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We consider a variant of the Georgi-Glashow model in the Bogomol’nyi-Prasad-Sommerfield limit,

augmented by a higher derivative Skyrme-like term, which is the simplest Yang-Mills-Higgs model that

can support monopole bound states. The spherically symmetric solutions are studied with a combination

of analytic and numerical techniques, which strongly suggest that the solutions converge to a finite energy

configuration in the limit of infinite coupling of the Skyrme-like term.
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I. INTRODUCTION

The asymptotic analysis for the unit charge ’t Hooft-
Polyakov monopole [1,2] was carried out long ago by
Kirkman and Zachos [3] and by Gardner [4], and has
recently been elaborated by Forgács, Obadia, and
Reuillon [5] by providing a high precision numerical
analysis of the problem. In contrast to the Prasad-
Sommerfield monopole [6] which is evaluated in closed
form, the ’t Hooft-Polyakov monopole can be evaluated
only numerically since it is a solution to the Georgi-
Glashow model that exhibits a symmetry breaking Higgs
self-interaction potential. The existence of this numerically
evaluated solution is underpinned by the purely analytic
proof of existence given by Tyupkin, Fate’ev, and Schwarz
[7], but this does not shed any light on the behavior of the
solution as a function of the strength � of the Higgs
potential term. Numerical studies of this � dependence,
in [8] for the spherically symmetric case and in [9] for the
axially symmetric case, reveal, in particular, that as � ! 1
the energy of the monopole asymptotes to a finite value. It
is this behavior on � found numerically that is underpinned
by the analytic analysis of [3].

It is our intention in this short note to supply an asymp-
totic analysis similar to that of [3] for the unit charge
monopole of a variant of the Georgi-Glashow model char-
acterized by the addition of a Skyrme-like term in terms of
the covariant derivatives of the Higgs field. The model is
the SOð3Þ Higgs model
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� giving the strength of the coupling of the Skyrme-like
term, and � having the dimension of L4. The lower bound
on the right-hand side is the usual monopole charge density
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featuring a Skyrme-like term in lieu of the Higgs symmetry
breaking potential in the Georgi-Glashow model. This
monopole, which was described in [10] as a Skyrme-like
monopole, is a solution to a model that was distilled from a
rather more involved set of models [11,12], the latter being
designed to support monopoles with both mutually attract-
ing and repelling phases.
In contrast to the ’t Hooft-Polyakov monopole for which

there is an analytic proof of existence [7], there are no such
proofs for the monopoles of the various generalized models
[10–12]. This is because of the presence of higher order
Skyrme-like terms, and the only known solutions are those
constructed numerically. Here we will supply an asymp-
totic analysis analogous to that of [3] for the unit charged
Skyrme-like monopole [10] which is the simplest such
example available. Because of the considerably more com-
plex structure of the equations here, it is very difficult to
perform the promised asymptotic analysis using a purely
analytic method, and instead we present a combination of
both analytic and numerical analyses. [Similar techniques
were used in [13], in the context of the SOð3Þ gauged
Skyrmion [14,15].]
In the next two sections we present the asymptotic and

the numerical analyses, respectively, followed by a brief
summary of our result.

II. ASYMPTOTIC ANALYSIS

Since we are restricting to the charge-1 monopole of (1),
we impose the usual spherically symmetric ansatz

A½aa0�
i ¼ 1� wðrÞ

r
x̂½a�a0�

i ; �a ¼ �hðrÞx̂a; (3)

where the brackets ½ab� imply antisymmetrization, x̂a is
the unit position vector, and � is the dimensionful vacuum
expectation value of the Higgs field. Imposing (3), the
residual one-dimensional static Hamiltonian is
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having rescaled r ! �r and � ! �� so that both the
rescaled radial variable r and the rescaled Skyrme coupling
� in (4) are dimensionless. The corresponding equations
for w and h are

w00 þ wð1� w2Þ
r2

� wh2 ¼ 2�wh2
�
ðh0Þ2 þ w2h2

r2

�
;
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�
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þ 2ww0h2h0Þ:

(5)

Because of their complex structure we are only able to
extract from the equations some asymptotic information
near the origin, at infinity, and for � ! 1. The asymptotic
analysis will then be complemented by the numerical
results. For r ! 0, we have w ! 1 and h ! 0. A dominant
balance analysis gives w ¼ 1þ w2r

2 þ w4r
4 þOðr6Þ,

h ¼ h1rþ h3r
3 þOðr5Þ. By induction we see that the

asymptotic expansions contain only even or odd powers
of r for w and h, respectively. For � ¼ 0, the Prasad-
Sommerfield solution yields w2 ¼ � 1

6 and h1 ¼ 1
3 . For

nonzero �, w2 and h1 have to be determined numerically.
The coefficients for the next highest order are w4 ¼
3
10w

2
2 þ 1

10 ð1þ 4�h21Þh41, h3 ¼ 2�4�h2
1

5þ20�h2
1

w2h1, and all other

coefficients can be calculated recursively.
For r ! 1, we have w ! 0 and h ! 1. Here the domi-

nant balance analysis leads to an exponential falloff for w
and to r2h00 þ 2rh0 ¼ 0 for the leading term in h. We
therefore have

h ¼ 1� q

r
þOð�ðrÞe�2rÞ;

w ¼ �ðrÞe�r þOð	ðrÞe�2rÞ:
(6)

Again using induction, we see that the asymptotic expan-
sion at infinity for h contains only even powers of e�r,
whereas the asymptotic expansion for w contains the odd
powers of e�r. The coefficient functions in front of the
exponential functions, starting with �ðrÞ and �ðrÞ, are
polynomially bounded. For � ¼ 0, we have q ¼ 1 and
� ¼ 2r. For nonzero �, �ðrÞ satisfies the equation
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III. DEPENDENCE ON �

To study the dependence of the energy

E ¼
Z 1

0
Hdr

on �, we calculate
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Here we have used integration by parts, the equations for w
and h, and the boundary conditions. We see that the energy
increases with �. We also see that, if the energy is bounded
as � ! 1 (as suggested by the numerical results reported
in the next section), Esk and therefore the product wh must
vanish in this limit. Because of the boundary conditions, w
cannot be zero for small r, whereas h cannot vanish for
large r. This strongly suggests that h is zero in some
interval ð0; rmÞ and that w is zero in the interval ðrm;1Þ.
In the limit � ! 1 we therefore expect the following

equations to hold:

w00ðrÞþwðrÞð1�w2ðrÞÞ
r2

¼ 0; hðrÞ ¼ 0 ð0<r<rmÞ;
(8)

wðrÞ ¼ 0; r2h00ðrÞ þ 2rh0ðrÞ ¼ 0 ðrm < r <1Þ;
(9)

with boundary conditions

wð0Þ ¼ 1; wðrmÞ ¼ 0;

hðrmÞ ¼ 0 and h ! 1 as r ! 1:

The solution of Eq. (9) is

hðrÞ ¼ 0 ð0< r < rmÞ;
hðrÞ ¼ 1� rm

r
ðrm < r <1Þ:

The solutions to Eq. (8) were studied a long time ago [16],
but not to the same extent as other special functions. One
property we can deduce immediately from Eq. (8) is that,
because w00 is negative for r < rm, w

0ðrmÞ cannot be zero.
Denoting the solution of Eqs. (8) and (9) with the

appropriate boundary condition at r ¼ rm by w1, h1, the
corresponding energy can be obtained easily:

E1ðrmÞ ¼
Z rm

0

�
w021 þ ðw21 � 1Þ2

2r2

�
dr

þ
Z 1

rm

�
1

2r2
þ 1

2
r2h021

�
dr ¼ EwðrmÞ þ 1þ r2m

2rm
:

(10)
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From the second term we see that E1 ! 1 for rm ! 0 and
for rm ! 1, so E1ðrmÞ has a minimum. Solving Eq. (8)
numerically for several values of rm and computing the
value E1ðrmÞ, we have determined the local minimum of
E1 which we find to occur for rm;c � 2:0623. Furthermore,

our result strongly suggests the relation E1ðrm;cÞ ¼ rm;c;

we have no analytic proof for this to be an identity, but it
holds within our numerical accuracy, i.e., 10�4. The con-
figuration minimizing E1 has w001ð0Þ � �0:656.

The results of the numerical analysis reported in the next
section will strongly confirm that

lim
�!1ðwðrÞ; hðrÞÞ ¼ ðw1; h1Þ with rm ¼ rm;c (11)

for the solution w, h of Eq. (5).

IV. NUMERICAL ANALYSIS

We now discuss the numerical solutions of Eq. (5) for
finite �. In the limit � ¼ 0, the classical equations coincide
with the equations of the Bogomol’nyi-Prasad-
Sommerfield (BPS) monopole which is known explicitly.
To the best of our knowledge, no explicit solution exist for
� > 0. We have solved equations (5) completed with the
boundary conditions

wð0Þ ¼ 1; hð0Þ ¼ 0; wð1Þ ¼ 0; hð1Þ ¼ 1 (12)

by using a numerical solver [17]. The BPS monopole gets
smoothly deformed for � > 0. This is illustrated in Fig. 1,
where the profiles w, h of the BPS monopole solution are
superposed with solutions corresponding to several posi-
tive values of �. For reasons explained in the previous
section, we supplemented this figure with the profiles of
the product wh.

Several parameters characterizing the solutions, namely,
the classical energy E, the energy of the Skyrme term Esk

[see (7)], the value of q [see (6)], h1 � h0ð0Þ, and w2 �
w00ð0Þ=2, are plotted as functions of � in Fig. 2. The
characteristics of the BPS monopole are recovered in the
limit � ¼ 0, for instance, E ¼ 1, q ¼ 1, h0ð0Þ ¼ 1=3,
w00ð0Þ ¼ �1=6. The natural challenge is to construct nu-
merically the solutions for large values of � and to confirm
that they evolve according to the pattern discussed in the
previous section. The quantitiesw2, h1, q, E extracted from
our numerical solutions are reported in Fig. 2. The figure
shows that they stay finite for � � 1. In particular for � �
106 we find q � 2:0623, w00ð0Þ � �0:656, hð0Þ � 0, sug-
gesting that, in the limit � ! 1, the solution approaches
the configuration (8) and (9) which minimizes the energy
E1. Our numerical results further indicate that the product
wh tends uniformly to the null function in the limit � ! 1.
As anticipated in the previous section, we observe from our
numerical solutions that, in the interior region, i.e., for r 2
½0; rm�, we have hðrÞ � 0, while in the exterior region we
have rather wðrÞ � 0. Of course the value of rm cannot be
precisely determined for � <1, but the numerical results
obtained for large � are quite compatible with rm ¼ rm;c �

2:0623 and with rm ¼ q. This is illustrated in Fig. 3 for
� ¼ 106 where the functionsw, h and the derivativesw0, h0
are plotted as functions of r. The limit of the solutions of
the equations (5) is therefore not differentiable at r ¼ rm; i.
e., the equations (5) are singularly perturbed about 1=� ¼
0. As a consequence of the absence of differentiability of
the limiting solution at an intermediate point of the domain
of integration, the numerical analysis becomes involved for
increasing �.
Coming finally to the energy of the solution, the numeri-

cal evaluation of E is fully compatible with the fact that the
energy stays finite and that E�!1 ¼ 2:0623. The conver-
gence of E for � ! 1 is, however, much slower than the

FIG. 1. The profile for the solution for several values of �.

FIG. 2. The values of E;Esk; q; h1 � h0ð0Þ, w2 � w00ð0Þ=2 are
plotted as functions of � (solid lines), and the values of EA are
represented with the dashed line.
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convergence of the parameter q. To argue that this state-
ment is correct, we further evaluate the quantity

EAð�Þ ¼
Z q

0

�
w02 þ ðw2 � 1Þ2

2r2

�
drþ 1þ q2

2q
(13)

with the numerical profile of wðrÞ. In fact, EA is an esti-
mation of the energy obtained by assuming h ¼ 1� q=r
w ¼ 0 for r 2 ½q;1� and h ¼ 0 and the numerical value of
wðrÞ for r 2 ½0; q�. One should expect EAð� ! 1Þ ¼
E1ðrm;cÞ since q� rm;c in this limit.

The value EA is reported in Fig. 2 (see the dashed line);
confirming our expectation, we find that the difference E�
EA tends quickly to zero (in fact exponentially fast) for
� ! 1. Interestingly, EA provides a reasonably good ap-
proximation to the energy E even for small values of �; for
instance we find EA=E� 1:035 for � ¼ 1.

V. SUMMARY

We have carried out a combination of analytic and
numerical analyses for what we refer to as the Skyrme-
like monopole, which is a finite energy solution to the
equations of the model (1). The asymptotic analysis in-
volves the study of a one parameter family of monopole
solutions, parametrized by the strength of the coupling of
the quartic Skyrme-like term. For any value of the coupling
constant � we have given asymptotic expansions of the
solutions for r ! 0 and r ! 1. We have concentrated,
however, mainly on the behavior of the solutions for � !
1. The numerical analysis shows that the energy is
bounded as � ! 1, a result for which we have no mathe-
matical underpinning. Given that the energy is bounded,
we can however deduce analytically some interesting re-
sults. We find, in particular, that the equations (5) are
singularly perturbed about 1=� ¼ 0. This is reminiscent
of Burgers’s equation with a small coefficient in front of
the second order derivative. When this coefficient goes to
zero, the solutions of Burgers’s equations tend to a weak
solution with a shock; i.e., the limiting weak solution is
discontinuous. In our case, the derivative of the limiting
weak solution is discontinuous. This analytic result, and
the results we get for the values of some typical constants
are all supported by our numerical analysis.
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