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We show that the main result of the recent paper by G. S. Adkins and J. McDonnell, Phys. Rev. D 75,

082001 (2007), the formula for the precession of Keplerian orbits induced by central-force perturbations,

can be obtained very simply by the use of Hamilton’s vector.
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In a recent paper, G. S. Adkins and J. McDonnell recon-
sidered the old problem of perihelion precession of
Keplerian orbits under the influence of arbitrary central-
force perturbations. Their main result is the formula for
perihelion precession in the form of a one-dimensional
integral convenient for numerical calculations.

The reason why this well studied and essentially text-
book problem [1] came into the focus of the current
research is the recent usage of this classical effect to
constrain hypothetical modifications of Newtonian gravity
from higher dimensional models [2], as well as the density
of dark matter in the solar system [3].

Traditionally, the simplest way to study the perihelion
motion is the use of the Runge-Lenz vector [4,5]. The
Runge-Lenz vector

~A ¼ ~v� ~L� �~er (1)

is the extra constant of motion originated from the hidden
symmetry of the Coulomb/Kepler problem [6]. Here, � ¼
GmM, ~L is the angular momentum vector, and ~v is the
relative velocity of a planet of mass m with respect to the
Sun of mass M. Geometrically, the Runge-Lenz vector
points towards the perihelion. Therefore, its precession
rate is just the precession rate of the perihelion [7].

However, we will use not the Runge-Lenz vector, but its
less known cousin, the Hamilton vector [8–11]

~u ¼ ~v� �

L
~e’; (2)

where ’ is the polar angle in the orbit plane. This very
useful vector constant of motion of the Kepler problemwas
well known in the past, but mysteriously disappeared from
textbooks after the first decade of the twentieth century
[8,10–12].

Of course, ~A and ~u are not independent constants of
motion. The relation between them is

~A ¼ ~u� ~L: (3)

Remembering that the magnitude of the Runge-Lenz vec-
tor is A ¼ �e, where e is the eccentricity of the orbit [4],

we get from (3) the magnitude of the Hamilton vector

u ¼ �e

L
: (4)

If the potential UðrÞ contains a small central-force pertur-
bation VðrÞ besides the Coulomb binding potential,

UðrÞ ¼ ��

r
þ VðrÞ;

the Hamilton vector (as well as the Runge-Lenz vector)
ceases to be conserved and begins to precess at the same
rate as the Runge-Lenz vector, because according to (3) the
two vectors are perpendicular.
To calculate the precession rate of the Hamilton vector

we first find its time derivative

_~u ¼ � 1

�

dVðrÞ
dr

~er; (5)

where � ¼ mM
mþM is the reduced mass. To get (5), we have

used Newton’s equation of motion for _~v and the equation
_~e’ ¼ � _’~er.

Now the precession rate of the vector ~u can be found as
[5]

~! ¼ ~u� _~u

u2
: (6)

Because of (2), (5), and (6) only the tangential component
r _’ of the velocity vector ~v ¼ _r ~er þ r _’~e’ contributes and

we get

~! ¼ 1

�u2

�
r _’� �

L

�
dVðrÞ
dr

~er � ~e’

¼ p

�e2

�
r _’� �

L

�
dVðrÞ
dr

~k;

where ~k is the unit vector in the z direction, and

p ¼ L2

��
(7)

is the semilatus rectum of the unperturbed orbit.
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Therefore, under the complete orbital cycle the
Hamilton vector and hence the perihelion of the orbit
revolves by the angle

��p ¼
Z T

0
!dt ¼ p

�e2

Z 2�

0

�
r� �

L _’

�
dVðrÞ
dr

d’: (8)

However, L ¼ �r2 _’ and, therefore,

�

L _’
¼ r2

p
:

Besides, to first order in the perturbation potential VðrÞ we
can use the unperturbed orbit equation

p

r
¼ 1þ e cos’

while integrating (8) and get

��p ¼ p2

�e

Z 2�

0

cos’

ð1þ e cos’Þ2
dVðrÞ
dr

d’: (9)

If now we introduce the new integration variable z ¼ cos’,
Eq. (9) transforms into

��p ¼ � 2p

�e2

Z 1

�1

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dVð p
1þezÞ
dz

dz; (10)

and this is just Eq. (30) from [13] up to the applied
notations.
The extreme simplicity of this back-of-envelope deriva-

tion demonstrates clearly that the real backbone behind the
Adkins and McDonnell perihelion precession formula is
the Hamilton’s vector, the lost sparkling diamond of intro-
ductory level mechanics.
After this work had been completed, we became aware

of the paper [14], in which the author rediscovers the
Hamilton vector and advocates essentially the same treat-
ment of the perihelion precession problem as described in
this paper. ‘‘Everything has been said before, but since
nobody listens we have to keep going back and beginning
all over again’’ [15].

An occasional conversation with I. B. Khriplovich trig-
gered our interest to this problem. The work of Z. K. S. is
supported in part by Grants No. Sci.School-905.2006.2 and
No. RFBR 06-02-16192-a.
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