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The magnetic moments of heavy�Q baryons containing a single charm or bottom quark are calculated

in the framework of the light cone QCD sum rules method. A comparison of our results with the

predictions of other approaches, such as relativistic and nonrelativistic quark models, the hypercentral

model, chiral perturbation theory, and soliton and skyrmion models, is presented.
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I. INTRODUCTION

During the last few years, exciting experimental results
were obtained in the baryon sector containing a single b
quark. The CDF Collaboration observed the states ��

b and

���
b [1], while both D0 [2] and CDF [3] Collaborations

have seen�b. Recently, BABAR Collaboration reported the
discovery of��

c with mass splittingm��
c
�m�c

¼ ð70:8�
1:0� 1:1Þ MeV [4].

The masses of the heavy baryons have been studied in
the framework of various phenomenological models [5–
13] and also in the framework of the QCD sum rules
method [14–26]. Along with their masses, another static
parameter of the heavy baryons is their magnetic moment.
Study of the magnetic moments can give valuable infor-
mation about the internal structures of hadrons.

The magnetic moments of heavy baryons have been
studied in the framework of different methods. In [27,28]
the magnetic moments of charmed baryons are calculated
within the nave quark model. In [29,30], magnetic mo-
ments of charmed and bottom baryons are analyzed in the
quark model, and in [31] heavy baryon magnetic moments
are studied in the bound state approach. Magnetic moments
of heavy baryons are calculated in the relativistic three-
quark model [32], the hypercentral model [33], the chiral
perturbation model [34], the soliton model [35], the sky-
rmion model [36], and the nonrelativistic constituent quark
model with light and strange �qq pairs [37]. In [38] the
magnetic moments of �c and �c baryons are calculated
with the QCD sum rules method in an external electro-
magnetic field. In [39,40], the light cone QCD sum rules
method is applied to study the magnetic moments of the
�Q (Q ¼ c, b) and �Q�Q transition magnetic moments

(more about this method can be found in [41–44] and
references therein).

The aim of the present work is to calculate the magnetic
moments of the�b baryons that were recently observed by
D0 and CDF Collaborations within the light cone QCD
sum rules framework. The plan of the paper is as follows.

In Sec. II, using the general form of the baryon current, the
light cone QCD sum rules for �b and �c baryons are
calculated. In Sec. III we present our numerical calcula-
tions on the �b and �c baryons. In this section we also
present a comparison of our results with the predictions of
other approaches.

II. LIGHT CONE QCD SUM RULES FOR THE �Q

MAGNETIC MOMENTS

In order to calculate the magnetic moments of�Q (Q ¼
b, c) in the framework of the light cone QCD sum rules, we
need the expression for the interpolating current of�Q. To

construct it, we follow [11]; i.e. we assume that the strange
and light quarks in �Q are in a relative spin zero state

(scalar or pseudoscalar diquarks). Therefore, the most
general current without derivatives and with the quantum
numbers of�Q can be constructed from the combination of

the aforementioned scalar or pseudoscalar diquarks in the
following way:

�Q ¼ "abc½ðqaTCsbÞ�5 þ �ðqaTC�5s
bÞ�Qc: (1)

Here a, b, and c are color indices; C is the charge con-
jugation operator; Q ¼ b or c; q ¼ u or d; and � is an
arbitrary parameter. Having the explicit expression for the
interpolating current, our next task is to construct light
cone QCD sum rules for the magnetic moments of �Q

baryons. They are constructed from the following correla-
tion function:

�ðp; qÞ ¼ i
Z
d4xeipxh� j Tf�QðxÞ ��Qð0Þ jg0i: (2)

The calculation of the phenomenological side at the
hadronic level proceeds by inserting into the correlation
function a complete set of hadronic states with the quantum
numbers of �Q. We get

� ¼ X
i

h0 j �Q j �Qi
ðp2Þi

p2
2 �m2

�Q

h�Qi
ðp2Þ

j �Qi
ðp1Þi�

h�Qi
ðp1Þ j ��Q j 0i
p2
1 �m2

�Q

: (3)

Isolating the ground state’s contributions, Eq. (3) can be
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written as

� ¼ h0 j �Q j �Qðp2Þi
p2
2 �m2

�Q

h�Qðp2Þ j �Qðp1Þi�

� h�Qðp1Þ j ��Q j 0i
p2
1 �m2

�Q

þX
hi

h0 j �Qi j hiðp2Þi
p2
2 �m2

hi

hhiðp2Þ j hiðp1Þi�

� hhiðp1Þ j ��Q j 0i
p2
1 �m2

hi

; (4)

where p1 ¼ pþ q, p2 ¼ p, and q is the photon momen-
tum. The second term in Eq. (4) describes the higher
resonances and continuum contributions. The coupling of
the interpolating current with the baryons �Q is deter-

mined as

h0 j �Q j �QðpÞi ¼ �Qu�Q
ðpÞ; (5)

where u�Q
ðpÞ is a spinor describing the baryon �Q with

four-momentum p, and �Q is the corresponding residue.

The last step for obtaining the expression for the physi-
cal part of the correlator function is to write down the
matrix element h�Qðp2Þ j �Qðp1Þi� in terms of the form

factors. Using Lorentz covariance, this matrix element can
be written as

h�Qðp1Þ j �Qðp2Þi�
¼ "� �u�Q

ðp1Þ
�
f1�� � i

���q�
2m�Q

f2

�
u�Q

ðp2Þ

¼ �u�Q
ðp1Þ

�
ðf1 þ f2Þ�� þ ðp1 þ p2Þ�

2m�Q

f2

�
u�Q

ðp2Þ"�;

(6)

where f1ðq2Þ and f2ðq2Þ are the form factors and "� is the
photon polarization vector.

For the calculation of the �Q magnetic moments, only

the values of the form factors at q2 ¼ 0 are needed because
the photon is real in our problem. Using Eqs. (4)–(6) for the
physical part of the correlator and summing over the spins
of initial and final �Q baryons, the correlation function

becomes

� ¼ ��2
Q"

�
p6 2 þm�Q

p2
2 �m2

�Q

�
ðf1 þ f2Þ�� þ ðp1 þ p2Þ�

2m�Q

f2

�

� p6 1 þm�Q

p2
1 �m2

�Q

: (7)

From this expression, we see that there are various struc-
tures which can be chosen for studying the magnetic mo-
ments of �Q. In the present work, following [45], we

choose the structure p6 2 6� q6 which contains the magnetic
form factor f1 þ f2, and at q2 ¼ 0 it gives the magnetic
moment of �Q in units of e@=2m�Q

. Choosing this struc-

ture in the physical part of the correlator, for the magnetic
moments of �Q we obtain

� ¼ ��2
Q

1

p2
1 �m2

�Q

��Q

1

p2
2 �m2

�Q

; (8)

where��Q
¼ ðf1 þ f2Þjq2¼0 are the magnetic moments of

�Q in units of e@=2m�Q
.

In order to calculate the magnetic moments of �Q

baryons, the expression of the theoretical part of the corre-
lation function is needed. After simple calculations for the
theoretical part of the correlation function in QCD, we
obtain

� ¼ �i�abc�a0b0c0
Z
d4xeipxh�ðqÞ j f�5S

cc0
Q �5 TrðSba0q S0ab0s Þ

þ ��5S
cc0
Q TrðSba0q �5S

0ab0
s Þ þ �Scc

0
Q �5 Trð�5S

ba0
q S0ab0s Þ

þ �2Scc
0

Q Trð�5S
ab0
s �5S

0ba0
q Þg j 0i (9)

where S0i ¼ CSTi C, C and T are the charge conjugation and
transposition operators, respectively, and SQ and SqðsÞ are
the heavy and light (strange) quark propagators.
The correlation function from the QCD part receives

three different contributions: (a) perturbative contribu-
tions, (b) nonperturbative contributions where a photon is
emitted from the freely propagating quark (in other words,
at short distances), (c) nonperturbative contributions where
a photon is radiated at long distances. To obtain the ex-
pression for the contribution from the emission of a photon
at short distances, the following procedure can be used:
Each one of the quarks can emit the photon, and hence each
term in Eq. (9) corresponds to three terms in which the
propagator of the photon emitting the quark is replaced by

Sab�� ) � 1

2

�Z
d4yF�	y	S

freeðx� yÞ��SfreeðyÞ
�
ab

��
; (10)

where the Fock-Schwinger gauge, x�A
�ðxÞ ¼ 0, has been

used. Note that the explicit expressions of the free light and
heavy quark propagators in the x representation are

Sfreeq ¼ ix6
2
2x4

� mq

4
2x2
;

SfreeQ ¼ m2
Q

4
2

K1ðmQ

ffiffiffiffiffiffiffiffiffi
�x2

p
Þffiffiffiffiffiffiffiffiffi

�x2
p � i

m2
Qx6

4
2x2
K2ðmQ

ffiffiffiffiffiffiffiffiffi
�x2

p
Þ;
(11)

where Ki are Bessel functions, mu;d ¼ 0, and ms � 0. The
expression for the nonperturbative contributions to the
correlation function can be obtained from Eq. (9) by re-
placing one of the light quark propagators by

Sab�� ! �1
4
�qa�jq

bð�jÞ��; (12)

where �j ¼ f1; �5; ��; i�5��; ���=
ffiffiffi
2

p g and the sum over

�j is implied; the other two propagators are the full propa-
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gators involving both perturbative and nonperturbative
contributions. In order to calculate the correlation function
from the QCD side, we need the explicit expressions of the
heavy and light quark propagators in the presence of an
external field.

The light cone expansion of the propagator in an exter-
nal field is obtained in [43]. It receives contributions from

various �qGq, �qGGq, �qq �qq nonlocal operators, where G is
the gluon field strength tensor. In this work, we consider
operators with only one gluon field and contributions com-
ing from three-particle nonlocal operators, and neglect
terms with two gluons �qGGq and four quarks �qq �qq [44].
In this approximation the expressions for the heavy and
light quark propagators are

iSQðxÞ ¼ iSfreeQ ðxÞ � igs
Z d4k

ð2
Þ4 e
�ikx Z 1

0
dv

�
k6 þmQ

ðm2
Q � k2Þ2G

�	ðvxÞ��	 þ 1

m2
Q � k2

vx�G
�	�	

�
;

SqðxÞ ¼ Sfreeq ðxÞ � mq

4
2x2
� h �qqi

12

�
1� i

mq

4
x6
�
� x2

192
m2

0h �qqi
�
1� i

mq

6
x6
�
� igs

Z 1

0
du

�
x6

16
2x2
G�	ðuxÞ��	

� ux�G�	ðuxÞ�	 i

4
2x2
� i

mq

32
2
G�	�

�	

�
ln

��x2�2

4

�
þ 2�E

��
;

(13)

where � is the energy cutoff separating perturbative and nonperturbative domains.
In order to calculate the theoretical part, from Eqs. (9)–(13) it follows that the matrix elements of nonlocal operators

�q�iq between the photon and vacuum states are needed, i.e.h�ðqÞ j �qðx1Þ�iqðx2Þ j 0i. These matrix elements can be
expanded near the light cone x2 ¼ 0 in terms of the photon distribution amplitudes [46].

h�ðqÞj �qðxÞ��	qð0Þj0i¼�ieq �qqð"�q	�"	q�Þ
Z 1

0
duei �uqx

�
�’�ðuÞþ x2

16
AðuÞ

�
� i

2ðqxÞeqh �qqi
�
x	

�
"��q�"xqx

�

�x�
�
"	�q	"xqx

��Z 1

0
duei �uqxh�ðuÞh�ðqÞj �qðxÞ��qð0Þj0i

¼eqf3�

�
"��q�"xqx

�Z 1

0
duei �uqx vðuÞh�ðqÞj �qðxÞ���5qð0Þj0i

¼�1

4
eqf3���	��"

	q�x�
Z 1

0
duei �uqx aðuÞh�ðqÞj �qðxÞgsG�	ðvxÞqð0Þj0i

¼�ieqh �qqið"�q	�"	q�Þ
Z
D�ie

ið� �qþv�gÞqxSð�iÞh�ðqÞj �qðxÞgs ~G�	i�5ðvxÞqð0Þj0i

¼�ieqh �qqið"�q	�"	q�Þ
Z
D�ie

ið� �qþv�gÞqx~Sð�iÞh�ðqÞj �qðxÞgs ~G�	ðvxÞ���5qð0Þj0i

¼eqf3�q�ð"�q	�"	q�Þ
Z
D�ie

ið� �qþv�gÞqxAð�iÞh�ðqÞj �qðxÞgsG�	ðvxÞi��qð0Þj0i

¼eqf3�q�ð"�q	�"	q�Þ
Z
D�ie

ið� �qþv�gÞqxV ð�iÞh�ðqÞj �qðxÞ���gsG�	ðvxÞqð0Þj0i

¼eqh �qqi
���

"��q�"xqx
��
g�	� 1

qx
ðq�x	þq	x�Þ

�
q��

�
"��q�"xqx

��
g�	� 1

qx
ðq�x	þq	x�Þ

�
q�

�
�
"	�q	"xqx

��
g��� 1

qx
ðq�x�þq�x�Þ

�
q�þ

�
"	�q	 "xq:x

��
g��� 1

qx
ðq�x�þq�x�Þ

�
q�

�

�
Z
D�ie

ið� �qþv�gÞqxT 1ð�iÞþ
��
"��q�

"x

qx

��
g��� 1

qx
ðq�x�þq�x�Þ

�
q	�

�
"��q�"xqx

�

�
�
g	�� 1

qx
ðq	x�þq�x	Þ

�
q��

�
"��q�"xqx

��
g��� 1

qx
ðq�x�þq�x�Þ

�
q	þ

�
"��q�"xqx

�

�
�
g	�� 1

qx
ðq	x�þq�x	Þ

�
q�

�Z
D�ie

ið� �qþv�gÞqxT 2ð�iÞþ 1

qx
ðq�x	�q	x�Þð"�q��"�q�Þ

�
Z
D�ie

ið� �qþv�gÞqxT 3ð�iÞþ 1

qx
ðq�x��q�x�Þð"�q	�"	q�Þ

Z
D�ie

ið� �qþv�gÞqxT 4ð�iÞ
�
(14)
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where � is the magnetic susceptibility of the quarks, ’�ðuÞ
is the leading twist-2 photon distribution amplitude (DA),
 vðuÞ,  aðuÞ, A, and V are the twist-3 DA’s, and h�ðuÞ,
A, T i (i ¼ 1, 2, 3, 4) are the twist-4 DA’s, respectively.
The explicit expressions of DA’s are presented in the next
section.

The theoretical part of the correlation function can
be obtained in terms of QCD parameters by substituting
photon DA’s and expressions for heavy and light quark

propagators into Eq. (9). Sum rules for the �Q mag-

netic moments are obtained by equating two representa-
tions of the correlation function. The higher states and
continuum contributions are modeled using hadron-quark
duality. Applying double Borel transformations on the
variables p2

1 ¼ ðpþ qÞ2 and p2
2 ¼ p2 on both sides of

the correlator, for the �Q baryon magnetic moments we

get

��2
Qð�Þ��Q

e
�m2

�Q
=M2

B ¼
Z s0

m2
Q

e�s=M2
B�ðsÞdsþ ð�2 � 1Þe�m2

Q
=M2

B

288
2
f�Eð6eQ þ esÞmsm

2
0h �qqig �

ð�2 � 1Þe�m2
Q
=M2

Bm2
Q

72M4
B

� fðes þ eqÞm2
0h �ssih �qqi�1g þ

e�m
2
Q=M

2
Bm2

Q

432M4
B

fð�2 � 1Þm2
0h �ssih �qqi½36eQ þ ðes þ eqÞAðu0Þ�

þ ð�2 þ 1Þf3�eqmsm
2
0h�ssið�2 þ  aðu0ÞÞg þ e�m

2
Q
=M2

B

72
fð1� �2Þh�ssih �qqi½12eQ � ðes þ eqÞ

� ½�1 �m2
0�i’�ðu0Þ�� � 3eqð�2 þ 1Þf3�msh �ssi�2g � ð�2 � 1Þe�m2

Q
=M2

BM2
Bms

96
2m2
Q

� ½ð6eQ þ esÞ�Em2
0h �qqi� �

e�m
2
Q
=M2

Bms

288
2

�
3ð�2 � 1ÞeQm2

0h �qqi
�
�3þ 2�E þ 2 ln

�
�2

m2
Q

��

þ eqm
2
0h�ssið1þ �2Þ þ esm

2
0h �qqi

�
ð1� �2Þ

�
�E þ ln

�
�2

m2
Q

����
þ 9eQm

2
Qms

144
2
fh�ssið1þ �2Þ

þ 2h �qqið1� �2Þg; (15)

whereM2
B ¼ M2

1
M2

2

M2
1
þM2

2

and u0 ¼ M2
1

M2
1
þM2

2

. Since the masses of the initial and final baryons are the same, we will setM2
1 ¼ M2

2

and u0 ¼ 1=2. The functions appearing in Eq. (15) are defined as

�1 ¼
Z

D�i
Z 1

0
dvSð�iÞð�q þ v�g � u0Þ;

�2 ¼
Z

D�i
Z 1

0
dvV ð�iÞ0ð�q þ v�g � u0Þ;

�ðsÞ ¼ ð�2 � 1Þ
144
2M2

B

�
m2

0ð6eQ þ esÞmsh �qqi ln
��mQ

2 þ s

�2

��
þ 3ð1þ �2ÞeQm4

Q

64
4

�
13

2
þ  10 � 1

6
 20 � 1

6
 30

þ
�
 10 þ 3

2

�
ln

�
s

m2
Q

�
þ 1

6
 41

�
þ ð1� �2Þmsh �qqi 10

48
2m2
Q

�
2eqm

2
Q�1 � ðes þ eqÞm2

0

�
8þ ln

�s�m2
Q

�2

���

� ms

288
2m2
Q

�
ð�2 � 1Þm2

0ðes þ 6eQÞh �qqi
�
3 ln

�s�m2
Q

�2

�
�

�
4�E þ ln

�
�2

m2
Q

���
þ 6eQ½3m2

Qfð1þ �2Þh�ssi

þ 2ð1� �2Þh �qqig 10�
�
þ m2

Q

576
2

�
ðes þ 12eQÞ

�ð�2 � 1Þ
m4
Q

m2
0msh �qqi

�
�ð1þ �EÞð 22 þ 2 12Þ �  02 �  32

�  22 � �E
2
 20 þ 3ð2 32 þ 3 22 þ  02Þ ln

�s�m2
Q

�2

�
� ln

�
�2

m2
Q

���
þ 12eq

�
2

m2
Q

ð�2 � 1Þmsh �qqi�1 21

þ ð1þ �2Þf3��2

�
 21 �  10 þ 1

2
 20 þ 1

2
 00 þ ln

�m2
Q

s

����
; (16)

where Z
D�i ¼

Z 1

0
d� �q

Z 1

0
d�q

Z 1

0
d�gð1� � �q � �q � �gÞ; (17)
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and the functions  nm are defined as

 nm ¼ ðs�mQ
2Þn

smðm2
QÞn�m

: (18)

Note that the contributions of the terms �hG2i are also
calculated, but their numerical values are very small, and

therefore, for customary in Eq. (15), these terms are
omitted. From Eq. (15) it follows that, for the determina-
tion of the�Q baryon magnetic moments, we need to know
the residue �Q. The residue can be obtained from the two-
point sum rules and is calculated in [25]. For the current
given in Eq. (1), it takes the following form:

�2
Qð�Þ ¼ e

m
�Q

2=M2
B

�Z s0

m2
Q

dse�s=M2
B

�ð1þ �2Þm4
Q

29
4

�
ð1� x2Þ

�
1

x2
� 8

x
þ 1

�
� 12 lnx

�

þ ms

24
2
ð1� x2Þ

�
ð1� �2Þh �qqi þ ð1þ b2Þh�ssi

2

�
þ ð1þ �2Þhg2G2i

2103
4
ð1� xÞð1þ 5xÞ

�

þ ms

25
2

�ð1þ �2Þm2
0h�ssi

6
e�m

2
Q
=M2

B � ð1� �2Þm2
0h �qqi

�
e�m

2
Q
=M2

B þ
Z 1

0
d�ð1� �Þe�m2

Q
=ð1��ÞM2

B

��

� h �qqih�ssi
6

ð1� �2Þe�m2
Q
=M2

B

�
; (19)

where x ¼ m2
Q=s.

III. NUMERICAL ANALYSIS

The present section is devoted to the numerical analysis
of the magnetic moments of�Q baryons. The values of the

input parameters, appearing in the sum rules expression for
magnetic moments, are h �uuið1GeVÞ¼ h �ddið1GeVÞ¼
�ð0:243Þ3 GeV3, h �ssið1 GeVÞ ¼ 0:8h �uuið1 GeVÞ,
m2

0ð1 GeVÞ ¼ 0:8 GeV2 [47], � ¼ 300 MeV, and f3� ¼
�0:0039 GeV2 [46]. The value of the magnetic suscepti-
bility, �ð1 GeVÞ ¼ �3:15� 0:3 GeV�2, was obtained by
a combination of the local duality approach and QCD sum

rules [46]. Recently, from the analysis of radiative heavy
meson decay for �ð1 GeVÞ ¼ �ð2:85� 0:5Þ GeV�2 was
obtained [48], which is in good agreement with the instan-
ton liquid model prediction [49], but slightly below the
QCD sum rules prediction [46]. Note that, first, the mag-
netic susceptibility in the framework of QCD sum rules is
calculated in [50], and it is obtained that �ð1 GeVÞ ¼
�4:4 GeV�2. In the numerical analysis, we have used all
three values of � existing in the literature and obtained that
the values of the magnetic moments of �Q baryons are

practically insensitive to the value of �. The photon DA’s
entering the sum rules for the magnetic moments of�Q are

calculated in [46], and their expressions are

’�ðuÞ ¼ 6u �uð1þ ’2ð�ÞC3=2
2 ðu� �uÞÞ;

 vðuÞ ¼ 3ð3ð2u� 1Þ2 � 1Þ þ 3

64
ð15wV� � 5wA�Þð3� 30ð2u� 1Þ2 þ 35ð2u� 1Þ4Þ;

 aðuÞ ¼ ð1� ð2u� 1Þ2Þð5ð2u� 1Þ2 � 1Þ 5
2

�
1þ 9

16
wV� � 3

16
wA�

�
; Að�iÞ ¼ 360�q� �q�

2
g

�
1þ wA�

1

2
ð7�g � 3Þ

�
;

V ð�iÞ ¼ 540wV�ð�q � � �qÞ�q� �q�
2
g; h�ðuÞ ¼ �10ð1þ 2�þÞC1=2

2 ðu� �uÞ;
AðuÞ ¼ 40u2 �u2ð3�� �þ þ 1Þ þ 8ð�þ2 � 3�2Þ½u �uð2þ 13u �uÞ þ 2u3ð10� 15uþ 6u2Þ lnðuÞ

þ 2 �u3ð10� 15 �uþ 6 �u2Þ lnð �uÞ�;
T 1ð�iÞ ¼ �120ð3�2 þ �þ2 Þð� �q � �qÞ� �q�q�g;

T 2ð�iÞ ¼ 30�2
gð� �q � �qÞðð�� �þÞ þ ð�1 � �þ1 Þð1� 2�gÞ þ �2ð3� 4�gÞÞ;

T 3ð�iÞ ¼ �120ð3�2 � �þ2 Þð� �q � �qÞ� �q�q�g;

T 4ð�iÞ ¼ 30�2
gð� �q � �qÞðð�þ �þÞ þ ð�1 þ �þ1 Þð1� 2�gÞ þ �2ð3� 4�gÞÞ;

Sð�iÞ ¼ 30�2
gfð�þ �þÞð1� �gÞ þ ð�1 þ �þ1 Þð1� �gÞð1� 2�gÞ þ �2½3ð� �q � �qÞ2 � �gð1� �gÞ�g;

~Sð�iÞ ¼ �30�2
gfð�� �þÞð1� �gÞ þ ð�1 � �þ1 Þð1� �gÞð1� 2�gÞ þ �2½3ð� �q � �qÞ2 � �gð1� �gÞ�g: (20)
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The constants appearing in the wave functions are given as
[46] ’2ð1 GeVÞ ¼ 0, wV� ¼ 3:8� 1:8, wA� ¼ �2:1� 1:0,
� ¼ 0:2, �þ ¼ 0, �1 ¼ 0:4, �2 ¼ 0:3, �þ1 ¼ 0, and �þ2 ¼
0.

From the explicit expressions of the magnetic moments
of �Q baryons, it follows that it contains three auxiliary

parameters: Borel mass squared M2
B, continuum threshold

s0, and �, which enters the expression of the interpolating
current for �Q. The physical quantity, magnetic moment

��Q
, should be independent of these auxiliary parameters.

In other words, we should find the ‘‘working regions’’ of
these auxiliary parameters, where the magnetic moments
are independent of them.

The value of the continuum threshold is fixed from the
analysis of the two-point sum rules, where the mass and
residue ��Q

of the�Q baryons are determined [25], which

leads to the value s0 ¼ 6:52 GeV2 for �b and s0 ¼
3:02 GeV2 for �c. If we choose the value s0 ¼
6:42 GeV2 for �b and s0 ¼ 8 GeV2 for �c, the results
remain practically unchanged. Next, we try to find the
working region of M2

B where ��Q
are independent of it

at fixed values of � and the above-mentioned values of s0.
The upper bound of M2

B is obtained, requiring that the
continuum contribution should be less than the contribu-
tion of the first resonance. The lower bound of M2

B is
determined by requiring that the highest power of 1=M2

B

be less than 30% of the highest power of M2
B. These two

conditions are both satisfied in the region 15 GeV2 �
M2
B � 20 GeV2 and 5 GeV2 � M2

B � 8 GeV2 for �b

and �c, respectively.
In Figs. 1 and 2, we depict the dependence of ��0

b
and

���
b
on M2

B at fixed values of � and s0 ¼ 6:52 GeV2. In

Figs. 3 and 4, we present the dependence of ��0
c
and ��þ

c

on M2
B at fixed values of � and s0 ¼ 3:02 GeV2. From

these figures, we see that the values of the magnetic mo-

FIG. 1. The dependence of the magnetic moment ��0
b
on M2

B

at s0 ¼ 6:52 GeV2 and � ¼ �5, �1.

FIG. 2. The same as Fig. 1 but for ���
b
.

FIG. 3. The same as Fig. 1 but for ��0
c
and at s0 ¼

3:02 GeV2.

FIG. 4. The same as Fig. 3 but for ��þ
c
.
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ments of�b and�c exhibit good stability whenM
2
B varies

in the region 15 GeV2 � M2
B � 20 GeV2 and 5 GeV2 �

M2
B � 8 GeV2, respectively. The last step of our analysis is

the determination of the working region for the auxiliary
parameter �. For this aim, in Figs. 5–8 we present the
dependence of the magnetic moments of �Q baryons on

cos� where tan� ¼ �, using the values of M2
B from the

working region which we already determined and at fixed
values of s0.
From these figures we obtained that the prediction of the

magnetic moment ��b
(��c

) is practically independent of

the value of the auxiliary parameter �. From all these
analysis we deduce the final results for the magnetic mo-
ments in Table I for � ¼ �3:15 GeV2. Comparison of our
results on the magnetic moments of �Q baryons with

predictions of other approaches, as we already noted, is
also presented in Table I.
We see that within errors our predictions on the mag-

netic moments are in good agreement with the quark model
predictions. Our results on the magnetic moments of �c

are also close to the predictions of the other approaches,
except the prediction of [33] on ��0

c
.

In summary, the magnetic moments of �Q baryons,

which were discovered recently (more precisely, �b was
discovered), are calculated in the framework of light cone

FIG. 6. The same as Fig. 5 but for ���
b
.

FIG. 5. The dependence of the magnetic moment ��0
b
on

cos� at s0 ¼ 6:52 GeV2 and for M2
B ¼ 15 GeV2 and M2

B ¼
20 GeV2.

FIG. 7. The same as Fig. 5 but for ��0
c
and s0 ¼ 3:02 GeV2

and for M2
B ¼ 5 GeV2 and M2

B ¼ 8 GeV2.

FIG. 8. The same as Fig. 7 but for ��þ
c
.

TABLE I. Results for the magnetic moments of �Q baryons
in different approaches.

��0
b

���
b

��0
c

��þ
c

Our results �0:045� 0:005 �0:08� 0:02 0:35� 0:05 0:50� 0:05

RQM [32] �0:06 �0:06 0.39 0.41

NQM [32] �0:06 �0:06 0.37 0.37

[33] � � � � � � �1:02	�1:06 0:45	 0:48

[34] � � � � � � 0.32 0.42

[35] � � � � � � 0.38 0.38

[36] � � � � � � 0.28 0.28

[37] � � � � � � 0:28	 0:34 0:39	 0:46
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QCD sum rules. Our results on magnetic moments are
close to the predictions of the other approaches existing
in the literature.
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