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Reliable values of quark and lepton masses are important for model building at a fundamental energy

scale, such as the Fermi scale MZ � 91:2 GeV and the would-be GUT scale �GUT � 2� 1016 GeV.

Using the latest data given by the Particle Data Group, we update the running quark and charged-lepton

masses at a number of interesting energy scales below and above MZ. In particular, we take into account

the possible new physics scale (�� 1 TeV) to be explored by the CERN LHC and the typical seesaw

scales (�� 109 GeV and �� 1012 GeV) which might be relevant to the generation of neutrino masses.

For illustration, the running masses of three light Majorana neutrinos are also calculated. Our up-to-date

tables of running fermion masses are expected to be very useful for the study of flavor dynamics at various

energy scales.
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I. INTRODUCTION

In the standard model (SM) of electroweak interac-
tions [1], it is the Higgs mechanism that provides a self-
consistent framework to generate masses for gauge bosons
and charged fermions. Three neutrinos are exactly mass-
less as a straightforward consequence of the symmetry
structure of the SM. But this framework itself can neither
predict the values of six quark masses and three charged-
lepton masses nor interpret the observed hierarchy of their
spectra [2]. On the other hand, current neutrino oscillation
experiments [3–6] indicate that neutrinos are actually mas-
sive and lepton flavors are mixed. Hence one has to extend
the SM in order to gain an insight into the dynamics of
fermion mass generation and flavor mixing. Possible new
physics beyond the SM is expected to appear far above the
Fermi scale MZ � 91:2 GeV which essentially character-
izes the scale of electroweak symmetry breaking. For in-
stance, the typical scale of grand unified theories (GUTs)
for strong and electroweak interactions [7] would be
�GUT � 2� 1016 GeV, while �� 1 TeV is the possible
scale of new physics necessary to stabilize the mass of the
Higgs boson and offer a natural explanation of electroweak
symmetry breaking [8]. Whenever a specific mass model of
leptons and/or quarks is built at a certain high energy scale,
one has to make use of the technique of renormalization
group equations (RGEs) [9] to bridge the gap between the
model predictions (at � � MZ) and the experimental data
(at � & MZ). Therefore, reliable values of running quark
and lepton masses are very important for building new
physics models and testing their viability.

A systematic estimate of running quark masses at vari-
ous energy scales was made by Fusaoka and Koide [10] in

1998. Their numerical results have proved to be very useful
for people working on both hadronic physics at relatively
low energies and electroweak physics and GUTs at super-
high energies. However, a nontrivial update of this work is
greatly desirable today because a lot of changes in particle
physics have happened since 1998. On the one hand, some
new and more accurate data on fermion masses at low
scales have been accumulated [11]. On the other hand, in-
tensive interest has been paid to some new physics scales
such as �� 1 TeV to be explored by the Large Hadron
Collider (LHC) and �� 1012 GeV which might be rele-
vant to the seesaw mechanism of neutrino mass generation
[12]. These energy scales were not considered in Ref. [10],
nor were the running masses of three light neutrinos. Thus
we are well motivated to do a new analysis of running
fermion masses at a variety of fundamental or interesting
energy scales.
Let us remark that the present paper is different

from Ref. [10] and other previous works in the following
aspects:

(i) The running masses of three light Majorana
neutrinos are calculated. A global analysis of cur-
rent neutrino oscillation data yields strong con-
straints on two neutrino mass-squared differences
(�m2

21 � m2
2 �m2

1 ¼ ð7:2 . . . 8:9Þ � 10�5 eV2 and

j�m2
32j � jm2

3 �m2
2j ¼ ð1:7 . . . 3:3Þ � 10�3 eV2)

and three neutrino mixing angles (30� < �12 <
38�, 36� < �23 < 54�, and �13 < 10�) at the 99%
confidence level [13]. In addition, the latest cos-
mological constraint on the absolute values of mi

ism1 þm2 þm3 < 0:61 eV at the 95% confidence
level [14]. Since the unification of leptons and
quarks is only possible at a superhigh energy scale
(e.g., the GUT scale or the seesaw scale), it makes
sense to calculate the running masses of three light
neutrinos together with those of charged fermions.
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We shall illustrate the running effects of mið�Þ
for � � MZ by using the RGEs both in the SM
and in the minimal supersymmetric standard
model (MSSM).

(ii) The up-to-date values of quark masses [11] given
by the Particle Data Group (PDG) at low energies
are adopted, and a few new energy scales (such as
�� 1 TeV and 1012 GeV) are taken into account.
Any models for new physics beyond the SM may
introduce new energy scales above the Fermi scale,
among which the �� 1 TeV scale is most appeal-
ing because it will soon be probed by the LHC.
Possible new physics at this energy frontier is likely
to be responsible for the origin of fermion masses
and flavor mixing, or it can at least shed light on
these fundamental problems. On the other hand, the
intriguing seesaw [12] and leptogenesis [15] mech-
anisms have motivated a lot of neutrino physicists
to study the properties of heavy Majorana neutrinos
in order to simultaneously account for the lightness
of three known neutrinos and the matter-antimatter
asymmetry of our universe. The particularly in-
teresting mass scales of such heavy Majorana
particles are �� 109 GeV to 1012 GeV, where
the flavor effects on leptogenesis [16] have to be
treated carefully. Hence we shall make use of the
RGEs to run the lepton and quark masses to these
new energy scales, just for the convenience of
model builders.

(iii) The treatment of quark masses crossing the flavor
thresholds is improved. We shall use the match-
ing conditions only at the flavor thresholds � �
mQðmQÞ (for Q ¼ c, b, t) and calculate light quark

masses at any other high energy scales with the
help of the RGEs. This approach has been clearly
described in Ref. [17]. In comparison, the running
quark masses between two neighboring flavor
thresholds were just computed with the matching
conditions in Ref. [10]. The running-matching-
running scheme proposed in Ref. [17] and used
in our calculations is no doubt more reasonable.

(iv) The effective coupling constant �s, which governs
the strength of strong interactions, is calculated by
numerically solving its RGE. In contrast, the values
of �s at different energy scales were evaluated via
the analytical relation between �s and the asymp-
totic scale parameter � in Ref. [10]. The latter
method may result in some unnecessary uncertain-
ties due to the expansion of 1= lnð�2=�2Þ, as shown
in Refs. [17,18].

Our main numerical results will be tabulated, as done in
Ref. [10], to serve for a useful reference in building specific
models at various energy scales.

The remaining parts of this paper are organized as fol-
lows. In Sec. II, we summarize the input data which in-

clude the current masses of three light quarks at � ¼
2 GeV, the values of mcðmcÞ and mbðmbÞ, the pole mass
of the top quark, the strong gauge coupling �s and the fine
structure constant � at MZ. We also collect the relevant
formulas for the RGEs and matching conditions of quark
masses and �s. The strategy to deal with the flavor thresh-
olds and evolve the charged fermion masses to the Fermi
scale is outlined. Sec. III is devoted to the calculations of
running fermion masses up to the GUT scale both in the
SM and in the MSSM. Indeed, the true running parameters
above the Fermi scale are the Yukawa couplings of leptons
and quarks because these particles can only acquire their
masses after the electroweak symmetry breaking (i.e., be-
low the Fermi scale). The running masses of three light
neutrinos are also illustrated for completeness. Finally, we
make a brief summary of our main results in Sec. IV.

II. BELOW THE FERMI SCALE

First of all, let us give some concise comments on the
definition of fermion masses. It is important to specify
the theoretical framework when discussing quark masses,
since they are renormalization-scheme-dependent. There
are two very common renormalization schemes. One of
them is the on shell scheme, in which the position of the
pole is the definition of the physical mass M. The other is
to define the running or renormalized mass mð�Þ in the
dimensional regularization schemewith the modified mini-

mal subtraction (MS), where � denotes the renormaliza-
tion scale. Both definitions are suitable for charged leptons.
But the situation is quite different in the quark sector due to
the nonperturbative nature of the quantum chromodynam-
ics (QCD) at low energies: light quarks are always confined
in hadrons and can never be observed directly. Even for the
heaviest quark, the top quark, it is impossible to completely
eliminate the nonperturbative effect on the value of mt

extracted from the direct measurements. Hence the pole
mass of a quark is not well defined. Note that the QCD
Lagrangian has a chiral symmetry in the limit where all
quark masses are vanishing. The scale of dynamical chi-
ral symmetry breaking is �� � 1 GeV [19], which can

be used to distinguish between light (mq <�� for q ¼
u, d, s) and heavy (mq >�� for q ¼ c, b, t) quarks.

Another important point is the decoupling of heavy fla-
vors. Because of the hierarchical mass spectrum of quarks,
one should integrate out the heavy degrees of freedom
when considering the properties of light flavors. There-
fore, some consistent matching conditions should be estab-
lished between the full and effective theories at the scales
characterized by the masses of heavy flavors. We shall
work in the framework elaborated on in Ref. [17].

A. Running quark masses

With the help of the chiral symmetry, one may extract
the values of mu=md and ms=md from the masses of pion
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and kaon in a way independent of the renormalization scale
[20]. The mass of the strange quark can be determined
from the spectral function sum rules or lattice QCD simu-
lations [19,20]. The up-to-date values of mu, md and ms

given by the PDG are [11]

muð2 GeVÞ ¼ 1:5� 3:0 MeV;

mdð2 GeVÞ ¼ 3� 7 MeV;

msð2 GeVÞ ¼ 95� 25 MeV:

(1)

Note that these running masses are evaluated at � ¼
2 GeV with three active quark flavors (u, d, s). The evo-
lution of mqð�Þ (for q ¼ u; d; s; c; b; t) is governed by the

following RGE:

�2
dmqð�Þ
d�2

¼ ��ð�sÞmqð�Þ

¼ �X1
i¼0

�i

�
�sð�Þ
�

�
iþ1

mqð�Þ; (2)

where �sð�Þ � g2s=ð4�Þ is the effective coupling constant
of strong interactions with gs being the strong gauge
coupling. The values of �i (for i ¼ 0, 1, 2, 3) are given
by [21–23]

�0 ¼ 1; �1 ¼ 1
16ð2023 � 20

9 nqÞ;
�2 ¼ 1

64½1249� ð221627 þ 160
3 �ð3ÞÞnq � 140

81 n
2
q	;

�3 ¼ 1
256½4 603 055162 þ 135 680

27 �ð3Þ � 8800�ð5Þ
� ð91 72327 þ 34 192

9 � 880�ð4Þ � 18 400
9 �ð5ÞÞnq

þ ð5242243 þ 800
9 �ð3Þ � 160

3 �ð4ÞÞn2q � ð332243 � 64
27�ð3ÞÞn2q	;

(3)

where nq is the number of active quark flavors with masses

mq <�; �ð3Þ � 1:202 057, �ð4Þ ¼ �4=90 � 1:082 323

and �ð5Þ � 1:036 928 are the Riemann zeta functions. To
find the solution to Eq. (2), we write out the detailed �
dependence of �sð�Þ in terms of the Callan-Symanzik beta
function [11],

�2 @�sð�Þ
@�2

¼ �ð�sð�ÞÞ ¼ �X
i
0

�i

�iþ2
s ð�Þ
�iþ1

; (4)

where

�0 ¼ 1
4ð11� 2

3nqÞ; �1 ¼ 1
16ð102� 38

3 nqÞ;
�2 ¼ 1

64ð28572 � 5033
18 nq þ 325

54 n
2
qÞ;

�3 ¼ 1
256½149 7536 þ 3564�ð3Þ � ð1 078 361162 þ 6508

27 �ð3ÞÞnq
þ ð50 065162 þ 6472

81 �ð3ÞÞn2q þ 1093
729 n

3
q	:

(5)

Note that we adopt the MS scheme for the RGEs through-
out this paper. The solution to Eq. (2) can be expressed as
[23,24]

mqð�Þ ¼ Rð�sð�ÞÞm̂q; (6)

where m̂q denotes the renormalization-invariant quark

mass, and

Rð�sÞ ¼
�
�s

�

�
�0=�0

�
1þ �s

�
C1 þ �2

s

2�2
ðC21 þ C2Þ

þ �3
s

�3

�
1

6
C31 þ

1

2
C1C2 þ 1

3
C3

��
: (7)

In Eq. (7), the terms of Oð�4
sÞ and smaller have been

omitted and the coefficients C1;2;3 are defined as

C1 ¼ �1

�0

� �1�0

�2
0

;

C2 ¼ �2

�0

� �1�1

�2
0

� �2�0

�2
0

þ �2
1�0

�3
0

;

C3 ¼ �3

�0

� �1�2

�2
0

þ �2
1�1

�3
0

� �2�1

�2
0

� �3
1�0

�4
0

þ 2
�1�2�0

�3
0

� �3�0

�2
0

:

(8)

In a theory with multiple energy scales, such as the QCD
with nl ¼ nQ � 1 massless quarks and one heavy quark Q
(formQ � �), one should integrate out the heavy field and

construct an effective theory by requiring its consistency
with the full nQ-flavor theory at the heavy quark threshold

�ðnQÞ ¼ OðmQÞ. In this sense, Eq. (4) is valid between two
quark thresholds, which are defined by �ðnqÞ ¼ mqðmqÞ.
Then we are in a position to address the decoupling of
heavy quarks and consider the matching conditions at the
flavor thresholds. In our calculations, we use the match-
ing relation between the strong coupling constants of the
neighboring flavors [17]:

�
ðnq�1Þ
s ð�Þ ¼ �2g�

ðnqÞ
s ð�Þ; (9)

where �2g is already known at the three-loop level, i.e.,

�2g ¼ 1� �
ðnqÞ
s ð�Þ
�

�
1

6
ln

�2

ð�ðnqÞÞ2
�
þ

�
�
ðnqÞ
s ð�Þ
�

�
2
�
11

12
� 11

24

� ln
�2

ð�ðnqÞÞ2 þ
1

36
ln2

�2

ð�ðnqÞÞ2
�
þ

�
�
ðnqÞ
s ð�Þ
�

�
3

�
�
564 731

124 416
� 82 043

27 648
�ð3Þ � 955

576
ln

�2

ð�ðnqÞÞ2

þ 53

576
ln2

�2

ð�ðnqÞÞ2 �
1

216
ln3

�2

ð�ðnqÞÞ2 � ðnq � 1Þ

�
�
2633

31 104
� 67

576
ln

�2

ð�ðnqÞÞ2 þ
1

36
ln2

�2

ð�ðnqÞÞ2
��

;

(10)

in the MS scheme.
Now we consider the input values of three heavy quark

masses. For charm and bottom quarks, their masses ex-
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tracted from the heavy quark effective theory, lattice gauge
theory, and QCD sum rules are consistent with one another
if they are all spelled out in the same scheme and at the
same scale [11]:

mcðmcÞ ¼ 1:25� 0:09 GeV;

mbðmbÞ ¼ 4:20� 0:07 GeV:
(11)

The top quark can be directly measured because its lifetime
is shorter than the typical time scale of nonperturba-
tive strong interactions ��1

QCD [25], where the magnitude

of �QCD is about several hundred MeV. The pole mass of

the top quark extracted from the average of several direct
measurements is [11]

Mt ¼ 172:5� 2:7 GeV: (12)

Note that the nonperturbative contribution to the top quark
mass may be proportional to �QCD, which is much smaller

than the present experimental error bar. The pole mass Mq

(for q ¼ c; b; t) can be translated into the running mass at
� ¼ Mq through [24]

Mq ¼ mqðMqÞ
�
1þ 4

3

�sðMqÞ
�

þ Kð2Þ
q

�
�sðMqÞ

�

�
2

þ Kð3Þ
q

�
�sðMqÞ

�

�
3
�

(13)

to the accuracy of Oð�3
sÞ, where fKð2Þ

c ¼ 11:21;

Kð2Þ
b ¼ 10:17; Kð2Þ

t ¼ 9:13g and fKð3Þ
c ¼ 123:8; Kð3Þ

b ¼
101:5; Kð3Þ

t ¼ 80:4g are computed with some typical
values of the pole masses of light quarks [24]. In addition

to the matching condition of �
ðnqÞ
s in Eq. (9), we need to

know the matching condition of the running quark masses
at the flavor thresholds [17,26]:

m
ðnq�1Þ
q

m
ðnqÞ
q

¼ 1þ 1

12

�
�
ðnqÞ
s ð�Þ
�

�
2
�
ln2

�2

ð�ðnqÞÞ2 �
5

3
ln

�2

ð�ðnqÞÞ2 þ
89

36

�
þ

�
�
ðnqÞ
s ð�Þ
�

�
3
�
2951

2916
� 407

864
�ð3Þ þ 5

4
�ð4Þ � 1

36
B4

�
�
311

2592
þ 5

6
�ð3Þ

�
ln

�2

ð�ðnqÞÞ2 þ
175

432
ln2

�2

ð�ðnqÞÞ2 þ
29

216
ln3

�2

ð�ðnqÞÞ2 ðnq � 1Þ
�
1327

11 664
� 2

27
�ð3Þ � 53

432
ln

�2

ð�ðnqÞÞ2

� 1

108
ln3

�2

ð�ðnqÞÞ2
��

; (14)

where B4 ’ �1:762 800. In practical calculations, we ap-
ply Eqs. (9) and (14) to the evolution of quark masses just
at the thresholds �ðnqÞ. Between two neighboring flavor
thresholds, the RGE given in Eq. (2) or Eq. (6) will be used.
We remark that this treatment is more reasonable than that
adopted in Ref. [10].

It is worthwhile to mention that the running and decou-
pling of the strong coupling and quark masses have been
built into the Mathematica package RunDec by Chetyrkin,
Kühn, and Steinhauser [17]. We use the same formulas in
our calculations and find that the results are in good
agreement with those calculated by using RunDec, if the

decoupling scale is chosen as �ðnqÞ ¼ mqðmqÞ.

B. Running charged-lepton masses

We proceed to discuss the running masses of charged
leptons [27]. The � dependence of the fine structure con-
stant �, including QCD corrections, is described by [28]

�2 @�

@�2
¼ ��2

�

�
~�0 þ ~�1

�
�

�

�
þX3

i¼1

	i

�
�s

�

�
i
�
; (15)

where

~� 0 ¼ � 1

3

X
f

Q2
fN

f
c ; ~�1 ¼ � 1

4

X
f

Q4
fN

f
c (16)

with Qf being the electric charge of a charged fermion

(i.e., f ¼ e,�, 
 for charged leptons and f ¼ u, d, s, c, b, t

for quarks) and Nf
c being the color factor (i.e., Nl

c ¼ 1 for
charged leptons and Nq

c ¼ 3 for quarks), and

	1 ¼ �X
q

Q2
q; 	2 ¼

X
q

Q2
q

�
257

46
� 11

72
nq

�
;

	3 ¼
X
q

Q2
q

�
� 10 487

1728
� 55

18
�ð3Þ þ

�
707

864
þ 55

54
�ð3Þ

�
nq

þ 77

3888
n2q

�
� 10

3

�X
q

Qq

�
2
�
11

144
� 1

6
�ð3Þ

�
: (17)

The pole masses of three charged leptons can be unambig-
uously measured in experiments, and their values have
been determined to an unprecedented degree of precision
[11],

Me ¼ 0:510 998 918� 0:000 000 044 MeV;

M� ¼ 105:658 369 2� 0:000 009 4 MeV;

M
 ¼ 1776:99þ0:29
�0:26 MeV:

(18)

One may convert the pole mass Ml into the running mass
mlð�Þ by using the following equation [29]:
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mlð�Þ ¼ Ml

�
1� �ð�Þ

�

�
1þ 3

2
ln

�
�

mlð�Þ
���

; (19)

where the subscript l runs over e,�, and 
, and the terms of
Oð�2Þ and smaller have been omitted.

C. The strategy

The formulas given in the preceding subsections allow
us to calculate the running masses of quarks and charged
leptons up to the Fermi scale. The basic strategy of our
numerical calculations is two-fold:

(1) We shall use the values of strong and electro-
magnetic coupling constants given by the PDG at
MZ [11],

�sðMZÞ ¼ 0:1176� 0:002;

�ðMZÞ�1 ¼ 127:918� 0:018;
(20)

where MZ ¼ 91:1876� 0:0021 GeV is the mass of

the Z boson and it lies in the range �>�ð5Þ ¼
mbðmbÞ. We shall only use the central value ofMZ in

our calculations, because its error bar is negligibly
small. From Eq. (4) with nq ¼ 5 and Eq. (20), we

obtain the corresponding strong coupling constant at

the bottom quark threshold �ð5Þ
s ð�ð5ÞÞ ¼ 0:223þ0:008

�0:007

with �ð5Þ ¼ mbðmbÞ. As for ��1, we can directly
compute its values at some typical energy scales by
using Eq. (15). Our numerical results, which will be
used in the subsequent calculations, are listed in
Table I.

(2) By using the RGEs with nq ¼ 4, we are able to run

three light quark masses and three charged-lepton

masses to the first heavy flavor threshold �ð5Þ. Then
we implement the matching conditions of �s andmq

to cross this threshold. There is no flavor threshold

on the way from �ð5Þ to MZ, and thus the relevant
equations with nq ¼ 5 can be used for numerical

calculations. We have also calculated the running

masses mQð�Þ of heavy quarks Q at the scale � �
�ðnQÞ ¼ mQðmQÞ, which is below the flavor thresh-

old �ðnQÞ. In our evaluation, the relevant equations

TABLE I. The gauge couplings �sð�Þ and �ð�Þ�1 at a few typical energy scales, where the first and second errors of �ð�Þ�1 come
from the uncertainties associated with �ðMZÞ�1 and mqðmqÞ, respectively.
nq �ðnqÞ ¼ mqðmqÞ (GeV) �sð�Þ �ð�Þ�1

4 mcðmcÞ ¼ 1:25 0:387þ0:027
�0:024 134:116� 0:018þ0:109

�0:101

5 mbðmbÞ ¼ 4:20 0:223þ0:008
�0:007 132:406� 0:018þ0:024

�0:025

6 mtðmtÞ ¼ 163:6 0:108� 0:002 127:073� 0:018� 0:023

TABLE II. Running quark masses from �ð4Þ ¼ mcðmcÞ to �ð6Þ ¼ mtðmtÞ, where we have taken the W-boson mass to be MW ¼
80:403 GeV. The pole masses of three light quarks are not listed, simply because the perturbative QCD calculation is not reliable in
that energy region.

� muð�Þ (MeV) mdð�Þ (MeV) msð�Þ (MeV) mcð�Þ (GeV) mbð�Þ (GeV) mtð�Þ (GeV)
mcðmcÞ 2:57þ0:99

�0:84 5:85þ2:46
�2:38 111þ31

�30 1:25� 0:09 5:99þ0:28
�0:26 384:8þ22:8

�20:4

2 GeV 2:2þ0:8
�0:7 5:0� 2:0 95� 25 1:07þ0:12

�0:13 5:05þ0:16
�0:15 318:4þ13:3

�12:4

mbðmbÞ 1:86þ0:70
�0:60 4:22þ1:74

�1:71 80� 22 0:901þ0:111
�0:113 4:20� 0:07 259:8þ7:7

�7:4

MW 1:29þ0:50
�0:43 2:93þ1:25

�1:21 56� 16 0:626þ0:084
�0:085 2:92� 0:09 173:8� 3:0

MZ 1:27þ0:50
�0:42 2:90þ1:24�1:19 55þ16

�15 0:619� 0:084 2:89� 0:09 171:7� 3:0
mtðmtÞ 1:22þ0:48

�0:40 2:76þ1:19
�1:14 52� 15 0:590� 0:080 2:75� 0:09 162:9� 2:8

Mq � � � � � � � � � 1:77� 0:14 4:91þ0:12
�0:11 172:5� 2:7

mqðMqÞ � � � � � � � � � 1:11þ0:11
�0:12 4:08� 0:08 162:2� 2:8

TABLE III. Running charged-lepton masses below mtðmtÞ, where the uncertainties of mlð�Þ are determined by those of Ml.

� með�Þ (MeV) m�ð�Þ (MeV) m
ð�Þ (MeV)

mcðmcÞ 0:495 536 319�þ0:000 000 043 104:474 005 6þ0:000 009 3
�0:000 009 4 1774:90� 0:20

mbðmbÞ 0:493 094 195þ0:000 000 042
�0:000 000 043 103:995 189 1� 0:000 009 3 1767:08� 0:20

MW 0:486 845 675� 0:000 000 042 102:772 088 6� 0:000 009 2 1747:12þ0:20
�0:19

MZ 0:486 570 161� 0:000 000 042 102:718 135 9� 0:000 009 2 1746:24þ0:20
�0:19

mtðmtÞ 0:485 289 396� 0:000 000 042 102:467 315 5þ0:000 009 1
�0:000 009 2 1742:15� 0:20

Ml 0:510 998 918� 0:000 000 044 105:658 369 2� 0:000 009 4 1776:90� 0:20
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with nQ active quark flavors have been used. For

example, the running top quark mass at the Fermi
scale mtðMZÞ is actually computed by using the
RGEs with nq ¼ 6.

Our numerical results for the running masses of quarks
and charged leptons below the Fermi scale are given in
Tables II and III, respectively. We do not consider the
running masses of three light neutrinos in this energy
region, just because their interactions with other particles
are too weak and their pole masses are too tiny. On the one
hand, one expects that the changes of neutrino masses with
respect to the energy scales are negligibly small. On the
other hand, it is just the smallness of neutrino masses that
hints at the possible existence of certain new physics scales
(e.g., the seesaw scales �� 109 GeV to 1012 GeV). We
shall illustrate the running effects of three neutrino masses
from MZ to �� 1012 GeV by using the RGEs of both the
SM and the MSSM in the next section.

III. ABOVE THE FERMI SCALE

Above the Fermi scale, the unbroken electroweak gauge
symmetry forbids leptons and quarks to acquire their
masses. The actual meaning of a fermion mass mf in this

energy region is a measure of the nontrivial Yukawa cou-
pling eigenvalue yf. One commonly defines mf ¼ yfv

above the Fermi scale, just like the definition below the
Fermi scale, where v � 246 GeV is the vacuum expecta-
tion value of the neutral Higgs field in the SM. In the
conventional seesaw models [12],1 the heavy Majorana
neutrinos must be integrated out below the seesaw scale
and the effective coupling matrix of three light Majorana
neutrinos is given by the well-known seesaw relation � ¼
�Y�M

�1
R YT

� , where Y� denotes the neutrino Yukawa cou-
pling matrix andMR is the right-handed Majorana neutrino
mass matrix. The light neutrino masses are therefore given
by mi ¼ �iv

2 with �i (for i ¼ 1, 2, 3) being the eigen-
values of �. Above the seesaw scale, the flavor threshold
effects induced by the masses of heavy Majorana neutrinos
have to be carefully treated and the details of Y� have to be
model-dependently assumed [31]. Hence we shall only
evaluate the running neutrino masses mi from the Fermi
scale up to the seesaw scale, in order to avoid the com-
plications and uncertainties associated with the seesaw
thresholds.

Then what we are concerned with is the evolution of four
Yukawa coupling matrices Yu, Yd, Yl and �, whose eigen-
values correspond to the masses of up-type quarks (mu,mc,
mt), down-type quarks (md, ms, mb), charged leptons (me,
m�, m
) and neutrinos (m1, m2, m3). Their one-loop RGEs

in the SM and MSSM can be found in Refs. [30,31]. The
two-loop beta functions of Yu, Yd and Yl have already been
derived in Ref. [32]. Their lengthy expressions will not be
quoted here, but they will be used in our numerical calcu-
lations. As for neutrinos, we only consider the one-loop
RGEs for their running masses because our present knowl-
edge on the absolute values of neutrino masses remain
quite limited and uncertain [11]. The strategy of computing
the running quark and lepton masses above the Fermi scale
is outlined as follows. First, we use the quark masses and
flavor mixing parameters obtained at the Fermi scale to
reconstruct the Yukawa coupling matrices Yu and Yd. Sec-
ond, the RGEs of Yu and Yd are solved and their eigen-
values are determined to give the running quark masses at
every energy scale of our interest. We may follow a similar
procedure to reconstruct Yl and � from current experimen-
tal data atMZ, and then we solve their RGEs to find out the
running lepton masses aboveMZ. Because the RGEs of Yu,
Yd, Yl, and � are more or less entangled, our numerical
calculations will be done simultaneously for quarks and
leptons.
Now that the running quark masses are to be evaluated in

the supersymmetric framework, the matching procedure
from the SM to the MSSM has to be taken into account.
The RGEs in a supersymmetric theory are usually derived
in the DR scheme based on the dimensional reduction and
the minimal subtraction [33], while the experimental data
on quark masses are extracted by using the MS scheme.
Hence the transition between these two schemes needs to
be treated in a consistent way [34,35]. To get around the
occurrence of intermediate nonsupersymmetric effective
theories, here we follow Ref. [35] to adopt the common
scale approach with all the supersymmetric particles being
roughly at a common scale ~M. In our analysis, we set the
decoupling scale to be � ¼ ~M ¼ MZ. Furthermore, the

input values of �sðMZÞ and mqðMZÞ in the MS scheme

will be converted into those in the DR scheme atMZ. First,
since the two-loop RGEs will be used above the Fermi

scale, we consider the transition of �s from theMS scheme
to the DR scheme at the one-loop level [36],

�MS
s ¼ �DR

s

�
1� �DR

s

4�

�
: (21)

Given the input value of �sðMZÞ in Eq. (20), �DR
s ðMZÞ ’

0:1187 can be obtained and will be used as the input value
in our numerical calculations. We take account of the
matching between the SM and MSSM at MZ; i.e., �

SM
s ¼

�s�
MSSM
s . In the common scale approach, the decoupling

constant approximates to �s � 1 at the one-loop level,
implying that the top quark and heavy sparticles are simul-
taneously decoupled. Second, the one-loop matching of

quark masses between the MS and DR schemes is simply
given by

1Here we follow the widely accepted and well-motivated
assumption that massive neutrinos are Majorana particles. The
RGE running effects of Dirac neutrino masses and flavor mixing
parameters have been studied in Ref. [30].
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mDR
q ¼ mMS

q

�
1� �e

3�

�
; (22)

where �e is the evanescent coupling appearing in a non-
supersymmetric theory renormalized in the DR scheme.

We have �e � �DR
s up toOð�2

sÞ [35]. It is well known that
the matching effects between the SM and MSSM are only
significant for the masses of down-type quarks and charged
leptons because of the large- tan� enhancement [37–40].
At the one-loop level, the threshold corrections read

mMSSM
i ¼ mSM

i

1þ 
i tan�
; (23)

where i ¼ d, s, b for down-type quarks or i ¼ e, �, 
 for
charged leptons, and the definitions of 
i can be found in
Refs. [39,40]. In our numerical analysis with the common
scale approach, 
i can be as large as 1%. Hence the super-
symmetric threshold corrections are particularly relevant
in the case of sizable tan� (e.g., tan� ¼ 50). It is worth
remarking that we have tried to avoid the details of any
specific supersymmetric models within the scope of this
work. If they are taken into account, however, a more care-
ful treatment of the decoupling of supersymmetric partners
will be unavoidable [37–39].

Before doing the numerical calculations, let us briefly
summarize the relevant data to be input at the Fermi scale.

(1) In the basis where the Yukawa coupling matrix Yu

is diagonal (i.e., Yu ¼ Diagfyu; yc; ytg with yq ¼
mq=v for q ¼ u, c, t), the mass eigenstates of

down-type quarks (d, s, b) are related to their
weak eigenstates (d0, s0, b0) by the unitary
Cabibbo-Kobayashi-Maskawa (CKM) matrix V

[41]. Namely, VyYdY
y
d V ¼ Diagfy2d; y2s ; y2bg with

yq ¼ mq=v for q ¼ d, s, and b. It is therefore

possible to reconstruct Yd from its eigenvalues and

V. Because quarks are Dirac particles, the CKM
matrix V can be parametrized in terms of four
independent quantities, such as the moduli of three
independent elements of V and one CP-violating
phase [42]. For example, one may choose the fol-
lowing set of parameters, which have been precisely
measured, to parametrize V at MZ [11]:

jVcbj ¼ ð41:6� 0:6Þ � 10�3;

jVusj ¼ 0:2257� 0:0021;

jVubj ¼ ð4:31� 0:30Þ � 10�3;

sin2� ¼ 0:687� 0:032;

(24)

where � � arg½�ðVcdV


cbÞ=ðVtdV



tbÞ	 is an inner

angle of the CKM unitarity triangle. We shall only
use the central values of the above parameters in our
numerical calculations, because the running quark
and lepton masses are actually insensitive to these
inputs. On the other hand, the values of quark mas-
ses at the Fermi scale have been evaluated in Sec. II
and listed in Table II.

(2) Without loss of generality, we choose the flavor
basis where the Yukawa coupling matrix Yl is di-
agonal (i.e., Yl ¼ Diagfye; y�; y
g with yl ¼ ml=v

for l ¼ e,�, 
). In this basis, the mass eigenstates of
three light Majorana neutrinos (�1, �2, �3) are
linked to their weak eigenstates (�e, ��, �
) through

the unitary Maki-Nakagawa-Sakata (MNS) matrix
U [43].2 Namely, Uy�U
 ¼ Diagf�1; �2; �3g with
�i ¼ mi=v

2 for i ¼ 1, 2, and 3. It is then easy to
reconstruct the symmetric matrix � from mi and U
at the Fermi scale. A complete parametrization of
the MNS matrix U needs three mixing angles and
three CP-violating phases [45],

U ¼
c12c13 s12c13 s13e

�i�l

�s12c23 � c12s23s13e
i�l c12c23 � s12s23s13e

i�l s23c13
s12s23 � c12c23s13e

i�l �c12s23 � s12c23s13e
i�l c23c13

0
B@

1
CA

ei	 0 0
0 ei� 0
0 0 1

0
@

1
A (25)

with cij � cos�ij and sij � sin�ij (for ij ¼ 12, 13, and
23). A global analysis of current neutrino oscillation data
yields the constraints [13]

30� < �12 < 38�; 36� < �23 < 54�; �13 < 10�

(26)

at the 99% confidence level. Three CP-violating phases �l,
	, and � remain entirely unrestricted. It has been noticed
that the running behaviors of neutrino masses are essen-
tially insensitive to three neutrino mixing angles and three
CP-violating phases in the SM or in the MSSM with small
tan� [31]. Therefore, we shall simply assume �l ¼ 	 ¼
� ¼ 0 and take the best-fit values �12 � 33:8�, �23 � 45�,
and �13 � 0� as the typical inputs at MZ. Note that the

absolute values of mi remain unknown, although their
upper bound is expected to be Oð1Þ eV. For illustration,
we only consider two possibilities in our numerical calcu-
lations: (A) the normal neutrino mass hierarchy withm1 ¼
0:001 eV and m1 <m2 � m3; and (B) the nearly degen-
erate neutrino mass spectrum with m1 ¼ 0:2 eV and m1 &
m2 & m3. The best-fit values�m

2
21 ¼ 8:0� 10�5 eV2 and

�m2
32 ¼ 2:5� 10�3 eV2 are input at MZ in both cases.

2Because the seesaw scales are assumed to be extremely
higher than the Fermi scale in this paper, U is expected to be
unitary as an excellent approximation. See, e.g., Ref. [44] for a
detailed analysis of the nonunitary neutrino mixing in the seesaw
scenarios.
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TABLE IV. Running quark and lepton masses above MZ in the SM with mH ¼ 140 GeV, where the uncertainties of mfð�Þ result from those of mfðMZÞ. Here we have used
�GUT ¼ 2� 1016 GeV. Case A and case B represent two different neutrino mass patterns with m1ðMZÞ ¼ 0:001 eV and m1ðMZÞ ¼ 0:2 eV, respectively.

� ¼ MZ � ¼ 1 TeV � ¼ 109 GeV � ¼ 1012 GeV � ¼ �GUT

muð�Þ (MeV) 1:27þ0:50
�0:42 1:10þ0:43

�0:37 0:67þ0:27
�0:23 0:58þ0:24

�0:20 0:48þ0:20
�0:17

mdð�Þ (MeV) 2:90þ1:24�1:19 2:50þ1:08
�1:03 1:56þ0:69

�0:65 1:34þ0:60
�0:56 1:14þ0:51

�0:48

msð�Þ (MeV) 55þ16
�15 47þ14�13 30þ9

�8 26þ8
�7 22þ7

�6

mcð�Þ (GeV) 0:619� 0:084 0:532þ0:074
�0:073 0:327þ0:048

�0:047 0:281þ0:042
�0:041 0:235þ0:035

�0:034

mbð�Þ (GeV) 2:89� 0:09 2:43� 0:08 1:42� 0:06 1:21� 0:05 1:00� 0:04
mtð�Þ (GeV) 171:7� 3:0 150:7� 3:4 99:1þ4:0

�3:8 86:7þ4:0
�3:8 74:0þ4:0

�3:7

með�Þ (MeV) 0:486 570 161� 0:000 000 042 0:495 901 601� 0:000 000 043 0:501 014 122� 0:000 000 043 0:490 856 087þ0:000 000 042
�0:000 000 043 0:469 652 046� 0:000 000 041

m�ð�Þ (MeV) 102:718 135 9� 0:000 009 2 104:688 064 5þ0:000 009 4
�0:000 009 3 105:767 356 2þ0:000 009 5

�0:000 009 4 103:622 931 1þ0:000 009 2
�0:000 009 3 99:146 622 6� 0:000 008 9

m
ð�Þ (MeV) 1746:24þ0:20
�0:19 1779:74� 0:20 1798:11þ0:21

�0:20 1761:67� 0:20 1685:58� 0:19

Case A

m1ð�Þ (eV) 0.001 0.001 0.001 0.001 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 9:1� 10�5 1:3� 10�4 1:5� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:9� 10�3 4:2� 10�3 4:6� 10�3 � � �
Case B

m1ð�Þ (eV) 0.20 0.21 0.26 0.27 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 9:1� 10�5 1:3� 10�4 1:5� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:9� 10�3 4:2� 10�3 4:6� 10�3 � � �

Z
H
I-Z

H
O
N
G

X
IN

G
,
H
E
Z
H
A
N
G
,
A
N
D

S
H
U
N

Z
H
O
U

P
H
Y
S
IC
A
L
R
E
V
IE
W

D
7
7
,
1
1
3
0
1
6
(2
0
0
8
)

1
1
3
0
1
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TABLE V. Running quark and lepton masses above MZ in the MSSM with tan� ¼ 10, where the matching effect between the MS and MSSM and the MS-to- DR transition
effect on the input parameters at MZ have been taken into account.

� ¼ MZ � ¼ 1 TeV � ¼ 109 GeV � ¼ 1012 GeV � ¼ �GUT

muð�Þ (MeV) 1:27þ0:50
�0:42 1:15þ0:45

�0:38 0:75þ0:30
�0:25 0:62þ0:26

�0:21 0:49þ0:20
�0:17

mdð�Þ (MeV) 2:90þ1:24�1:19 2:20þ0:96
�0:91 1:21þ0:54

�0:51 0:96þ0:43
�0:40 0:70þ0:31

�0:30

msð�Þ (MeV) 55þ16
�15 42� 12 23� 7 18þ6

�5 13� 4
mcð�Þ (GeV) 0:619� 0:084 0:557þ0:077

�0:076 0:363þ0:053
�0:052 0:303þ0:046

�0:045 0:236þ0:037
�0:036

mbð�Þ (GeV) 2:89� 0:09 2:23� 0:08 1:30� 0:05 1:05� 0:05 0:79� 0:04
mtð�Þ (GeV) 171:7� 3:0 161:0þ3:7

�3:6 125:2þ7:1
�6:5 111:0þ8:5

�7:4 92:2þ9:6
�7:8

með�Þ (MeV) 0:486 570 161� 0:000 000 042 0:418 436 115� 0:000 000 036 0:358 332 424� 0:000 000 031 0:327 996 884þ0:000 000 028
�0:000 000 029 0:283 755 495þ0:000 000 024

�0:000 000 025

m�ð�Þ (MeV) 102:718 135 9� 0:000 009 2 88:334 701 8� 0:000 007 9 75:646 853 8� 0:000 006 8 69:242 937 7� 0:000 006 2 59:903 361 7� 0:000 005 4
m
ð�Þ (MeV) 1746:24þ0:20

�0:19 1502:25� 0:17 1288:68� 0:15 1180:38þ0:13
�0:14 1021:95þ0:11

�0:12

Case A

m1ð�Þ (eV) 0.001 0.001 0.001 0.001 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 8:7� 10�5 1:0� 10�4 1:0� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:7� 10�3 3:3� 10�3 3:1� 10�3 � � �
Case B

m1ð�Þ (eV) 0.20 0.21 0.23 0.22 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 9:1� 10�5 1:5� 10�4 1:6� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:7� 10�3 3:3� 10�3 3:2� 10�3 � � �

U
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D
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E
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N
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K
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TABLE VI. Running quark and lepton masses above MZ in the MSSM with tan� ¼ 50, where the matching effect between the MS and MSSM and the MS-to- DR transition
effect on the input parameters at MZ have been taken into account.

� ¼ MZ � ¼ 1 TeV � ¼ 109 GeV � ¼ 1012 GeV � ¼ �GUT

muð�Þ (MeV) 1:27þ0:50
�0:42 1:15þ0:45

�0:38 0:75þ0:31
�0:26 0:62þ0:26

�0:22 0:48þ0:21
�0:17

mdð�Þ (MeV) 2:90þ1:24�1:19 1:51þ0:67
�0:63 0:86þ0:39

�0:36 0:69þ0:31
�0:29 0:51þ0:23

�0:22

msð�Þ (MeV) 55þ16
�15 29þ9

�8 16� 5 13� 4 10� 3
mcð�Þ (GeV) 0:619� 0:084 0:557þ0:077

�0:076 0:364þ0:054
�0:053 0:304þ0:046

�0:045 0:237þ0:037
�0:036

mbð�Þ (GeV) 2:89� 0:09 1:54� 0:06 0:96� 0:05 0:79þ0:05
�0:04 0:61� 0:04

mtð�Þ (GeV) 171:7� 3:0 161:3� 3:7 127:0þ7:4
�6:7 113:2:4þ8:9

�7:7 94:7þ10:3
�8:4

með�Þ (MeV) 0:486 570 161� 0:000 000 042 0:286 562 894� 0:000 000 025 0:254 747 607� 0:000 000 022 0:235 672 689þ0:000 000 021
�0:000 000 020 0:206 036 051� 0:000 000 018

m�ð�Þ (MeV) 102:718 135 9� 0:000 009 2 60:496 141 3� 0:000 005 4 53:783 482 3� 0:000 004 8 49:757 752 8þ0:000 004 5
�0:000 004 4 43:502 030 5� 0:000 003 9

m
ð�Þ (MeV) 1746:24þ0:20
�0:19 1032:61� 0:12 937:72� 0:11 875:31� 0:11 773:44� 0:10

Case A

m1ð�Þ (eV) 0.001 0.001 0.001 0.001 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 8:7� 10�5 1:1� 10�4 1:0� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:7� 10�3 3:3� 10�3 3:2� 10�3 � � �
Case B

m1ð�Þ (eV) 0.20 0.21 0.23 0.23 � � �
�m2

21ð�Þ (eV2) 8:0� 10�5 1:7� 10�4 7:1� 10�4 8:3� 10�4 � � �
�m2

32ð�Þ (eV2) 2:5� 10�3 2:7� 10�3 3:8� 10�3 4:1� 10�3 � � �
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This simplified treatment can easily be improved in the
future, once more experimental data on mi and U are
available.

(3) In the SM orMSSMwith the gauge group SUð3ÞC �
SUð2ÞL �Uð1ÞY, three gauge couplings gs, g, and
g0 are given by

g2s ¼ 4��s; g2 ¼ 4��=sin2�W;

g0 ¼ g tan�W;
(27)

where �W is the weak mixing angle. In the SU(5)
GUTs with or without supersymmetry, the gauge

coupling constants g1, g2, and g3 are usually nor-
malized as g3 ¼ gs, g2 ¼ g, and g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0. The

RGEs of gi (for i ¼ 1, 2, 3) are given in Ref. [32].
The input parameters include [11]

sin 2�WðMZÞ ¼ 0:231 22� 0:000 15; (28)

as well as �sðMZÞ and �ðMZÞ given in Eq. (20).
Besides the gauge couplings, the quartic Higgs
coupling � ¼ 2m2

H=v
2 in the SM is also needed in

our calculations. The RGE of � can be found in
Ref. [32]. We shall typically take mH ¼ 140 GeV
for the Higgs mass, just for the sake of illustration.

FIG. 1 (color online). The scale dependence of three neutrino
masses m1 (solid line), m2 (dashed line), and m3 (dotted line) in
the case of a normal mass hierarchy with m1ðMZÞ ¼ 0:001 eV
and m1 <m2 � m3.

FIG. 2 (color online). The scale dependence of three neutrino
masses m1 (solid line), m2 (dashed line), and m3 (dotted line) in
the case of a nearly degenerate mass hierarchy with m1ðMZÞ ¼
0:2 eV and m1 ’ m2 ’ m3.
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In the MSSM, the free parameter tan� is defined as
tan� ¼ vu=vd with vd and vu being the vacuum
expectation values of the Higgs fields which couple,
respectively, to the down- and up-type quarks. Note
that v2 ¼ v2

d þ v2
u ¼ 4M2

W=g
2 � ð246 GeVÞ2 has

been fixed by the measurements of the W-boson
mass and the electroweak gauge coupling. To be
specific, we shall input tan� ¼ 10 and tan� ¼ 50
to illustrate the running fermion masses in the cases
of small and large tan�.

With the help of the above inputs, we are then able to
numerically solve the RGEs and obtain the running masses
of quarks and leptons at various energies above the Fermi
scale.

Our numerical results at � ¼ 1 TeV, 109 GeV,
1012 GeV, and �GUT � 2� 1016 GeV are summarized in
Tables IV, V, and VI, where the uncertainties of the output
masses mainly come from those of the input masses atMZ.
Some brief comments on these results are in order.

(i) In both the SM and the MSSM, a common feature of
the outputs is that all the quark masses decrease with
increasing energy scales. Nevertheless, their run-
ning behaviors are quite model dependent.

(ii) Tables IV and VI show that there exists a maxi-
mum for the running mass of each charged lepton
in the SM. Our numerical analysis indicates that the
maximal values of me, m�, and m
 are all located

around�� 106 GeV. In the MSSM, however, three
charged-lepton masses smoothly decrease as the
energy scale increases.

(iii) We have ignored large uncertainties of the input
values in evaluating the running masses of three
light neutrinos, just because the relevant experi-
mental data are quite inaccurate and incomplete.
Our numerical results, which rely on several as-
sumptions made above, can only serve for illustra-
tion. We show the scale dependence of running
neutrino masses in Figs. 1 and 2 for two different
mass spectra. Comparing between these two fig-

ures, we observe that the RGE effects on neutrino
masses are more significant in the m1 & m2 & m3

case than in the m1 <m2 � m3 case. Similar ob-
servations have been made by a number of authors
before (see, e.g., Ref. [31]).

Note that the running behaviors of other parameters, such
as the CKM and MNS mixing angles, CP-violating phases
and gauge coupling constants, can be obtained from our
program in a straightforward way. But here we only con-
centrate on the outputs of running quark and lepton masses.

IV. SUMMARY

In this paper, we have updated the running masses of
quarks and leptons both in the SM and in the MSSM at
various energy scales, including� ¼ MZ, 1 TeV, 10

9 GeV,
1012 GeV, and �GUT. Our motivation is simple but mean-
ingful: we want to provide a reliable and up-to-date table of
the running quark and lepton masses for particle physicists.
Such a table will be very useful for the analysis of hadronic
physics at low energies and for the building of new physics
models at superhigh energies.
The differences between our work and the previous

works (in particular, Ref. [10]) have been summarized in
the introductory section of this paper. For instance, the
central value of the strange quark mass ms at MZ is about
55 MeV today, but it was about 93 MeV as given in
Ref. [10] about a decade ago. Hence it makes sense to
recalculate the values of ms and other fermion masses at
different energy scales. In particular, we hope that our new
results for the running masses of leptons and quarks may
help the model builders to get new insight into the flavor
dynamics at the energy frontier set by the LHC and in the
exciting era of precision neutrino physics.
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