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Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from

conventional electromagnetism. The reason is the relativistic coupling between vector fields and space-

time geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to

that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to

astrophysically interesting B fields, even if our Universe is only marginally open today.
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Magnetic fields in Friedmann universes are widely be-
lieved to decay adiabatically regardless of the electrical
properties of the cosmic medium. Consequently, large-
scale B fields are expected to dilute as a�2, where a is
the cosmological expansion scale factor. This widespread
perception has its roots in the conformal invariance of
Maxwell’s equations and the conformal flatness of the
Friedmann-Robertson-Walker (FRW) spacetimes. The
two are thought to guarantee that the rescaled magnetic
vector Ba ¼ a2Ba evolves as in Minkowski space. This
then ensures that the magnetic flux remains conserved and
consequently that Ba / a�2 irrespective of the electric
properties of the Universe. Following [1], conformally
flat spacetimes, like de Sitter space and the FRW models,
can be written as time-dependent rescalings of Minkowski
space. Then, the conformal triviality of Maxwell’s theory
guarantees that, when written on an FRW or a de Sitter
background, the wave equation for the nth Fourier mode of
the rescaled magnetic vector Ba ¼ a2Ba takes the
Minkowski-like form [2]

B 00
ðnÞ þ n2BðnÞ ¼ 0; (1)

with the primes indicating conformal-time derivatives. The
above guarantees that Ba / a�2 and therefore an adiabatic
decay for the B field. Hence the belief that to modify the
a�2 law and achieve a superadiabatic-type of magnetic
amplification we need to abandon either the FRW models
or conventional electromagnetism [3]. The usual choice is
to follow the latter route [4], and the literature contains a
plethora of mechanisms that slow the adiabatic depletion
of magnetic fields down by departing from standard elec-
tromagnetic theory (see [5] for a representative though
incomplete list). This is not always necessary, however,
because the argument leading to Eq. (1)—and the equation
itself—holds only when the FRW model has flat spatial
sections (or when the space is exactly de Sitter).

All three Friedmann universes are conformally flat but
they are not identical. Differences in the geometry of their
3-spaces ensure that the conformal factor of the spatially
curved models has an additional spatial dependence and

therefore it no longer coincides with the cosmological
scale factor. The associated line elements have the general
form [6,7]

d s2 ¼ �2ð�; RÞ½�d�2 þ dR2 þ R2d�2�; (2)

where � ¼ �ð�; RÞ is the conformal factor and d�2 ¼
d�2 þ sin2�d�2 (see [7] for details—particularly on the
open-FRW case). The above shows that Friedmann models
with non-Euclidean spatial geometry cannot be written as
simple, time-dependent rescalings of Minkowski space.
For our purposes, this is the key difference between the
flat and the rest of the FRW cosmologies. Putting it in
geometrical terms, there is no global one-to-one correspon-
dence between curved FRWmodels and Minkowski space:
the conformal transformations mapping the associated
spacetimes are only local [6]. Consequently, a
Minkowski-like evolution forBa is not a priori guaranteed
in these models. Rescaling the magnetic field with a space-
independent conformal factor does not work in the case of
nonzero 3-curvature, as it does on a spatially flat FRW
background, and the associated wave equation need not
take the form of (1). Thus, the rescaledB field should show
a Minkowski-like behavior only locally (i.e. on small
scales). On large scales, where the curvature effects are
important, one would in principle expect to see deviations
from the standard Ba / a�2 law.
This is indeed what happens. Consider, for example, the

simple case of a source-free electromagnetic field on a
general FRW background. Inflation is believed to generate
such classical electromagnetic fields, by stretching the
associated small-scale quantum fluctuations to superhori-
zon scales. In the absence of sources, the magnetic com-
ponent of the Maxwell field propagates according to the
linear wave equation [8]

€B a � D2Ba ¼ �5H _Ba � 4H2Ba þ 1
3ð�þ 3pÞBa

�RabB
b: (3)

Here, Ba is the magnetic vector measured in a frame
moving with 4-velocity ua. The latter defines the comoving
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(fundamental) observers and it is normalized so that
uau

a ¼ �1. Also, the scalars � and p represent the matter
density and pressure, respectively, while Rab is the back-
ground 3-Ricci tensor (see [9] for further details). Finally,
overdots indicate proper-time derivatives, D2 ¼ habrarb

is the 3D Laplacian (with hab ¼ gab þ uaub projecting
orthogonal to ua) and H ¼ _a=a is the Hubble parameter.
Expression (3) can be obtained either by linearizing the
nonlinear equation (40) given in [8] (see also Eq. (45) in
the same paper), or by simply recasting the first-order
relation (28) of [10]. In addition, the electromagnetic field
vanishes in the unperturbed FRW background, which frees
our analysis from gauge-related ambiguities. The key
quantity for our purposes in Eq. (3) is the magneto-
curvature term, RabB

b, which results from the noncom-
mutativity of covariant derivatives in non-Euclidean
spaces. It reflects the fact that vector sources, like the
Maxwell field, ‘‘feel’’ the curvature of space through the
Ricci identities—in addition to Einstein’s equations.

Introducing the rescaled Ba ¼ a2Ba field and using the
conformal-time variable (� with _� ¼ 1=a > 0 and 0 ¼
d=d�), the Fourier decomposition of (3) leads to

B 00
ðnÞ þ n2BðnÞ ¼ �2KBðnÞ; (4)

since Rab ¼ ð2K=a2Þhab to zero order. In the above ex-
pression, which does not explicitly depend on the matter
component, K ¼ 0;�1 is the 3-curvature index of the

background Friedmann model and Ba ¼ BðnÞQ
ðnÞ
a is the

harmonically decomposed magnetic vector, with DaBn ¼
0 ¼ _QðnÞ

a ¼ DaQðnÞ
a and D2QðnÞ

a ¼ �ðn=aÞ2QðnÞ
a . The

Laplacian eigenvalue takes continuous values, with n2 �
0, when K ¼ 0;�1 and discrete ones, with n2 � 3, for
K ¼ þ1. When K ¼ 0, the right-hand side of (4) vanishes
and we recover Eq. (1). Otherwise, we need to account for
the effects of the background geometry.

The curvature term on the right-hand side of expres-
sion (4) can in principle modify the adiabatic decay law of
the B field. For a K ¼ �1 background, in particular,

B 00
ðnÞ þ ðn2 � 2ÞBðnÞ ¼ 0; (5)

with n2 � 0. On large enough scales, with n2 < 2, the
solutions to (5) no longer have the standard wavelike
nature associated with the flat and the closed FRW hosts.
These wavelengths include what one may regard as the
largest subcurvature modes (i.e. those with 1 � n2 < 2)
and the supercurvature scales (having 0< n2 < 1).
Eigenvalues with n2 ¼ 1 correspond to the curvature
length with physical wavelength � ¼ a. Well inside this
scale, the 3-space is practically flat, but beyond it the
curvature dominates. Note that, although they are often
omitted, supercurvature modes are necessary if we want
perturbations with correlation lengths bigger than the cur-
vature radius (see [11] for further discussion). Here we will
focus on the largest subcurvature modes. Let us introduce,
for convenience, the scale-parameter k2 ¼ 2� n2 with

0< k2 < 2. Then, the largest subcurvature scales corre-
spond to the range 0< k2 � 1, while the interval 1< k2 <
2 contains the supercurvature lengths. In the new notation,
the solution of Eq. (5) reads

BðkÞ ¼ a�2½C1ejkj� þ C2e�jkj��; (6)

where the Ci’s are the integration constants. As we will
show next, magnetic fields obeying the above evolution
law can experience superadiabatic amplification, without
modifying conventional electromagnetism and despite the
conformal flatness of their FRW host.
Suppose that the background model is a Milne-type

universe: a vacuum, spatially open FRW spacetime with
a ¼ t. The latter immediately translates to e� / a, which
substituted into solution (6) leads to

BðkÞ ¼ C1a
jkj�2 þ C2a

�jkj�2; (7)

with C1;2 ¼ constant. Consequently, all magnetic fields

spanning lengths with 0< k2 < 2 are superadiabatically
amplified and their amplification strengthens with increas-
ing scale. Close to the curvature-scale threshold, that is for
k ! 1, the dominant mode is Bð1Þ / a�1; a rate consider-

ably slower than the adiabatic a�2 law. The latter is only
restored in the k ¼ 0 limit, namely, on small scales where
the curvature effects are no longer important. Even
stronger amplification is achieved on supercurvature

scales, with BðkÞ / a
ffiffi

2
p �2 at the homogeneous limit (i.e.

as k ! ffiffiffi

2
p

—see Fig. 1 for a summary). TheMilne universe
is probably the simplest, but not the only FRW back-
ground, that supports magnetic amplification of the
superadiabatic-type. Solution (6) leads to similar results
in open universes with p ¼ �=3 as well. To verify this
recall that the scale factor of a radiation-dominated
Friedmannian spacetime with K ¼ �1 evolves according
to a / sinh� (e.g. see [12]). Then, focusing on the curva-
ture scale for simplicity, Eq. (6) ensures that a magnetic
field with k ¼ 1 never decays faster than Bð1Þ / a�1 and is

therefore superadiabatically amplified [13].
The Milne and the radiation-dominated Friedmann uni-

verses serve as very straightforward mathematical counter-
examples, showing that the conformal flatness of the FRW
spacetimes alone cannot guarantee an adiabatic decay for
cosmological magnetic fields. For the purposes of physical
cosmology, the Milne universe is the future attractor of
(conventional) open FRWmodels. Thus, solution (7) could
describe the late-time evolution of cosmological B fields.
The radiation example, on the other hand, refers to the
early Universe and can drastically increase the expected
strength of large-scale magnetic fields. The high conduc-
tivity of the prerecombination plasma, however, means that
we cannot a priori ignore the electric currents in Eq. (3). At
the infinite conductivity limit, in particular, these currents
are expected to dominate, eliminate the electric fields, and
cause the magnetic component to freeze-in and dissipate
adiabatically. Nevertheless, causality should confine the
effects of the post-inflationary electric currents inside the
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horizon and therefore leave Eq. (3) unaffected on super-
Hubble scales. Recall that our electromagnetic field
crossed the horizon before the onset of the radiation era,
during the poorly conductive epoch of inflation.

To estimate the implications of the above described
effects for primordial magnetic fields, it is important to
note that large-scale B fields experience an analogous
superadiabatic-type of amplification in open FRW uni-
verses with an inflationary (i.e. p ¼ ��) equation of state
[14]. In these models, fields with coherence lengths
close—and beyond—the curvature scale also experience
superadiabatic amplification triggered by the same 3-
curvature effects we described above. To be precise, B
fields near the curvature scale were found to obey the
evolution law

Bð1Þ ¼ C3ð1� e2�Þa�1 þ C4e
��a�2; (8)

where�< 0 andC3;4 constants (see [14] for details). Thus,

for most of the inflationary phase (i.e. as long as � � 0),
we have Bð1Þ / a�1 and the field is superadiabatically

amplified. The adiabatic decay rate is recovered only at
the end of inflation, as � ! 0�. We emphasize that the
reduction in the magnetic decay-rate is possible because
inflation in curved Friedmann models does not lead to a
globally flat de Sitter space. Although inflation can dra-
matically increase the curvature radius of the Universe, it
does not change its spatial geometry. Unless the Universe
was perfectly flat from the beginning, there will always be
a scale where the 3-curvature effects are important [15]. It
is on these lengths that the B fields can be superadiabati-
cally amplified.

Following [14], a magnetic field that survived a
de Sitter-type inflation in a FRW cosmology with K ¼
�1 has energy density �B � 10�51ðM=1017 GeVÞ8=3 �
ðTRH=10

9 GeVÞ�2=3��2
Mpc��, and a current typical (comov-

ing) strength from �10�35 to �10�33 Gauss, depending
on the parameters of the defining inflationary model.
Note that M is the energy scale of inflation, TRH is the
reheating temperature, �� is the radiation energy density,

and �Mpc is the current scale of the amplified B field [16].

The latter is close to the curvature scale which, for a
marginally open universe—with 1��� 10�2 today,
lies between 104 and 105 Mpc. These scales are far larger
than the minimum magnetic length required for the galac-
tic dynamo to work [17]. Nevertheless, once galaxy for-
mation starts, the fluid motion should force the magnetic
force lines to break up and reconnect on lengths similar
to the size of a collapsing protogalaxy. Magnetic fields in
the range of 10�35 to 10�33 Gauss are far stronger than
any other conventional B field that went through an epoch
of inflation. So far, similar strengths have only been
achieved outside standard electromagnetism. Moreover,
seeds around 10�34 G (or less) can sustain the galactic
dynamo if our Universe is currently dark-energy domi-
nated [18].
The above quoted strengths assume that the magnetic

component freezes-in after the end of inflation and that the
ratio �B=�� remains constant throughout the radiation

epoch and until today [14]. Hence, the residual B field
will increase further if it is superadiabatically amplified
during the radiation era as well. Following our earlier
discussion, this is possible for superhorizon-sized mag-
netic fields of inflationary origin, because they are not
affected by the electric currents of the post-inflation uni-
verse. In such a case, an evolution law of a�1 during the
whole of the radiation epoch, will add several orders of
magnitude to the residual B field. For example, the above
quoted magnetic seed of 10�35 G will ‘‘grow’’ further
during the radiation era. This field, which has length close
to the curvature radius and corresponds to TRH �
109 GeV, will be superadiabatically amplified by
TRH=Trec � 1019 orders of magnitude and reach a comov-
ing strength of up to 10�16 G. Note that, when 1��0 �
10�2, magnetic fields spanning lengths near the curvature
scale of the Universe, remain outside the horizon (and
therefore are superadiabatically amplified) throughout the
radiation era. Also, although they leave primordial nucleo-
synthesis and the cosmic microwave background unaf-
fected [19], magnetic seeds of the order of 10�16 G are
astrophysically important because they can sustain the
galactic dynamo even in conventional universes with zero
dark energy [20]. With this in mind, a more detailed (most
likely numerical) analysis is necessary to establish the full
spectrum of the residual B field. Here we have confined
ourselves to effects close to the curvature scale, which
probably means that the estimated magnetic strengths are
the maximum possible.
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FIG. 1. The ratio dðlnBÞ=dðlnaÞ for the dominant magnetic
mode (vertical axis) versus the scale parameter k (horizontal
axis), according to solution (7). Superadiabatic amplification
occurs on all scales with 0< k<

ffiffiffi

2
p

. The k ¼ 1 value gives
the curvature scale where B / a�1. Stronger amplification
occurs on supercurvature lengths, with 1< k<

ffiffiffi

2
p

. Thus, as

k ! ffiffiffi

2
p

and we approach infinite wavelengths, B / a
ffiffi

2
p �2. At

the k ¼ 0 limit the B field is well inside the curvature radius and
the adiabatic decay is restored.
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Large-scale magnetic fields have been observed almost
everywhere in the Universe. From galaxies and galaxy
clusters, to superclusters and remote high-redshift proto-
galactic structures, observations have repeatedly detected
coherent B fields of micro-Gauss strength. Despite this
widespread presence, however, the origin of cosmic mag-
netism is still unknown and a matter of debate. Inflation has
long been seen as our best mechanism for generating large-
scale magnetic fields, because it naturally leads to
superhorizon-sized correlations. The resulting fields, how-
ever, were always considered too weak to have any astro-
physical significance. This was attributed to the conformal
invariance of Maxwell’s theory and to the conformal flat-
ness of the FRW spacetimes. The two were believed to
guarantee an adiabatic decay for any cosmological B field,
irrespective of the electric properties of the Universe.

Contrary to this widespread belief, however, magnetic
fields on FRW backgrounds do not always experience an
adiabatic, Minkowski-like depletion. Departures from the
a�2 law, without breaking away from conventional elec-
tromagnetism, are possible in FRW models with non-
Euclidean spatial hypersurfaces, because those spacetimes
are not globally conformal to Minkowski space. This geo-
metrical subtlety, which has long been known within the
relativity community, but has been largely overlooked in
studies of cosmological magnetic fields, is central to our
report. Together with the vector nature of the Maxwell
field, which brings the 3-curvature into play, it is essential
in understanding the behavior of large-scale magnetic
fields in FRW cosmologies and avoids the need to deviate
from Maxwellian electromagnetism in our quest for astro-
physically relevant cosmological magnetic seeds.
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