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Various decay processes, such as the decay of a spin-1 particle into two photons or the gravitational

decay of a spin-1=2 fermion, are forbidden in the vacuum by a combination of requirements, including

angular momentum conservation, Lorentz invariance, and gauge invariance. We show that such processes

can occur in a medium, such as a thermal background of particles, even if it is homogeneous and isotropic.

We carry out a model-independent analysis of the vertex function for such processes in terms of a set of

form factors, and show that the amplitude can be nonzero while remaining consistent with the symmetry

principles mentioned above. The results simulate Lorentz symmetry violating effects, although in this case

they arise from completely Lorentz-invariant physics.
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I. INTRODUCTION

It is well known that the rates of physical process that
occur in a medium are modified by the coherent interac-
tions with the background particles. It is also now well
known that a medium can induce effects that are not
present in the vacuum. For example, in a medium, a chiral
fermion can obtain an effective mass [1,2], or a Majorana
fermion can acquire electric and magnetic dipole moments
[3,4], all of which are forbidden in the vacuum. Many other
similar effects have been considered in the literature [5]. In
general, when the particles propagate through a medium,
their properties and interactions are modified such that
some processes that are forbidden in the vacuum can be
induced by the effects of the medium.

For our purposes, we can divide such processes in two
classes. Some processes are forbidden in the vacuum for
kinematical reasons. That is, although the off-shell transi-
tion matrix element is nonzero, the process is forbidden for
on-shell particles because of energy-momentum conserva-
tion. However, in the presence of a medium, the dispersion
relations of the particles are modified and those processes
can occur. For example, a free electron cannot radiate a
photon in the vacuum, but in a medium the dispersion
relation of the photon makes the Čerenkov radiation pos-
sible. Another example is provided by plasmon decay
process � ! eþe�. In the vacuum, it is forbidden due to
the masslessness of the photon, but the fact that the photon
dispersion relation is modified in the medium makes the
process possible. We will not be concerned with this class
of processes here.

The other class of processes are those for which the
transition matrix element itself is zero in the vacuum.
Invariably, whenever that occurs it can be attributed to
some conservation laws, which in turn are consequences

of the symmetries of the Lagrangian. It is common to refer
to such processes as being forbidden. However, in general,
a medium is not invariant under the full symmetry group of
the Lagrangian. As a consequence, the corresponding tran-
sition elements can be nonzero when the effects of the
background are included. Thus, for example, the electric
and magnetic dipole moments of a Majorana fermion can
be nonzero in a medium that is CPT-asymmetric [3,4].
A particular subset of the processes in this second class,

which are the focus of this paper, are those which are
forbidden in the vacuum by helicity arguments, or angular
momentum conservation. Consider, for example, the am-
plitude for the decay of a spin-0 particle into another spin-0
particle and a photon. In the vacuum, the conservation of
angular momentum prevents such processes which, in a
more general form, is the statement that electromagnetic
interactions cannot take a J ¼ 0 state to another J ¼ 0
state. However, the presence of a medium necessarily
breaks the Lorentz symmetry and, in particular, it breaks
the isotropy of the three-dimensional space that is respon-
sible for the conservation law that prevents this process
from occurring in the vacuum. As a result, if the transition
matrix element is calculated taking into account the pres-
ence of the background, it will not be zero.
This can be seen in various ways. The medium defines a

preferred frame in which all analysis can be performed,
namely, the frame in which the medium is at rest. If we
commit ourselves to this frame and carry out the calcula-
tions with respect to this frame, then the expressions for the
transition matrix elements are not restricted by Lorentz
invariance, and the terms that are absent in the vacuum can
appear. Alternatively, if the particle is propagating through
the medium, then in the decaying particle’s own rest frame
the medium is seen as moving with some velocity and this,
again, breaks the isotropy of the three-dimensional space.
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More generally, we can adopt a completely Lorentz-
invariant approach by performing the calculation in an
arbitrary frame. The medium is then characterized by the
temperature and chemical potentials of the background
particles, and by the velocity four-vector of its center of
mass, v�. If the particle is at rest in the medium, then v� is
proportional to the particle’s momentum vector p� instead
of being an independent vector. Therefore, since the am-
plitude does not depend on any additional vectors apart
from the momentum or spin or any other vectors that might
characterize the initial and final states, the obstructions that
apply in the vacuum continue to hold and the amplitude is
zero. However, when the particle propagates through the
medium, the amplitude in general depends on v� in addi-
tion to the various vectors characterizing the initial and
final particles, which invalidates the symmetry argument
based on the isotropy of the three-dimensional space.

In what follows, we adopt the latter point of view. We
consider various decay processes which are forbidden in
the vacuum by angular momentum conservation and/or
helicity arguments. Specifically, we consider the radiative
decay of a spin-0 particle into another spin-0 particle, the
decay of a spin-1 particle into two photons, the gravita-
tional decay of a spin-0 particle into another spin-0 particle
and the gravitational decay of a spin-1=2 particle into
another spin-1=2 particle. In the next sections we review
in each case the arguments that show that the amplitude for
the process in the vacuum vanishes, and then we demon-
strate that the amplitude need not vanish if the process
occurs in a medium. In general, the presence of the me-
dium affects the dispersion relations of the particles ap-
pearing in the process. However, although those effects
may be important for the calculations of the rates in
specific applications, they are not essential to the argu-
ments. Although analogous treatments can be given for
more complicated processes, we have restricted ourselves
to the two-body decay processes mentioned above, which
are straightforward to analyze and for which the explicit
calculations of the transition amplitudes are simpler. In all
our considerations, we assume that the medium is isotropic
and that it can be parametrized in the manner indicated
above. The last section contains our conclusions.

II. RADIATIVE DECAY OFA SPIN-0 PARTICLE
INTO ANOTHER SPIN-0 PARTICLE

We first consider a process of the form

�ðpÞ ! �0ðp0Þ þ �ðqÞ; (2.1)

where � and �0 denote scalar (spin 0) particles, � denotes
the photon, and p, p0, and q denote the corresponding
momentum vectors.

We denote by j� the off-shell electromagnetic vertex,
which is defined such that the on-shell amplitude for the
process is given by

M ¼ ���ðqÞj�; (2.2)

where

q ¼ p� p0 (2.3)

is the photon momentum and ��ðqÞ is the photon polar-
ization vector, which satisfies

q���ðqÞ ¼ 0: (2.4)

For electrically neutral scalar particles, the gauge invari-
ance condition implies that

q�j� ¼ 0; (2.5)

for any values of p� and p0�. For charged particles, the
condition is required to hold only when j� is evaluated for
p and p0 satisfying the on-shell condition.
Strictly speaking the on-shell conditions in the vacuum

and the medium differ. In the vacuum the on-shell con-
ditions for p, p0 are

p2 ¼ M2; p02 ¼ M02; (2.6)

where M and M0 are the masses of the particles. The
analogous conditions in the medium are

p2 ¼ �ðpÞ; p02 ¼ �0ðp0Þ; (2.7)

where�ðpÞ and�0ðp0Þ are the thermal self-energies, which
depend on the background medium. As is well known, the
situation for the photon is different depending on whether
we are considering the vacuum or the background medium.
In the vacuum the two transverse modes of the photon
satisfy

q2 ¼ 0: (2.8)

In the medium, the conditions are

q2 ¼ ��ðqÞ; (2.9)

where the photon self-energy depends on the polarization
(�) of the photon mode.
However, as we will see, neither the details of the

dispersion relations, nor the fact that the dispersion rela-
tions are different in the medium and the vacuum situation
are essential to show that the amplitude in the medium does
not vanish in general. Thus, for example, the form that we
obtain for the amplitude continues to be valid in the case
that the photon dispersion relations in the medium are
essentially the same as in the vacuum.

A. In the vacuum

In the vacuum, conservation of angular momentum pre-
vents such processes, as mentioned in the Introduction. Let
us demonstrate how the result follows, in a manner that will
be helpful for analyzing the corresponding case in a mate-
rial medium.
We take p� and q� as the independent momentum

variables, using Eq. (2.3) to eliminate p0 in favor of
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them. Then the vertex function is of the form

j� ¼ a1p
� þ a2q

�; (2.10)

where the coefficients a1;2 are scalar functions of p and q.
In this form, Eq. (2.5) implies that

a1p � qþ a2q
2 ¼ 0: (2.11)

Since we are considering the vertex function for a transi-
tion amplitude, the fact there is no tree-level electromag-
netic coupling between � and �0 implies that the vertex
function is not singular as q ! 0, and therefore a and b
must be of the form

a1 ¼ �q2a3; a2 ¼ ðp � qÞa3; (2.12)

which in turn implies that

j� ¼ a3½p � qq� � q2p��; (2.13)

with some undetermined scalar function a3. Thus the on-
shell amplitude, which is calculated with the conditions
given in Eqs. (2.4) and (2.8), is zero.

B. In a medium

Let us now consider the same process in a background
medium. For our purpose, the crucial difference from the
vacuum case is that in this case the vertex function j�

depends also on the velocity four-vector v� of the medium,
and therefore its most general form is

j� ¼ a0v
� þ a1p

� þ a2q
� þ a3s�; (2.14)

where

s� � �����p
�q�v�: (2.15)

The transversality condition of Eq. (2.5) now implies

a0q � vþ a1p � qþ a2q
2 ¼ 0: (2.16)

Solving for a1 and substituting the result in Eq. (2.14)
yields

j� ¼ a0

�
v� � q � v

p � qp
�

�
þ a2

�
q� � q2

p � qp�

�
þ a3s�:

(2.17)

Using Eq. (2.4), it follows that the amplitude is

M ¼
�

1

p � q
�
F�
�	v

�p	 � a2

�
q2

p � q
�
�� � p

þ a3 ~F
�
�	v

�p	: (2.18)

In writing Eq. (2.18), we have introduced the notation

F�	 ¼ ��q	 � q��	 (2.19)

and its dual

~F �	 ¼ 1
2��	��F

��: (2.20)

While in general q2 � 0 for an on-shell photon mode in
a medium, there could be situations in which it is actually
negligible. In such cases the term proportional to a2 is zero,
but even then the a0;3 terms survive.

Thus, in any case the amplitude is not necessarily zero,
and therefore the process of Eq. (2.1) can occur in a
medium. Written as in Eq. (2.18), it also reveals why this
is so. The on-shell amplitude should ultimately contain the
factor F�	. In the case of the vacuum, there is no antisym-

metric tensor, constructed out of the available independent
vectors p and q, that gives a nonzero value when con-
tracted with F�	 to produce a scalar amplitude. In the case

of the medium, there is one such tensor, as Eq. (2.18)
shows. If the particle is at rest in the medium, so that p�

and v� are parallel, then the amplitude is zero. This is not
unexpected since in that case, in the rest frame of the
particle the three-dimensional space is isotropic and the
angular momentum conservation argument holds again.
But if the particle is moving through the medium, then in
its rest frame the three-dimensional space is not isotropic
since there the medium is seen moving with some velocity,
and therefore the angular momentum conservation argu-
ment cannot be applied and the process is not forbidden. In
addition, the process can occur for charged as well as
electrically neutral scalar particles.

III. DECAY OFA SPIN-1 PARTICLE INTO
TWO PHOTONS

Here consider the process

VðkÞ ! �ðqÞ þ �ðq0Þ; (3.1)

where V denotes a massive spin-1 particle. We denote the
vertex function by ����0 ðq; q0Þ in the vacuum case, or

����0 ðq; q0; vÞ in the presence of the medium, which is

such that the amplitude for the process in any case is given
by

M ¼ ���ðqÞ���0 ðq0Þ����0"�ðkÞ; (3.2)

where ��ðqÞ is the polarization vector for a photon with
momentum q, while "�ðkÞ is the corresponding quantity
for the V particle. In analogy with the photon polarization
vector, "�ðkÞ satisfies

k � "ðkÞ ¼ 0: (3.3)

Since all the particles involved in the process are electri-
cally neutral, electromagnetic gauge invariance implies
that

q�����0 ¼ 0; (3.4)

q0�0
����0 ¼ 0; (3.5)

for any values of q and q0, in the vacuum as well as in the
medium. In addition the Bose symmetry under the ex-
change of the two photons implies that the vertex function
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satisfies

����0 ðq; q0Þ ¼ ���0�ðq0; qÞ;
����0 ðq; q0; vÞ ¼ ���0�ðq0; q; vÞ;

(3.6)

in the vacuum or in the medium, respectively. In what
follows we apply these conditions to the quantity

���0 � ����0"�ðkÞ; (3.7)

taking the V-boson on-shell, as indicated, while maintain-
ing the photons off-shell.

A. In the vacuum

As is well-known, the decay represented in Eq. (3.1) is
forbidden in the vacuum by the combination of angular
momentum conservation and the Bose symmetry between
the two photons, a result known as Yang’s theorem [6].
Here we review that result in a way that will help to see
how the theorem is evaded in the presence of the medium.
The most general form of the vertex function allowed by
Lorentz invariance can be read off from an earlier paper
[7],

����0 ðq; q0Þ ¼ a1ðq� q0Þ�
��0 þ ða2q� þ a02q
0
�Þ
��0 þ ða3q�0 þ a03q

0
�0 Þ
��

þ ðq� q0Þ�ðb1q�q�0 þ b01q
0
�q

0
�0 þ b2q

0
�q�0 þ b02q�q

0
�0 Þ þ c0ðq� q0Þ�½qq0���0

þ ðc1q� þ c01q
0
�Þ½qq0���0 þ ðc2q�0 þ c02q

0
�0 Þ½qq0���; (3.8)

where 
�	 is the Minkowski metric tensor, and we have
used the shorthand notation

½qq0���0 ¼ "��0��q
�q0�: (3.9)

In writing Eq. (3.8), and in what follows, it should be
understood that we are considering the quantity defined
in Eq. (3.7), and therefore we omit any term that does not
contribute to that quantity. Thus, we have avoided the
combination ðqþ q0Þ� because it vanishes when it is con-
tracted with "�ðkÞ. Some other possibilities, like "���0�q

�

and "���0�q
0�, have been omitted since they are not inde-

pendent [7], as can be seen by contracting the identity

g��"���� � g��"���� � g��"����

� g��"���� � g��"���� ¼ 0 (3.10)

with various combinations of q and q0.
We now apply the transversality conditions stated in

Eqs. (3.4) and (3.5). First of all, they imply

a2 ¼ a02 ¼ a3 ¼ a03 ¼ 0; (3.11)

and for the other form factors they yield the following
relations:

a1 þ b1q
2 þ b2q � q0 ¼ 0;

a1 þ b01q
02 þ b2q � q0 ¼ 0;

b1q � q0 þ b02q02 ¼ 0;

b01q � q0 þ b02q2 ¼ 0;

c1q
2 þ c01q � q0 ¼ 0;

c2q � q0 þ c02q02 ¼ 0:

(3.12)

These can be solved, without introducing singularities, by
writing

a1 ¼ B1q
2q02 � b2q � q0; b1 ¼ �B1q

02;

b01 ¼ �B1q
2; b02 ¼ B1q � q0; c1 ¼ C1q � q0;

c01 ¼ �C1q
2; c2 ¼ �C2q

02; c02 ¼ C2q � q0;
(3.13)

and substituting these back in Eq. (3.8) then yields

����0 ðq; q0Þ ¼ ðq� q0Þ�½B1g
��ðq2
�� � q�q�Þðq02
�0� � q0�0q0�Þ þ b2ðq0�q�0 � q � q0
��0 Þ þ c0½qq0���0 �

þ C1ðq � q0q� � q2q0�Þ½qq0���0 þ C2ðq � q0q0�0 � q02q�0 Þ½qq0���: (3.14)

Bose symmetry implies a relationship between C1 and
C2. However, the terms with the coefficients B1,C1, andC2

do not contribute to the on-shell amplitude given in
Eq. (3.2), and we need not consider them further.
Regarding the other terms, recall that the form factors are
functions only of the scalar invariants q2 and q02, since the
other invariant, q � q0, is not independent due to the on-
shell condition for the V-boson. The Bose symmetry con-
dition, which requires that b2 and c0 are odd under the
interchange of the two photon momenta, is then

b2ðq2; q02Þ ¼ �b2ðq02; q2Þ; (3.15)

and similarly for c0. In particular, this implies that
b2ð0; 0Þ ¼ c0ð0; 0Þ ¼ 0 for on-shell photons, proving
Yang’s theorem.

B. In a medium

In this case, the presence of the vector v� allows us to
enumerate all the possible terms in a more compact way.
This is accomplished by introducing the following vectors,

n� ¼ "����v
�q�q0�; t� ¼ "����n

�q�q0�; (3.16)

complemented by the following combinations of q and q0,
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r� � q2q0� � ðq � q0Þq�; r0� � q02q� � ðq � q0Þq0�:
(3.17)

Notice that the vector n�, which is analogous to the vector

s� defined in Eq. (2.15), as well as t� are orthogonal to

both q� and q0�, while r� and r0� are such that

r � q ¼ r0 � q0 ¼ 0: (3.18)

In addition, the set of vectors

AðaÞ
� ¼ fr�; r0�; n�; t�g ða ¼ 1; 2; 3; 4Þ; (3.19)

are linearly independent in general, and they span the four-
dimensional Minkowski space. Therefore, like any rank-3
tensor, ����0 can be expressed in the form

����0 ðq; q0; vÞ ¼ X
abc

TabcA
ðaÞ
� AðbÞ

� AðcÞ
�0 ; (3.20)

but in this case the transversality conditions imply that
certain terms in this expression for ����0 are actually

absent. The electromagnetic transversality conditions

given in Eqs. (3.4) and (3.5) imply that AðbÞ
� and AðcÞ

�0 can

take values only from the subsets fr�; n�; t�g and
fr0�0 ; n�0 ; t�0 g, respectively. Moreover, if we consider the

V to be on-shell [i.e., Eq. (3.7)], then the combination ðqþ
q0Þ� does not contribute and we need to keep only one

combination of r� and r0� which we take as ðq� q0Þ�. We

express all this by writing

"�ðkÞ����0 ðq; q0; vÞ ¼ "�ðkÞX
abc

Tabcfðq� q0Þ�; t�; n�gðaÞ

� fr�; t�; n�gðbÞfr0�0 ; t�0 ; n�0 gðcÞ;
(3.21)

which is the most general form for the vertex function with
the V on-shell. For on-shell photons the terms with r� and/
or r0�0 give no contribution, and the physical amplitude is

"�ðkÞ���ðqÞ���0 ðq0Þ����0 ðq; q0; vÞ
¼ "�ðkÞ���ðqÞ���0 ðq0Þ �X

abc

T̂abcfðq� q0Þ�; t�; n�gðaÞ

� ft�; n�gðbÞft�0 ; n�0 gðcÞ: (3.22)

This contains 12 form factors, and while Bose symmetry
implies certain relations between them, unlike the case in
the vacuum the form factors need not vanish as a conse-
quence of this. The reason can be understood by looking at

T̂111 as an example. Bose symmetry implies that it is
antisymmetric under the interchange of the two momenta.
However, instead of Eq. (3.15), in the present case that
condition is

T̂ 111ðq2; q02; q � v; q0 � vÞ ¼ �T̂111ðq02; q2; q0 � v; q � vÞ;
(3.23)

where we have indicated explicitly the dependence on the

various independent scalar variables. For on-shell photons
this yields the relation

T̂ 111ð��ðqÞ; ��0 ðq0Þ; q � v; q0 � vÞ
¼ �T̂111ð��0 ðq0Þ; ��ðqÞ; q0 � v; q � vÞ; (3.24)

which due to the fact that in general ��0 ðq0Þ � ��ðqÞ as
well as the additional dependence on the variables q � v
and q0 � v, does not imply that the on-shell form factor
vanishes. Notice that the same conclusion holds even if the
vacuum dispersion relations q2 ¼ 0 and q02 ¼ 0were to be
used. In general, therefore, the amplitude for the two-
photon decay of a spin-1 particle in a medium does not
vanish, as it was also pointed out in Ref. [8].

IV. GRAVITATIONAL DECAY OFA SPIN-0
PARTICLE INTO ANOTHER SPIN-0 PARTICLE

In this section, we consider the process

�ðpÞ ! �0ðp0Þ þGðqÞ; (4.1)

where � and �0 denote scalars as before, and G denotes a
graviton. We denote by t�	 the off-shell gravitational
vertex, which is symmetric and defined such that the on-
shell amplitude for the process is given by

M ¼ ���	ðqÞt�	; (4.2)

where ��	 is the graviton polarization tensor, which sat-
isfies the relations

��	 ¼ �	�; (4.3)

q	��	ðqÞ ¼ 0; (4.4)


�	��	 ¼ 0; (4.5)

where 
�	 is the Minkowski metric as before.

Gravitational gauge invariance implies the transversality
conditions

q�t�	 ¼ q�t	� ¼ 0; (4.6)

but in contrast to Eq. (2.5), this is required to hold only for
on-shell values of p and p0.

A. In the vacuum

In the vacuum, we can consider t�	 as a function p
� and

q� and write it in the form

t�	 ¼ a0
�	 þ a1p�p	 þ a2q�q	 þ a3fpqg�	; (4.7)

where the coefficients ai are scalar functions of p and q
and

fp1p2g�	 � p1�p2	 þ p2�p1	; (4.8)

for any two vectors p1;2. In this form, Eq. (4.6) then implies

the relations
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a0 þ a2q
2 þ a3p � q ¼ 0; a1p � qþ a3q

2 ¼ 0:

(4.9)

Taking into account the fact there is no tree-level gravita-
tional coupling between � and �0, which implies that the
vertex function is not singular as q ! 0, we solve these
relations by setting

a0 ¼ �a2q
2 � a3p � q; a1 � �a4q

2;

a3 ¼ a4p � q; (4.10)

which give

t�	 ¼ a2ðq�q	 � q2
�	Þ þ a4ððp � qÞfpqg�	

� q2p�p	 � ðp � qÞ2
�	Þ: (4.11)

The parameters a2;4 remain undetermined, but once again,

the on-shell graviton amplitude, which is calculated with
the conditions given in Eqs. (4.4) and (2.8), is zero.

B. In a medium

In analogy with the photon case the vertex function in
this case depends also on v�, and we now write

t�	ðp; q; vÞ ¼ a0
�	 þ a1p�p	 þ a2q�q	 þ a3fpqg�	

þ a4v�v	 þ a5fpvg�	 þ a6fqvg�	

þ b1fpsg�	 þ b2fvsg�	 þ b3fqsg�	;

(4.12)

where s� has been defined in Eq. (2.15). The transversality
condition yields the following relations,

a0 þ q2a2 þ ðp � qÞa3 þ ðq � vÞa6 ¼ 0;

ðp � qÞa1 þ q2a3 þ ðq � vÞa5 ¼ 0;

ðq � vÞa4 þ ðp � qÞa5 þ q2a6 ¼ 0;

ðp � qÞb1 þ ðq � vÞb2 þ q2b3 ¼ 0;

(4.13)

which we use to eliminate a0;1;4 and b1 in favor of the

others, and in this way we arrive at

t�	ðp; q; vÞ ¼ a2ðq�q	 � q2
�	Þ þ a3

�
fpqg�	 � ðp � qÞ
�	 �

�
q2

p � q
�
p�p	

�

þ a5

�
fpvg�	 �

�
p � q
q � v

�
v�v	 �

�
q � v
p � q

�
p�p	

�
þ a6

�
fqvg�	 � ðq � vÞ
�	 �

�
q2

q � v
�
v�v	

�

þ b2

�
fvsg�	 �

�
q � v
p � q

�
fpsg�	

�
þ b3

�
fqsg�	 �

�
q2

p � q
�
fpsg�	

�
: (4.14)

For an on-shell graviton, neglecting the effects of the
medium on the graviton dispersion relation, the terms
proportional to a2;3;6 and b3 vanish, but the terms with
the coefficient a5 and b2 give a nonvanishing contribution
to the amplitude,

M¼ a5�
��	ðqÞ

�
fpvg�	 �

�
p � q
q �v

�
v�v	 �

�
q �v
p � q

�
p�p	

�

þ b2�
��	ðqÞ

�
fvsg�	 �

�
q �v
p � q

�
fpsg�	

�
: (4.15)

V. GRAVITATIONAL DECAY OFA SPIN-1=2
PARTICLE INTO ANOTHER SPIN-1=2 PARTICLE

We denote by ��	ðp; qÞ the off-shell gravitational vertex
function, which is defined such that the amplitude for the
process

fðpÞ ! f0ðp0Þ þ GðqÞ; (5.1)

is given by

M ¼ ���	 �uf0 ðp0Þ��	ufðpÞ: (5.2)

The vertex function ��	 is symmetric in its indices, and

gravitational gauge invariance implies that it satisfies the

transversality conditions

q� �uf0 ðp0Þ��	ufðpÞ ¼ q� �uf0 ðp0Þ�	�ufðpÞ ¼ 0: (5.3)

In order to write down the general form of the matrix
element �uf0 ðp0Þ��	ufðpÞ we introduce its tensor and pseu-
dotensor components by writing

�u f0 ðp0Þ��	ufðpÞ ¼ �uf0 ðp0Þ½�ðTÞ
�	 þ �ðPÞ

�	�5�ufðpÞ: (5.4)

The transversality condition then implies that

q	 �uf0 ðp0Þ�ðiÞ
�	ufðpÞ ¼ 0; (5.5)

for i ¼ T, P independently.

A. In the vacuum

With the understanding that the expression �ðTÞ
�	 þ

�ðPÞ
�	�5 is sandwiched between the spinors, the most general

form of each of the components �ðT;PÞ
�	 is

�ðiÞ
�	 ¼ aðiÞ0 
�	 þ aðiÞ1 p�p	 þ aðiÞ2 q�q	 þ aðiÞ3 fpqg�	

þ aðiÞ4 fp�g�	 þ aðiÞ5 fq�g�	; (5.6)

where we have used the Dirac equation for the spinors to
reduce the terms that contain factors of p6 or q6 . In addition,
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the terms involving �����p
�q��� can be reduced to the

ones above by using the identity

������ ¼ ð
��
�� � 
��
�� þ 
��
��Þ��

þ i������
��5; (5.7)

together with the Dirac equation.
Let us consider the tensor (T) component first. Using the

Dirac equation for the spinors to reduce the factors of q6 that
appear, the transversality conditions imply

aðTÞ0 þ q2aðTÞ2 þ ðp � qÞaðTÞ3 þ ðm�m0ÞaðTÞ5 ¼ 0;

ðp � qÞaðTÞ1 þ q2aðTÞ3 þ ðm�m0ÞaðTÞ4 ¼ 0;

ðp � qÞaðTÞ4 þ q2aðTÞ5 ¼ 0;

(5.8)

To satisfy the last relation we set

aðTÞ4 ¼ �q2aðTÞ6 ; aðTÞ5 ¼ ðp � qÞaðTÞ6 ; (5.9)

and then we use the first and second relations to solve for

aðTÞ0 and aðTÞ1 , respectively, obtaining

aðTÞ0 ¼ �q2aðTÞ2 � ðp � qÞaðTÞ3 � ðm�m0Þðp � qÞaðTÞ6

aðTÞ1 ¼ q2

p � q ððm�m0ÞaðTÞ6 � aðTÞ3 Þ: (5.10)

For the (P) component the results are similar, the only
difference being that in the formulas analogous to
Eq. (5.10), instead of m�m0 the factor�m�m0 appears.
Thus, for either component,

�ðiÞ
�	 ¼ aðiÞ2 ðq�q	 � q2
�	Þ þ aðiÞ3

�
fpqg�	 � q2

p � qp�p	

� ðp � qÞ
�	

�
þ aðiÞ6

�
q2
�

q6
p � qp�p	 � fp�g�	

�

þ ðp � qÞ½fq�g�	 � q6 
�	�
�
; (5.11)

where we have used the Dirac equation once again to
rewrite the factors of m�m0 in terms q6 . The relations in

Eqs. (4.4) and (4.5) then imply that, for an on-shell gravi-
ton, the amplitude is zero.

B. In a medium

In this case, the terms involving the factors v6 , ��v
�

and �����‘
�v��� (where ‘ ¼ p, q), must be taken into

account. Therefore we write, for i ¼ T, P as before,

�ðiÞ
�	 ¼ 
�	ðaðiÞ0 þ bðiÞ0 v6 Þ þ p�p	ðaðiÞ1 þ bðiÞ1 v6 Þ

þ q�q	ðaðiÞ2 þ bðiÞ2 v6 Þ þ v�v	ðaðiÞ3 þ bðiÞ3 v6 Þ
þ fpqg�	ðaðiÞ4 þ bðiÞ4 v6 Þ þ fpvg�	ðaðiÞ5 þ bðiÞ5 v6 Þ
þ fqvg�	ðaðiÞ6 þ bðiÞ6 v6 Þ þ fp�g�	ðaðiÞ7 þ bðiÞ7 v6 Þ
þ fq�g�	ðaðiÞ8 þ bðiÞ8 v6 Þ þ fv�g�	ðaðiÞ9 þ bðiÞ9 v6 Þ;

(5.12)

where we have chosen to write the terms with two �
matrices in terms of ��v6 rather than ��v

�. In addition,

the terms with the epsilon symbol mentioned above have
been omitted since they reduce to those that are included
here by using the identity Eq. (5.7) and the Dirac equation.
As in the vacuum case, the transversality condition must

be satisfied for �ðT;PÞ
�	 separately, and furthermore, within

each group, the terms with and without v6 must vanish
separately as well. In this way we obtain the following
relations,

aðiÞ0 ¼ �q2aðiÞ2 � p � qaðiÞ4 � q � vaðiÞ6 � q6 aðiÞ8 ;

aðiÞ1 ¼ �1

p � q
�
q2aðiÞ4 þ q � vaðiÞ5 � q6

p � q ðq
2aðiÞ8 þ q � vaðiÞ9 Þ

�
;

aðiÞ3 ¼ �1

v � q ½p � qaðiÞ5 þ q2aðiÞ6 þ q6 aðiÞ9 �;

aðiÞ7 ¼ �1

p � q ½q
2aðiÞ8 þ q � vaðiÞ9 �; (5.13)

with analogous relations for the set of coefficients bðiÞj , and

we obtain the final form

�ðiÞ
�	 ¼ ð�q2
�	 þ q�q	ÞðaðiÞ2 þ bðiÞ2 v6 Þ þ

�
�p � q
�	 � q2

p � qp�p	 þ fpqg�	

�
ðaðiÞ4 þ bðiÞ4 v6 Þ

þ
�
� q � v
p � qp�p	 � p � q

q � v v�v	 þ fpvg�	

�
ðaðiÞ5 þ bðiÞ5 v6 Þ þ

�
�q � v
�	 � q2

q � vv�v	 þ fqvg�	

�
ðaðiÞ6 þ bðiÞ6 v6 Þ

þ
�
�q6 
�	 þ q2

ðp � qÞ2 q6 p�p	 � q2

p � q fp�g�	 þ fq�g�	

�
ðaðiÞ8 þ bðiÞ8 v6 Þ

þ
�

q � v
ðp � qÞ2 q6 p�p	 � q6

q � vv�v	 � q � v
p � q fp�g�	 þ fv�g�	

�
ðaðiÞ9 þ bðiÞ9 v6 Þ: (5.14)

Some of the terms in Eq. (5.14) vanish for an on-shell graviton. However, the terms proportional to the coefficients aðiÞ5;9 and
bðiÞ5;9 do not vanish and therefore the physical amplitude can be nonzero in a medium.
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VI. CONCLUSIONS

We have considered various decay processes which are

known to be forbidden in the vacuum by a combination of

requirements such as angular momentum conservation,

Lorentz invariance or gauge invariance. As we showed,
such processes can occur in a medium, such as a thermal
background of particles, despite the fact that the medium
may be homogeneous and isotropic. To be precise, we
carried out a model-independent analysis of the vertex
function for such processes in terms of a set of form
factors, and showed that the amplitude can be nonzero
while remaining consistent with the symmetry principles
mentioned above. The results simulate Lorentz-symmetry
violating effects, although in this case they arise from
completely Lorentz-invariant physics.

The idea that the Lorentz symmetry is not exact, and the
possible physical consequences of this, has been of interest
and an active field of research in the recent times [9–13].
The model-independent parametrization performed in the
present work is useful in these contexts as well. First, it can
help to discriminate between the effects produced by genu-
ine Lorentz invariance violation at a fundamental level,
from similar effects that may arise even if it is not really
violated. Second, the calculation of the form factors that
we have defined require the specification of the back-
ground for the physical situation at hand, but otherwise
does not depend on any new physics beyond the standard
model. Therefore, the results of such calculations can be
used as benchmark values with which to compare the
results of similar calculations in the context of models of
genuine Lorentz symmetry violation.
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