
duce constraints on the quark LEC’s from the data on
semileptonic decays of the baryon octet. Then we compare
our results for the axial baryon couplings to the ones of
baryon ChPT in the large-Nc limit [21], obtained from a fit

to the measured decays and ratios g
BiBj

A =g
BiBj

V .
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For the quark parameters in the chiral limit we use g ¼
0:9 and m ¼ 420 MeV, values fixed previously in [36,37].
Note that these parameters are related to the corresponding

nucleon quantities g
�
A and m

�
N via the matching condition

(68). In particular, using the values g
�
A ¼ 1:2, 1.2695

(data), 1.3, we find for the nucleon mass in the chiral limit

the results m
�
N ¼ 746:7, 835.7, 876.3 MeV, respectively,

which are consistent with the values deduced in the context
of the baryon ChPT (see discussion in [30,32,36,37,46–
48]).

First, we analyze the axial charges of the quark and the
nucleon in SU(2) and SU(3), respectively. In SU(2) the
corresponding quantities in terms of the LEC’s cq3 , c

q
4 , and

dq16 are given by

g1 ¼ 0:939þ 0:078�;

� ¼ 0:195ð2cq4 � cq3Þ GeVþ �dq16 GeV2
(90)

and

gA ¼
8><
>:
1:251þ 0:104� for g

�
A ¼ 1:2;

1:324þ 0:110� for g
�
A ¼ 1:2695;

1:356þ 0:113� for g
�
A ¼ 1:3:

(91)

Matching the expression for gA (91) to its experimental
value we derive the following constraints on the SU(2)
quark LEC’s:

� ¼
8><
>:
0:178 for g

�
A ¼ 1:2;

�0:495 for g
�
A ¼ 1:2695;

�0:765 for g
�
A ¼ 1:3:

(92)

Using the matching condition (69), relating the combina-
tion 2cq4 � cq3 of quark LEC’s to the corresponding ChPT

LEC’s c3 and c4, and using the averaged values of c3 ¼
�4:7 GeV�1 and c4 ¼ 3:5 GeV�1 from [49], we estimate
the LEC �dq16 ¼ �1:957, �2:605, �2:868 GeV�2 (the cor-

responding ChPT LEC �d16 is equal to �2:469, �3:486,
�3:931 GeV�2). Note that for the axial charge of the quark
at one loop we find the values g1 ¼ 0:952, 0.9, 0.879,

respectively, which correspond to the values of g
�
A ¼ 1:2,

1.2695, 1.3.
In SU(3) the corresponding results for the axial charges

are

g1 ¼ 2:163þ 1:014;

 ¼ ð�0:012Cq
3 þ 0:563Cq

4Þ GeV
þ ð �Dq

16 � 0:147 �Dq
17Þ GeV2 (93)

and

gA ¼
8><
>:
2:884þ 1:352 for g

�
A ¼ 1:2;

3:051þ 1:430 for g
�
A ¼ 1:2695;

3:124þ 1:464 for g
�
A ¼ 1:3:

(94)

Matching the expression for gA (94) to its experimental
value, we derive the following constraints on the SU(3)
quark LEC’s:

 ¼
8><
>:
�1:194 for g

�
A ¼ 1:2;

�1:246 for g
�
A ¼ 1:2695;

�1:267 for g
�
A ¼ 1:3:

(95)

Next we estimate the quark vector coupling fsu1 . We de-

termine

fsu1 ¼ 1þ 
fsu1 ¼ 1:070; (96)

i.e., an SU(3)-breaking correction 
fsu1 ¼ 7%.

Next we extract information about the SU(3)-breaking

parameters 
ð2Þ
V and 
ð1Þ

A and find an additional constraint

for the linear combination of LEC’s Cq
3 , C

q
4 , and

�Dq
17 using

data for the ratios rBiBj ¼ g
BiBj

A =g
BiBj

V . Direct calculation of


ð2Þ
V and 
ð1Þ

A gives


ð2Þ
V ¼

8><
>:
0:070� 0:074r2V for g

�
A ¼ 1:2;

0:070� 0:103r2V for g
�
A ¼ 1:2695;

0:070� 0:123r2V for g
�
A ¼ 1:3;

(97)

and


ð1Þ
A ¼ �0:136rA (98)

independent of the value for g
�
A, where rV and rA are given

by

rV ¼ 1� 0:935Cq
4 GeV

1þ 0:415�1

; rA ¼ 1þ 0:449�2

1þ 0:415�1

: (99)

Here �1 and �2 are the combinations of the quark LEC’s:

�1 ¼ �Dq
16 GeV2 � 0:311ðCq

3 � 3Cq
4Þ GeV;

�2 ¼ �Dq
17 GeV2 � 1:400ð2Cq

3 � 3Cq
4Þ GeV:

(100)

Matching our results for rBiBj to data [3] for the five semi-
leptonic modes, we have the following conditions involv-
ing the parameters 
V and 
A:

rnp ¼ gA ¼ gSU3

A ð1þ 
ð1Þ
A Þ ¼ 1:2695� 0:0029;

r�p ¼ 3gSU3

A

5

1� 1
2


ð1Þ
A

1þ 
ð2Þ
V

¼ 0:718� 0:015;

r�n ¼ �gSU3

A

5

1� 1
2


ð1Þ
A

1þ 
ð2Þ
V

¼ �0:34� 0:017;

r�
�� ¼ gSU3

A

5

1� 1
2


ð1Þ
A

1þ 
ð2Þ
V

¼ 0:25� 0:05;

r�
0�þ ¼ g

SU3

A

1� 1
2


ð1Þ
A

1þ 
ð2Þ
V

¼ 1:20� 0:04� 0:03:

(101)

Restricting to the central values of the data, we deduce the
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following constraints on 
ð2Þ
V and 
ð1Þ

A :

g
SU3

A ð1þ 
ð1Þ
A Þ ¼ 1:2695 from the n ! p transition;

(102)

g
SU3

A

1� 1
2


ð1Þ
A

1þ 
ð2Þ
V

¼

8>>><
>>>:
1:197 from the � ! p transition;
1:700 from the �� ! n transition;
1:250 from the �� ! � transition;
1:200 from the �0 ! �þ transition:

(103)

The three modes (� ! p, �� ! �, �0 ! �þ) are quite
consistent with each other. Future, more precise data for
the �� ! n mode will probably yield a smaller value for

r�n. As already stated above, in order to get a better
quantitative agreement with experiment, we plan to go
beyond the simple SU(6) quark model. Then we intend

to evaluate the valence quark matrix elements (see discus-
sion in Sec. II D) in a fully relativistic quark model based
on a specific scenario about hadronization and confinement
of quarks inside the baryon [34]. Roughly speaking, in-
stead of the trivial identities (102) and (103) involving only
two SU(3)-breaking parameters 
V and 
A, we will derive
more general identities involving additional symmetry-
breaking parameters.
Using Eq. (102) we derive the following constraint on

the quark LEC’s:

�1 � 0:147�2 ¼
8><
>:
�1:144 for g

�
A ¼ 1:2;

�1:195 for g
�
A ¼ 1:2695;

�1:216 for g
�
A ¼ 1:3:

(104)

Next, using the typical value ’ 1:2 for the ratios in
Eq. (103), we deduce the following constraints on the
linear combinations of quark LEC’s:

�1 þ 0:078�2 � 0:130Cq
4 GeV ¼ �1:787 for g

�
A ¼ 1:2;

�1 þ 0:079�2 � 0:174Cq
4 GeV ¼ �1:899 for g

�
A ¼ 1:2695;

�1 þ 0:080�2 � 0:205Cq
4 GeV ¼ �1:962 for g

�
A ¼ 1:3:

(105)

Finally, using two equations (104) and (105) on four
LEC’s, Cq

3 , Cq
4 ,

�Dq
16, and �Dq

17, we can express two of
them (e.g. �Dq

16 and �Dq
17) through the other two (Cq

3 and
Cq
4) as follows:

For g
�
A ¼ 1:2

�Dq
16 ¼ �1:565 GeV�2 þ 0:311ðCq

3 � 2:727Cq
4Þ GeV�1;

�Dq
17 ¼ �2:862 GeV�2 þ 2:800ðCq

3 � 1:294Cq
4Þ GeV�1:

(106)

For g
�
A ¼ 1:2695

�Dq
16 ¼ �1:652 GeV�2 þ 0:311ðCq

3 � 2:637Cq
4Þ GeV�1;

�Dq
17 ¼ �3:111 GeV�2 þ 2:800ðCq

3 � 1:225Cq
4Þ GeV�1:

(107)

For g
�
A ¼ 1:3

�Dq
16 ¼ �1:699 GeV�2 þ 0:311ðCq

3 � 2:573Cq
4Þ GeV�1;

�Dq
17 ¼ �3:283 GeV�2 þ 2:800ðCq

3 � 1:177Cq
4Þ GeV�1:

(108)

Note that the constraint (95) on the SU(3) quark LEC’s was
obtained without dropping the higher-order terms in SU(3)
breaking, while the constraints (106)–(108) were derived

using the approximation for SU(3)-breaking terms 
V !

ð2Þ
V and 
Ai

! 
ð1Þ
Ai

restricting to their leading terms.

Finally, for completeness we also present numerical

results for the axial couplings at values of g
�
A ¼ 1:2 and

Cq
4 ¼ 1:07 GeV�1. The other three LEC’s, Cq

3 ,
�Dq
16, and

�Dq
17, are then constrained as

�Dq
16 � 0:311Cq

3 ¼ �1:668 GeV�2; (109a)

�Dq
17 � 2:800Cq

3 ¼ �6:739 GeV�2: (109b)

Predictions for g
BiBj

A of different semileptonic modes are

given in Table IV. We also indicate the results of heavy
baryon ChPT in the large-Nc limit [21]. In Table V we
additionally present our results for the semileptonic decay
widths of hyperons, which are calculated using the expres-
sion [50] at order OððmBi

�mBj
Þ6Þ and without inclusion

of radiative corrections:

�ðBi ! Bj þ lþ �lÞ ¼ G2
F

60�3
jVCKMj2ð�mÞ5ð1� 3
Þ

� ððgBiBj

V Þ2 þ 3ðgBiBj

A Þ2ÞrðxÞ:
(110)

In the last expression we have �m ¼ mBi
�mBj

,


 ¼ ðmBi
�mBj

Þ=ðmBi
þmBj

Þ, and GF ¼ 1:16637�
10�5 GeV�2 is the Fermi coupling constant. For the cor-
responding CKM matrix elements VCKM ¼ Vud or Vus, we
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use the central values from [3]: Vud ¼ 0:97377 and Vus ¼
0:225. Here rðxÞ is the function which takes into account
the charged lepton mass ml:

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p �
1� 9

2
x2 � 4x4

�
þ 15

4
x4 ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ;

(111)

where x ¼ ml=�m and rð0Þ ¼ 1.

V. SUMMARY

In this paper we have analyzed the semileptonic vector
and axial quark coupling constants using a manifestly
Lorentz covariant chiral quark approach up to order
Oðp4Þ in the two- and three-flavor pictures. The resulting
quark couplings were then used in the evaluation of the
corresponding hadronic couplings which govern semilep-
tonic transitions between baryon octet states. In the calcu-
lation of baryon matrix elements we utilized a general
ansatz for the spatial form of the quark wave function,
without referring to any specific realization of baryon
hadronization and confinement. Matching physical ampli-
tudes, calculated within our approach, to the model-
independent predictions of baryon ChPT allowed us to
deduce the relations between the chiral quark parameters
and those of baryon ChPT.

Our main results can be summarized as follows:
(i) Evaluating the chiral and SU(3) symmetry-breaking

corrections to the semileptonic vector and axial
quark coupling constants, we determined that the
SU(3) symmetry-breaking correction to the vector
coupling fsu1 , governing the s ! u quark flavor tran-

sition, is positive and equal to 7%.
(ii) Performing the matching to ChPT we reproduced

the analytical result for the nucleon axial charge gA
in SU(2). We also determined the expression for gA
in SU(3).

(iii) We derived results for the vector and axial cou-
plings governing the semileptonic decays of the
baryon octet, revealing both chiral and SU(3)
symmetry-breaking corrections.

(iv) We presented a numerical analysis of the calculated
quantities and derived constraints on the parameters
of the chiral quark Lagrangian (LEC’s) using ex-

perimental data for gA and the ratios rBiBj ¼
g
BiBj

A =g
BiBj

V . We also gave estimates for the semi-

leptonic decay widths of hyperons.
In the future we plan to improve the quantitative deter-

mination of the valence quark effects by resorting to a
relativistic quark model [35,37], describing the internal
quark dynamics. This procedure will allow us to give
predictions for all six form factors showing up in the matrix
elements of the semileptonic decays of the baryon octet.
With the explicit form factors and with additional radiative
corrections included, we intend to give accurate predic-
tions for the corresponding decay widths and asymmetries.
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APPENDIX A: CONTRIBUTIONS OF DIFFERENT
DIAGRAMSTOTHEVECTORANDAXIALQUARK

COUPLINGS

In this appendix we discuss the contributions of the
various graphs in Figs. 1 and 2 to the vector and axial
couplings with different flavor structures. The separate
contributions of these graphs to the vector and axial
couplings are listed in Tables I and II, respectively.
We use the following notations: the quark charge matrix
Q ¼ diagf2=3;�1=3g in SU(2) and Q ¼
diagf2=3;�1=3;�1=3g in SU(3); the unit 2� 2 matrix
I ¼ diagf1; 1g and the 3� 3 matrix I ¼ diagf1; 1; 1g. All
further flavor matrices are expressed in terms of the charge,
unit, Pauli (�i), and Gell-Mann (�i) matrices:

TABLE I. Contribution of different diagrams in Fig. 1 to the electric charges fQ1 [in SU(2)] and fQ1 [in SU(3)], isotopic (vector)
charges f1�3=2 [in SU(2)] and f1�3=2 [in SU(3)], vector couplings (d ! u flavor transition) fdu1 �ud [in SU(2)] and fdu1 �ud [in SU

(3)], and vector coupling (s ! u flavor transition) fsu1 �us. The contribution of the diagram in Fig. 1(a) is multiplied by the Z factor.

Coupling Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d) Figure 1(e) Figure 1(f)

fQ1 , SU(2) Qð1� 9
4R�Þ �3R

b
� ��3

��

2F2 �3
��

2F2
1
2 ðI � �3ÞRe

� �3R
f
�

fQ1 , SU(3) Q�P
P

Q
PRP

P
P�

b
PR

b
P �PP�

c
P

�P

2F2

P
P�

d
P

�P

2F2

P
P�

e
PR

e
P

P
P�

f
PR

f
P

f1 ¼ fdu1 , SU(2) 1� 9
4R� 2Rb

� � ��

F2
��

F2 �Re
� 2Rf

�

f1 ¼ fdu1 , SU(3) 1�P
PPRP 2Rb

� þ Rb
K � 1

2F2 ð2�� þ�KÞ 1
2F2 ð2�� þ�KÞ �Re

� þ 1
3R

e
	 2Rf

� þ Rf
K

fsu1 , SU(3) 1�P
P�PRP I�K þ I	K � 3

8F2 ð�� þ 2�K þ�	Þ J�K þ J	K � 2
3R

e
	

3
4 ðRf

� þ 2Rf
K þ Rf

	Þ
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�ud ¼ 1

2
ð�1 þ i�2Þ; �ud ¼ 1

2
ð�1 þ i�2Þ; �us ¼ 1

2
ð�4 þ i�5Þ;

Q
� ¼ 3

4
Qþ 1

4
I þ 3

4
�3; Q

K ¼ 5

2
Q� 1

6
I � 1

2
�3; Q

	 ¼ 3

4
Q� 1

12
I � 1

4
�3;

� ¼ 9

4
; K ¼ 3

2
; 	 ¼ 1

4
;

�� ¼ 9

8
; �K ¼ 9

4
; �	 ¼ 5

8
;

�b
� ¼ �c

� ¼ �d
� ¼ �f

� ¼ �3; �b
K ¼ �c

K ¼ �d
K ¼ �f

K ¼ 3Q� �3; �b
	 ¼ �c

	 ¼ �d
	 ¼ �f

	 ¼ 0;

�e
� ¼ Qþ 1

3
I� �3; �e

K ¼ � 8

3
Q� 2

9
I þ 4

3
�3; �e

	 ¼ Q� 1

9
I� 1

3
�3:

We introduce the functions RP, R
i
P, T

i
P, Iab, and Jab:

RP ¼ g2

F2
�P þ g2M2

P

24�2F2

�
1� 3�

2
�P

�
;

Rb
P ¼ 3g2

2F2
�P þ g2M2

P

16�2F2

�
1� 5�

2
�P

�
;

Re
P ¼ 3

4
RP;

Rf
P ¼ g2M2

P

16�F2
�P;

Td
P ¼ g3

4F2
�P þ g3M2

P

32�2F2

�
1� �

2
�P

�
;

Te
P ¼ g

8�F2
M2

P�P;

Tf
P ¼ � g

6�F2
M3

P;

(A1)

where �P ¼ MP

m , and

Iab ¼ 3g2

4F2

�
3

2

�aM
2
a ��bM

2
b

M2
a �M2

b

þM2
a þM2

b

64�2
�M3

a þM3
b

8�m

� M2
aM

2
b

8�mðMa þMbÞ
�

(A2)

and

Jab ¼ 3

8F2

�
�aM

2
a � �bM

2
b

M2
a �M2

b

�M2
a þM2

b

32�2

�
: (A3)

Below we discuss the vector couplings in detail.

(1) Electric charges: Summing up the individual con-
tributions of the graphs in Fig. 1 to the electric
charges, we find

fQ1 ¼ Qð1� 9
4R�Þ þ �3ðRb

� þ Rf
�Þ þ 1

2ðI � �3ÞRe
�

(A4)

in SU(2) and

fQ1 ¼ QþX
P

ð�Q
PRP þ �b

PR
b
P þ �e

PR
e
P þ �f

PR
f
PÞ

(A5)

in SU(3).

Using the identities Rb
P þ Rf

P ¼ 3
2RP and Q

P ¼
3
2�

b
P þ 3

4�
e
P we verify electric charge conservation—

fQ1 ¼ Q in SU(2) and fQ1 ¼ Q in SU(3).

(2) The isotopic charge f1=2 and the d ! u transition
vector coupling fdu1 are given by the expressions

f1 ¼ fdu1 ¼ 1� 9
4R� þ 2ðRb

� þ Rf
�Þ � Re

� (A6)

in SU(2) and

f1 ¼ fdu1 ¼ 1�X
P

PRP þ 2ðRb
� þ Rf

�Þ þ Rb
K

þ Rf
K � Re

� þ 1

3
Re
	 (A7)

in SU(3).
Again, using identities involving the functions Ri

P

we arrive at

TABLE II. Contribution of different diagrams in Fig. 2 to the isotopic (axial) charges g1�3=2 [in SU(2)] and g1�3=2 [in SU(3)],
axial couplings (d ! u flavor transition) gdu1 �ud [in SU(2)] and gdu1 �ud [in SU(3)], and vector coupling (s ! u flavor transition)

gsu1 �us. The contribution of the diagram in Fig. 2(a) is multiplied by the Z factor.

Coupling Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(d) Figure 2(e) Figure 2(f)

g1 ¼ gdu1 , SU(2) gð1� 9
4R�Þ 4M2

�d
q
16 � g

F2 �� Td
� Te

� ðcq3 � 2cq4ÞTf
�

g1 ¼ gdu1 , SU(3) gð1�P
PPRPÞ ð2M2

� þ 4M2
KÞDq

16

þ 2
3 ðM2

� �M2
KÞDq

17

� g
2F2 ð2�� þ �KÞ Td

� � 1
3T

d
	 Te

� � 1
2T

e
K ðCq

3 � 2Cq
4ÞTf

�

�Cq
4T

f
K

gsu1 , SU(3) gð1�P
P�PRPÞ ð2M2

� þ 4M2
KÞDq

16

þ 1
3 ðM2

K �M2
�ÞDq

17

� 3g
8F2 ð�� þ 2�K þ �	Þ 2

3T
d
	

3
8 ðTe

� þ 2Te
K þ Te

	Þ ðCq
3 � Cq

4ÞTf
K

� 1
2C

q
4ð3Tf

� þ Tf
	Þ
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f1 ¼ fdu1 ¼ 1 (A8)

in both the two- and three-flavor pictures.
(3) The s ! u transition vector coupling fsu1 : The cou-

pling fsu1 is finite but contains pieces OððMK �
M�Þ2Þ and OððMK �M	Þ2Þ which are of second

order in SU(3) symmetry breaking. The AGT pro-
tects the fsu1 ð0Þ from first-order symmetry-breaking

corrections. Moreover, the AGT holds indepen-
dently for two sets of diagrams—for set I, including
the diagrams of Figs. 1(a), 1(b), 1(e), and 1(f), and
for set II, including the diagrams of Figs. 1(c) and 1
(d). In our derivation we use the identity

�aM
2
a � �bM

2
b

M2
a �M2

b

¼ 2�aðM2
a þM2

bÞ þ
1

16�2

� M4
b

M2
a �M2

b

ln
M2

a

M2
b

: (A9)

Then the results for set I and set II are

fsu;I1 ¼ X
i¼a;b;e;f

fsu;ðiÞ1

¼ 1� 9g2

16
ðH�K þH	K þG�K þG	KÞ

(A10)

and

fsu;II1 ¼ X
i¼c;d

fsu;ðiÞ1 ¼ � 3

16
ðH�K þH	KÞ; (A11)

where the functions Hab ¼ OððM2
a �M2

bÞ2Þ and

Gab ¼ OððM2
a �M2

bÞ2Þ are defined in Eq. (22) of

Sec. II C.
The final result for the s ! u quark transition vector
coupling is

fsu1 ¼ fsu;I1 þ fsu;II1

¼ 1� 3

16
ðð1þ 3g2ÞðH�K þH�KÞ

þ 3g2ðG�K þG�KÞÞ: (A12)

APPENDIX B: TWO-BODY OPERATORS

The diagrams contributing to the two-body vector and
axial quark transition operators up to fourth order are
displayed in Figs. 3 and 4. First, let us discuss the diagrams
in Figs. 3(a)–3(e) and 4(a)–4(e). Note, the diagrams in
Figs. 3(c), 3(d), 4(c), and 4(d) are generated by an insertion
of the two-body mass counterterm due to one-meson ex-
change, which is given by the four-quark operator

TABLE IV. Numerical results for g
BiBj

A .

Decay mode Reference [21] Our results

n ! p 1.272 1.2695

� ! p �0:904 �0:944
�� ! n 0.375 0.257

�þ ! � 0.653 0.622

�� ! � 0.624 0.622

�� ! � 0.139 0.315

�� ! �0 0.869 0.908

�0 ! �þ 1.312 1.284

TABLE V. Numerical results for the semileptonic decay
widths of hyperons (in units of 106 s�1).

Decay mode Our results Data [3]

� ! pe� ��e 3.21 3:16� 0:06
� ! p�� ��� 0.52 0:60� 0:13
�� ! ne� ��e 5.50 6:88� 0:24
�� ! n�� ��� 2.45 3:0� 0:2
�þ ! �eþ�e 0.24 0:25� 0:06
�� ! �e� ��e 0.40 0:39� 0:02
�� ! �e� ��e 3.11 3:35� 0:37
�� ! ��� ��� 0.84 2:1þ2:1�1:3

�� ! �0e� ��e 0.51 0:53� 0:10
�� ! �0�� ��� 0.01 <0:05
�� ! �þe� ��e 0.90 0:88� 0:04
�� ! �þ�� ��� 0.01 0:02� 0:01

TABLE III. Semileptonic decay constants of baryons g
BiBj

V and g
BiBj

A .

Decay mode g
BiBj

V g
BiBj

A

n ! p 1 5
3 g1IA ¼ gA ¼ g

SU3

A ð1þ 
A1
Þ

� ! p �
ffiffi
3
2

q
fsu1 IsV ¼ �

ffiffi
3
2

q
ð1þ 
VÞ �

ffiffi
3
2

q
gsu1 IsA ¼ � 3

5

ffiffi
3
2

q
g
SU3

A ð1þ 
A2
Þ

�� ! n �fsu1 IsV ¼ �ð1þ 
VÞ 1
3g

su
1 IsA ¼ 1

5g
SU3

A ð1þ 
A2
Þ

�� ! � 0
ffiffi
2
3

q
g1IA ¼

ffiffi
6

p
5 gA ¼

ffiffi
6

p
5 g

SU3

A ð1þ 
A1
Þ

�� ! �
ffiffi
3
2

q
fsu1 IsV ¼

ffiffi
3
2

q
ð1þ 
VÞ

ffiffi
1
6

q
gsu1 IsA ¼ 1

5

ffiffi
3
2

q
gSU3

A ð1þ 
A2
Þ

�� ! �0
ffiffi
1
2

q
fsu1 IsV ¼

ffiffi
1
2

q
ð1þ 
VÞ 5

3
ffiffi
2

p gsu1 IsA ¼ 1ffiffi
2

p g
SU3

A ð1þ 
A2
Þ

�� ! �þ fsu1 IsV ¼ 1þ 
V
5
3g

su
1 IsA ¼ g

SU3

A ð1þ 
A2
Þ

FAESSLER, GUTSCHE, HOLSTEIN, AND LYUBOVITSKIJ PHYSICAL REVIEW D 77, 114007 (2008)

114007-18



Octðx; yÞ ¼ g2m2

2F2

X8
i¼1

�qðxÞ�5�iqðxÞ�ijðx� yÞ �qðyÞ�5�jqðyÞ

(B1)

where

�ijðx� yÞ ¼ h0jT�iðxÞ�jðyÞj0i ¼ 
ij

Z d4k

ð2�Þ4i
e�ikðx�yÞ

M2
i � k2

(B2)

is the meson propagator. Writing down the expressions for
the diagrams in Figs. 3(a)–3(e) in the momentum space, it
is easy to show that the contribution of the diagrams in
Figs. 3(a), 3(b), and 3(e) is exactly equal to the contribution
of the diagrams in Figs. 3(c) and 3(d) but with opposite
sign. Therefore, their total contribution vanishes. Such
cancellation guarantees the charge conservation and ex-
cludes a double-counting of the one-meson exchange cor-
rections. The diagram in Fig. 3(f) does not contribute to the
time component of the vector current (only to the spatial
component); therefore we have no contribution to the
baryon vector couplings from the two-body operators dis-
played in Fig. 3.

In the case of the two-body axial diagrams, the diagrams
in Figs. 4(a)–4(e) do not cancel each other. Their total
contribution in momentum space is given by

mg

4F2
ðg2 � 1ÞX8

i¼1

1

M2
i � k2

�uðp0
1Þ½�A; �i���uðp1Þ �uðp0

2Þ

� �i�
5uðp2Þ þ ð1 $ 2Þ (B3)

where uðpiÞ and �uðp0
iÞ are the quark spinors, and �A is the

flavor matrix corresponding to the axial quark flavor ex-
change. One can see, that the contribution (B3) vanishes
for g ¼ 1. The other two diagrams in Figs. 4(f) and 4(g)
are generated by the one-body and two-body Lagrangians,
and they contribute to the axial couplings of the baryon
octet. Note that nonvanishing two-body operators corre-
sponding to the meson exchange can be simplified. One
can do the expansion of the meson propagators in powers
of meson masses M as

1

�2 �M2
¼ 1

�2

�
1þM2

�2
þOðM4Þ

�
: (B4)

� is a free parameter representing an averaged exchanged
momenta between quarks, and we remove the infrared-
regular parts proportional to the 1=�N; i.e. they do not
contain powers of meson masses. Numerical analysis of the
contributions of the two-body diagrams will be done in the
future. Let us stress again that the vector couplings of the
baryons do not receive contributions from the two-body
quark operators (see diagrams in Fig. 3), while the axial
couplings receive the corrections quadratic in meson
masses. It will not damage the nonanalytical chiral correc-
tions derived in the one-body approximation (see Sec. III)
and will only redefine the expressions for the quadratic
corrections. Note that such change of the quadratic chiral
corrections will be consistent with ChPT due to the match-
ing condition involving additional two-body quark LEC’s.
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