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We study constraints on fðRÞ dark energy models from solar system experiments combined with

experiments on the violation of the equivalence principle. When the mass of an equivalent scalar field

degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin shell so

that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place

experimental bounds on the cosmologically viable models recently proposed in the literature that have an

asymptotic form fðRÞ ¼ R� �Rc½1� ðRc=RÞ2n� in the regime R� Rc. From the solar system con-

straints on the post-Newtonian parameter �, we derive the bound n > 0:5, whereas the constraints from

the violations of the weak and strong equivalence principles give the bound n > 0:9. This allows a

possibility to find the deviation from the �-cold dark matter (�CDM) cosmological model. For the model

fðRÞ ¼ R� �RcðR=RcÞp with 0< p< 1 the severest constraint is found to be p < 10�10, which shows

that this model is hardly distinguishable from the �CDM cosmology.
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The recent data coming from the luminosity distance of
Supernovae Ia [1], the wide galaxy surveys [2], and the
anisotropy of cosmic microwave background [3] suggest
that about 70% of the energy density of the present uni-
verse is composed by dark energy responsible for an
accelerated expansion. The cosmological constant is the
most relevant candidate to interpret the cosmic expansion,
but in order to overcome its intrinsic shortcomings asso-
ciated with the energy scale, several alternative models
such as quintessence and k-essence have been proposed
(see Ref. [4] for reviews). A common feature to most of
these models is to introduce new sources into the cosmo-
logical dynamics, but from an ‘‘economic’’ point of view, it
would be preferable to develop scenarios consistent with
observations without invoking extra parameters or compo-
nents that are nontestable at a fundamental level.

The simplest extension to the �-cold dark matter
(�CDM) model is presumably the so-called fðRÞ gravity,
where fðRÞ is a general function of the Ricci scalar R [5]
(see Ref. [6] for an early work). In Ref. [7], the authors
derived the conditions under which a successful sequence
of radiation, matter, and accelerated epochs can be real-
ized. In addition, the stability conditions f;R > 0 and

f;RR > 0 are required to avoid ghosts and tachyons for R �
R1, where R1 is the Ricci scalar at a de-Sitter point [8].
There exist viable fðRÞ models that can satisfy both back-
ground cosmological constraints and stability conditions
[8–16]. These models can satisfy solar system constraints
under a chameleon mechanism, that is, a nonlinear effect
arising from a large departure from the background value
of R [11,13,14,16]. In this brief report, we place constraints
on viable fðRÞ gravity models under the chameleon mecha-
nism [17] by using both solar system and equivalence
principle bounds.

We start with the following action in fðRÞ gravity:
S ¼

Z
d4x

ffiffiffiffiffiffiffi�gp
fðRÞ=2þ Smðg��;�mÞ; (1)

where Sm is a matter Lagrangian that depends on the metric
g�� and matter fields �m. We use the unit M2

pl ¼
ð8�GÞ�1 ¼ 1, where Mpl and G are a reduced Planck

mass and a bare gravitational constant, respectively.
We introduce a new metric variable ~g�� and a scalar

field �, as

~g�� ¼  g��; � ¼ ffiffiffiffiffiffiffiffi
3=2

p
ln ; (2)

where  ¼ @f=@R. Then the action in the Einstein frame is
given by [18]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p ½ ~R=2� ð~r�Þ2=2� Vð�Þ�
þ Smð~g��e2��;�mÞ; (3)

where

� ¼ � 1ffiffiffi
6

p ; V ¼ Rð Þ � f

2 2
: (4)

The field � is directly coupled to a nonrelativistic matter
with a constant coupling �.
In a spherically symmetric spacetime, the variation of

the action (3) with respect to the scalar field � gives

d2�

d~r2
þ 2

~r

d�

d~r
¼ dVeff

d�
; (5)

where ~r is the distance from the center of symmetry and

Veffð�Þ ¼ Vð�Þ þ e����: (6)

Here �� is a conserved quantity in the Einstein frame [17],

PHYSICAL REVIEW D 77, 107501 (2008)

1550-7998=2008=77(10)=107501(4) 107501-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.107501


which is related with the energy density � in the Jordan
frame via the relation �� ¼ e3���.

We assume that a spherically symmetric body has a
constant density �� ¼ ��

A inside the body (~r < ~rc) and
that the energy density outside the body (~r > ~rc) is �

� ¼
��
B. The mass Mc of the body and the gravitational poten-

tial�c at the radius ~rc are given byMc ¼ ð4�=3Þ~r3c��
A and

�c ¼ Mc=8�~rc, respectively. The effective potential
Veffð�Þ has two minima at the field values �A and �B

satisfying V0
effð�AÞ ¼ 0 and V 0

effð�BÞ ¼ 0, respectively.

The former corresponds to the region with a high density
that gives rise to a heavy mass squared m2

A � V 00
effð�AÞ,

whereas the latter corresponds to the lower density region
with a lighter mass squared m2

B � V00
effð�BÞ.

In the high-density regime with a heavy field mass, it is
known that the spherically symmetric body has a thin shell
under the chameleon mechanism. When the thin shell
develops inside the body, the following thin shell parame-
ter is much smaller than the order of unity [17]:

�~rc
~rc

¼ �B ��A

6��c

: (7)

Solving Eq. (5) with appropriate boundary conditions, the
field profile outside the body (~r > ~rc) is given by [17]

�ð~rÞ ’ ��eff

4�

Mce
�mBð~r�~rcÞ

~r
þ�B; (8)

where the magnitude of the effective coupling, �eff ¼
ð3�Þð�~rc=~rcÞ, is much smaller than unity when the thin
shell is formed.

Let us study concrete fðRÞ models that can satisfy local
gravity constraints as well as cosmological and stability
conditions. Hu and Sawicki [11] proposed the following
model:

fðRÞ ¼ R� �Rc
ðR=RcÞ2n

ðR=RcÞ2n þ 1
; (9)

whereas Starobinsky [8] proposed another viable model:

fðRÞ ¼ R� �Rc½1� ð1þ R2=R2
cÞ�n�: (10)

In both models, n, �, and Rc are positive constants. Since
fðR ¼ 0Þ ¼ 0, the cosmological constant disappears in a
flat spacetime. Other fðRÞ models with similar features
have been discussed in Refs. [12,13,15]. In these models a
de-Sitter point responsible for the late-time acceleration
exists at R ¼ R1ð>0Þ, where R1 is derived by solving the
equation R1f;RðR1Þ ¼ 2fðR1Þ [7]. Note that Rc is not much

different from the present cosmological density �c ’
10�29 g=cm3.

In the region R� Rc, both models (9) and (10) behave
as

fðRÞ ’ R� �Rc½1� ðRc=RÞ2n�: (11)

Inside and outside the spherically symmetric body the

effective potential (6) has minima at �A ’

� ffiffiffi
6

p
n�ðRc=�AÞ2nþ1 and �B ’ � ffiffiffi

6
p
n�ðRc=�BÞ2nþ1, re-

spectively. Since �A � �B � �c, one has j�Aj �
j�Bj � 1 and ~r ’ r, provided that n and � are not much
different from the order of unity. In the following, we omit
the tilde for the quantity r. From Eq. (7), the thin-shell
parameter is approximately given by

�rc
rc

’ n�
�
Rc
�B

�
2nþ1 1

�c

: (12)

Let us first discuss post-Newtonian solar system con-
straints on the model (11). In the weak-field approxima-
tion, the spherically symmetric metric in the Jordan frame
is

d s2¼�½1�2AðrÞ�dt2þ½1þ2BðrÞ�dr2þr2d�2; (13)

where AðrÞ and BðrÞ are the functions of r. It was shown
in Ref. [19] that under the chameleon mechanism the post-
Newton parameter, � ¼ BðrÞ=AðrÞ, is approximately
given by

� ’ 1� �rc=rc
1þ �rc=rc

; (14)

provided that the conditionmBr� 1 holds on solar system
scales. The present tightest constraint on � is j�� 1j<
2:3� 10�5 [20], which translates into

�rc
rc

< 1:15� 10�5: (15)

For the model (11), the de-Sitter point corresponds to
� ¼ x2nþ1

1 =ð2ðx2n1 � n� 1ÞÞ, where x1 ¼ R1=Rc. Using
this relation together with �c ’ 2:12� 10�6 for the Sun,
the bound (15) leads to

n

2ðx2n1 � n� 1Þ
�
R1

�B

�
2nþ1

< 2:4� 10�11: (16)

For the stability of the de-Sitter point, we require that m ¼
Rf;RR=f;R < 1 at R ¼ R1 [7], which gives the condition

x2n1 > 2n2 þ 3nþ 1. Hence the term n=2ðx2n1 � n� 1Þ in
Eq. (16) is smaller than 0.25 for n > 0. Assuming that R1

and �B are of the orders of the present cosmological
density 10�29 g=cm3 and the baryonic/dark matter density
10�24 g=cm3 in our galaxy, respectively, we obtain the
constraint

n > 0:5: (17)

Thus n does not need to be much larger than unity. Hu and
Sawicki derived the Ricci scalar R as a function of r by
considering the density profile of the Sun. While we have
obtained the bound (17) without taking into account such
modifications, this bound is consistent with the one derived
by Hu and Sawicki (see Eq. (67) in Ref. [11]).
Let us also study the models of the type [9,10,19]

fðRÞ ¼ R� �RcðR=RcÞp; 0< p< 1; (18)

where � and Rc are positive constants. We do not consider
the models with negative p, because they suffer from
instability problems of perturbations associated with nega-
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tive f;RR [21,22], as well as the absence of the matter-

dominated epoch [23]. In this case, the field�B is given by

�B ¼ �ð ffiffiffi
6

p
=2Þ�pðRc=�BÞ1�p. Since the de-Sitter point,

x1 ¼ R1=Rc, satisfies the relation � ¼ x1�p1 =ð2� pÞ, the
bound (15) translates into

p

2� p

�
R1

�B

�
1�p

< 4:9� 10�11: (19)

Taking R1 ¼ �1 ¼ 10�29 g=cm3 and �B ¼ 10�24 g=cm3,
we obtain the constraint

p < 5� 10�6: (20)

Hence the deviation from the �CDM model is very small.
Let us next place experimental bounds from a possible

violation of the equivalence principle (EP). In doing so, we
shall discuss the thin-shell condition around the Earth
under the chameleon mechanism [17]. The Earth has a
radius r	 ¼ 6� 103 km with a mean density �	 ’
5:5 g=cm3. The atmosphere exists in the region r	 < r <
ratm with a homogeneous density �atm ’ 10�3 g=cm3. The
region outside the atmosphere (r > ratm) has a homoge-
nous density �G ’ 10�24 g=cm3. Defining the gravita-
tional potentials as �	¼�	r2	=6 and �atm ¼ �atmr

2
atm=6,

we have that �	 ’ 5:5� 103�atm because �	 ’
5:5� 103�atm and r	 ’ ratm. Recalling the relation
�ratm=ratm ¼ ð�G ��atmÞ=ð6��atmÞ, where �G and
�atm correspond to the field values at the local minima of
the effective potential (6) in the regions r > ratm and r	<
r<ratm, respectively, we find �r	=r	 � �ð�G �
�atmÞ=

ffiffiffi
6

p
�	 ’ 2:0� 10�4ð�ratm=ratmÞ.

When the atmosphere has a thin shell then the thickness
of the shell (�ratm) is smaller than that of the atmosphere:
rs ¼ 10–102 km. Taking the value rs ¼ 102 km and
ratm ¼ 6:5� 103 km, we obtain �ratm=ratm < 1:6�
10�2. Hence the condition for the atmosphere to have a
thin shell is estimated as

�r	
r	

& 10�6: (21)

Let us discuss solar system tests of EP that makes use of
the free fall acceleration of the Moon and the Earth toward
the Sun. The constraint on the difference of two acceler-
ations is given by

	 � 2
jaMoon � a	j
aMoon þ a	

< 10�13: (22)

The Sun and the Moon have the thin shells like the Earth
[17], in which case the field profiles outside the spheres are
given as in Eq. (8) with the replacement of corresponding
quantities. We note that the acceleration induced by a fifth
force with the field profile �ðrÞ and the effective coupling
�eff is a

fifth ¼ j�eff�ðrÞj. Then the accelerations a	 and
aMoon are [17]

a	 ’ GM

r2

�
1þ 3

�
�r	
r	

�
2 �	
�


�
; (23)

aMoon ’ GM

r2

�
1þ 3

�
�r	
r	

�
2 �2	
�
�Moon

�
; (24)

where �
 ’ 2:1� 10�6, �	 ’ 7:0� 10�10, and �Moon ’
3:1� 10�11 are the gravitational potentials of Sun, Earth,
and Moon, respectively. Hence the condition (22) trans-
lates into

�r	
r	

< 2� 10�6; (25)

which gives the same order of the upper bound as in the
thin-shell condition (21) for the atmosphere. The constraint
coming from the violation of the strong equivalence prin-
ciple [20] provides a bound �r	=r	 < 10�4 [17], which is
weaker than (25).
Let us derive constraints on the models (9) and (10)

under the bound (25). On using the relation j�Gj ¼ffiffiffi
6

p
n�ðRc=�GÞ2nþ1 � j�atmj, we obtain

n�

�
Rc
�G

�
2nþ1

< 10�15: (26)

Taking the similar procedure we have taken to reach
Eq. (17) from Eq. (16), we find the following constraint:

n > 0:9: (27)

This is stronger than the bound (17) derived from post-
Newtonian tests in the solar system.
In the model (18) the bound (25) leads to

�pðRc=�GÞ1�p < 10�15, which gives the constraint

p < 10�10: (28)

Thus the model is required to be very close to the �CDM
model to satisfy the condition (25).
Let us next discuss constraints from fifth force experi-

ments that are carried out in a vacuum [20]. Modeling a
vacuum chamber as a sphere with radius rvac, the energy
density is given by �ðrÞ ¼ 0 for r < rvac and �ðrÞ ¼ �atm

for r > rvac. Inside the chamber we consider two identical
bodies of uniform density �c, radius rc, and total massMc.
If these bodies have thin shells, their field profiles are given
by

�ðrÞ ¼ ��eff

4�

Mce
�r=rvac

r
þ�vac; (29)

where �vac is the field value when the mass squared of the
field balances with the curvature r�2

vac of the chamber. In
Eq. (29), we used the fact that the interaction range m�1

B

outside the bodies is of the order of rvac [17]. The labora-
tory experiment constrains the coupling to be 2�2

eff < 10�3

[20], which translates into the condition

�rc
rc

< 1:7� 10�2: (30)

Thus it is crucial to have thin shells to satisfy the experi-
mental bound.
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We have �rc=rc ’ ��vac=
ffiffiffi
6

p
�c under the condition

that j�vacj is much larger than the field value j�Aj inside
the bodies. A typical test body used in Hoskins et al. [24]
has a massMc � 40 g and a radius rc � 1 cm [20]. Hence
the bound (30) translates into

j�vacj< 10�28: (31)

For the models (9) and (10), we obtain�vac in the region
R� Rc:

�vac ¼ � ffiffiffi
6

p
n�

�
Rcr

2
vac

6nð2nþ 1Þ�
�ð2nþ1Þ=ð2nþ2Þ

: (32)

Then the constraint (31) gives

Cðrvac=R�1=2
1 Þð2nþ1Þ=ðnþ1Þ < 10�28; (33)

where C � ffiffiffi
6

p
n�½ 1

6nð2nþ1Þ�
Rc
R1
�ð2nþ1Þ=ð2nþ2Þ. From the rela-

tion � ¼ x2nþ1
1 =ð2ðx2n1 � n� 1ÞÞ, we find that C is not

larger than the order of 0.1. Using R�1=2
1 �H�1

0 �
1028 cm, we get the following constraint:

n > 0: (34)

This is much weaker than the bounds (17) and (27).
For the model (18), the field value �vac is given by

�vac ¼ �
ffiffiffi
6

p
2
�p

�
Rcr

2
vac

3�pð1� pÞ
�ð1�pÞ=ð2�pÞ

: (35)

Making use of the relation � ¼ x1�p1 =ð2� pÞ at the de-

Sitter point, the condition (31) gives the bound

p < 1:5� 10�2: (36)

Again, this is much weaker than the bounds (20) and (28).
In summary, we have found that the models (9) and (10)

are consistent with the present local gravity experiments
for n > 0:9, whereas the model (18) is hardly distinguish-
able from the �CDM cosmology because of the constraint
p < 10�10. These bounds are stronger than those derived
by post-Newtonian tests in the solar system and are the
main results of our paper. The models (9) and (10) allow
the possibility to show appreciable deviations from the
�CDM model cosmologically around the present epoch
[8,11,13,16]. It certainly will be of interest to find some
signatures of modified gravity in future high-precision
local gravity experiments such as the satellite test of
equivalence principle [25] or GAIA [26] satellites as well
as in cosmological observations such as the galaxy power
spectrum, cosmic microwave background, and weak
lensing.
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