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We study momentum relaxation due to dilute, weak impurities in a strongly coupled CFT, a truncation

of the M2 brane theory. Using the AdS/CFT correspondence, we compute the relaxation time scale as a

function of the background magnetic field B and charge density �. The theory admits two different types

of impurities. We find that for magnetic impurities, momentum relaxation due to the impurity is

suppressed by a background B or �. For electric impurities, due to an underlying instability in the theory

toward an ordered phase, the inverse relaxation time scale increases dramatically near
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
�

21T2. We compute the Nernst response for the impure theory, and comment on similarities with recent

measurements in superconductors.
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I. INTRODUCTION

Second order quantum phase transitions can occur at
zero temperature in condensed matter systems when there
is a nonanalytic change in the ground state energy as a
function of some coupling [1]. On either side of the critical
point, at sufficiently low temperatures the system admits a
quasiparticle description. The nature of the quasiparticles
depends on the orders characterizing the different phases.
For instance, Néel ordered phases have spin wave excita-
tions whereas phases with valence bond solid order have
spinon and ‘‘photon’’ excitations [2]. However, as the
temperature is increased, near to the critical coupling,
thermal fluctuations lead to competition between the dif-
ferent orders. In this strongly coupled regime, in which
both quantum and thermal fluctuations play an important
role, neither quasiparticle description is appropriate.
Instead the system is best described by a finite temperature
2þ 1 dimensional conformal field theory (CFT) [1,2].
Often this theory turns out to be relativistically invariant
(the ‘‘speed of light’’ in these theories is not c but rather
some lower speed characterizing the material).

Quantum critical points are believed to be important in
various systems of experimental interest, including the
high Tc cuprate superconductors [3,4]. In contrast, the
theorist’s toolkit of tractable 2þ 1 CFTs has largely been
limited to the OðNÞ model at large N, and related models
with relevant quartic interactions [1,2]. The (anti–de Sitter)
AdS/CFT correspondence [5] provides a wealth of new
examples of 2þ 1 CFTs in which explicit computations
are possible at large N. Although this correspondence has
been intensely studied for a decade, potential applications
to concrete condensed matter systems have only recently
begun to be explored [6–9]. Relevant earlier work on finite
temperature physics in AdS4 includes [10–13]. Most im-

mediately these CFTs provide new solvable toy models for
strongly coupled dynamics in 2þ 1 dimensions. In the
future it might be possible to engineer the relevant super-
symmetric CFTs in a lab. One can thus speculate that in
addition to having interesting physical properties in
their own right, these systems open up the possibility of
doing experimental quantum gravity via the AdS/CFT
correspondence.
In many experimental systems, microscopic impurities

in the samples leave a significant imprint on the physics.
Most directly, the impurities are at fixed (random) loca-
tions and therefore break translational invariance. This loss
leads to a relaxation of momentum at late times.
Momentum relaxation is characterized by a time scale
�imp, which will be the main focus of this paper. In many

contexts, see e.g. [8] for a discussion, momentum relaxa-
tion is necessary for dc (! ¼ 0) transport to be finite;
otherwise the ‘‘Drude peak’’ becomes a delta function as
1=�imp ! 0. Wewill exhibit similar ‘‘metallic’’ behavior in

a strongly coupled CFT with impurities.
Given a theory, the effect of impurities can in principle

be computed microscopically. Onewould like to know how
the impurity time scale depends on temperature, back-
ground magnetic field and charge density. To our knowl-
edge there is no first principles computation of
�impðT; B; �Þ available in the literature. If the impurities

are sufficiently dilute and furthermore weak enough for
their interaction with the CFT to be treated perturbatively,
then �imp can be computed from a two-point function in the

finite temperature CFT. We will derive the formula for �imp

and use the AdS/CFT correspondence to compute it for a
truncation of the M2 brane theory.
In Secs. II and III we give a general description of the

effect of dilute, weak impurities in a CFT. The main result
of these sections is Eq. (12), which expresses the impurity
relaxation time scale in terms of the retarded Green’s
function of a relevant scalar operator in the theory which
couples to the impurities.
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In Sec. IV, we show how this Green’s function may be
evaluated in a truncation of the M2 brane theory using the
AdS/CFT correspondence. Our truncation is not consistent.
We neglect a coupling between the scalar and pseudoscalar
modes we keep and a second gauge field. The inconsistent
truncation is made to keep the calculations simple and also
because we have no good physical interpretation of the
second gauge field in our condensed matter context. In
another small abuse of the M2 brane theory, we give our
pseudoscalar operator conformal dimension one instead of
two. This gives us a larger collection of relevant operators
to study. Note however that the standard M2 brane theory is
obtainable as a double trace deformation of ours [14].

In the following Sec. V we give our (numerical) results
for �impðT; B; �Þ. We first note that there are in fact two

relevant operators in the theory, dual to linear combina-
tions of the scalar and pseudoscalar of the bulk, with
considerably different effects. The operators can be distin-
guished by their transformation properties under charge
conjugation C, parity P , and time reversal T . In the
presence of a background magnetic field and finite charge
density, the first operator, Oþ, transforms the same way as
the magnetic field while O� transforms as the electric
field. We are thus tempted to identify Oþ with magnetic
impurities and O� with electric impurities.

For both operators, we find that the impurity time 1=�imp

depends on the charge density � and magnetic field B only

in the combination
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
where�0 is the electrical

conductivity at � ¼ B ¼ 0. This combined dependence,
while remarkable, may be an accident of the details of the
M2 brane theory.

For the Oþ impurities, we find that increasing the mag-
netic field or charge density suppresses momentum relaxa-
tion due to impurities. At the same time, at nonzero B there
is an independent source of momentum relaxation due to
hydrodynamic cyclotron motion. Increasing B increases
the momentum relaxation due to cyclotron motion.

However, for the other operator,O�, momentum relaxa-
tion becomes faster with increasing B or �. Whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
reaches a critical value of about 21T2,

then 1=�imp ! 1. We will see that this divergence is

symptomatic of an underlying instability of the theory
toward an ordered phase. From a gravitational point of
view, the instability occurs when the scalar field dual to
O� develops an unstable mode. This instability provides a
clean counterexample to the original version of the Gubser-
Mitra (GM) ‘‘correlated stability conjecture’’ [15,16],
similar to those discussed in [17].

In Sec. VI we use our results to compute the Nernst
coefficient in the CFT. We note that our plots show some
qualitative similarities to the organic superconductors
studied in [18], perhaps indicating a nearby quantum criti-
cal point in that system. While the organic superconductors
effectively have vanishing charge density, � ¼ 0, because

they are not doped, in the cuprate superconductors the
doping x can be thought of as a nonzero charge density [8].

II. THE EFFECT OF RANDOM DISORDER

The presence of impurities breaks the translational and
conformal invariance of the CFT. Locally the impurities
will source relevant operators and potentially drive the
theory away from the fixed point. Thus we can model the
impurities by adding the following coupling to the
Hamiltonian:

�H ¼
Z
d2yVðyÞOðt; yÞ: (1)

The operator Oðt; yÞ is the most relevant operator in the
conformal field theory that preserves the global symme-
tries of the theory. Charged impurities are also of interest,
although we shall only study neutral impurities here. This
term breaks translation invariance, because the potential
VðyÞ is explicitly space dependent, and is hard to work with
directly. To get around this one treats the impurity potential
statistically. If the impurities are sufficiently dilute that
their effects do not overlap, then the precise weighting on
the space of potentials is not important, and it is useful to
take the Gaussian [19]

h� � �iimp ¼
Z

DVe�
R
d2yVðyÞ2=2 �V2ð� � �Þ; (2)

which implies

hVðxÞiimp ¼ 0; hVðxÞVðyÞiimp ¼ �V2�ð2Þðx� yÞ: (3)

We will furthermore make the approximation that scatter-
ing off impurities may be treated perturbatively, so that we
can expand in powers of V. The strength of the potential �V
is a dimensionful quantity, with mass dimension

½ �V� ¼ 2��O: (4)

So long as 2� �O > 0, �V has positive scaling dimension
and the impurities are a relevant perturbation. This condi-
tion that �V has positive scaling dimension is often called
the Harris criterion [20]. In the case of theM2 brane theory,
the most relevant neutral operators are mass terms for the
scalar fields [21–23]. By ‘‘neutral’’ we mean with respect
to a certain Uð1Þ � SOð8Þ, as we describe below. These
operators have conformal dimension �O ¼ 1. We can
anticipate that the relevance of these operators implies
that they will become strongly coupled at low energies.
We will be careful to keep track of the regime in which
perturbation theory in �V is valid.
The breaking of translation invariance leads to the late

time nonconservation of momentum. The time scale asso-
ciated with the loss of momentum is called the impurity
relaxation time scale and is given to leading order in
strength of the impurity potential, V, by
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1

�imp
¼ � 1

�0

lim
!!0

ImGR
FF ð!; 0Þ
!

: (5)

This equation follows from considering the ‘‘memory
function.’’ We give a derivation in the following section,
along with a discussion of the precise meaning of �imp and

of regimes of validity. To fix conventions, we define the
retarded Green’s function of any operator O in Fourier
space to be

GR
OOð!; kÞ ¼ �i

Z
d2x

Z 1

0
dth½Oðt; xÞ;Oð0; 0Þ�iei!t�ik�x:

(6)

The quantities that appear in (5) are firstly

�0 � lim
!!0

GR
PP ð!; 0Þ ¼ �þ P; (7)

where P is the momentum density in a fixed direction, i.e.
P ¼ niT

0i for some unit vector n 2 R2. The number �0 is
the static susceptibility for the momentum density, � is the
energy density and P the pressure. The remaining term in
(5) is the Green’s function for the operator

F ðt; xÞ ¼ ½P ðt; xÞ; �H� ¼
Z
d2yVðyÞ½P ðt; xÞ;Oðt; yÞ�:

(8)

This expression simplifies using that the spatial integral of
P ðt; xÞ is a momentum and hence generates translations.

Locally therefore ½P ðt; xÞ;Oðt; yÞ� ¼ i�ð2Þðx� yÞ@Oðt; yÞ
up to a total derivative with respect to x. We shall ignore
this total derivative; one can use translation invariance to
show that this derivative does not contribute to the Green’s
function GR

FF . Thus (8) becomes

F ðt; xÞ ¼ i
Z
d2yVðyÞ�ð2Þðx� yÞ@Oðt; yÞ

¼ iVðxÞ@Oðt; xÞ: (9)

Here @ denotes spatial derivative in the same direction as
P , i.e. @ ¼ ni@i.

The Green’s function is therefore

GR
FF ð!; 0Þ ¼ i �V2

Z 1

0
dth½@Oðt; 0Þ; @Oð0; 0Þ�iei!t; (10)

where we used (3). Passing to momentum space, one
obtains

GR
FF ð!; 0Þ ¼ � �V2

2

Z d2k

ð2�Þ2 k
2GR

OOð!; kÞ: (11)

The factor of 1=2 arises because the integral with ðn � kÞ2 in
the integrand is half the integral with k2, by isotropy. Thus

1

�imp
¼ �V2

2�0

lim
!!0

Z d2k

ð2�Þ2 k
2
ImGR

OOð!; kÞ
!

: (12)

This is the formula we will use to compute the relaxation

time scale �imp. We will obtain the dependence on charge

density � and background magnetic field B. Because of
conformal invariance and dimensional analysis, one has
the scaling form

1

�imp
¼ �V2

T3�2�O
F

�
�

T2
;
B

T2

�
: (13)

III. THE IMPURITY TIME SCALE

A. Impurity in the absence of a magnetic field

In this section we derive the expression (5) for the
impurity time scale. First note that from the definition of
the retarded Green’s function, and (twice) using the
Heisenberg equation of motion one obtains

!2GR
PP ð!; kÞ ¼ �GR

½P ;H�½P ;H�ð!; kÞ þGR
½P ;H�½P ;H�ð0; kÞ:

(14)

This equation is true up to contact terms for any operator.
In the absence of the impurity potential, P is the conserved
momentum density as well as the energy current. If we split
the total Hamiltonian as H ¼ H0 þ �H, with �H given by
(1) above, then H0 is the Hamiltonian of a translationally
invariant theory while �H explicitly breaks this symmetry.
It follows that ½R d2xP ðxÞ; H0� ¼ 0. Thus from the defini-
tion of the retarded Green’s function, at zero spatial mo-
mentum we have that GR

½P ;H0�Oð!; 0Þ ¼ 0, for any operator

O. It follows that

!2GR
PP ð!; 0Þ ¼ �ðGR

FF ð!; 0Þ �GR
FF ð0; 0ÞÞ: (15)

Evaluated in a background with a nonzero �V, this result for
GR

PP is exact. For us the usefulness of this expression lies

in the fact that a �V2 trivially factors out of the right-hand
side, see Eq. (10), allowing us to evaluate the remainder in
a background with vanishing �V, thus yielding a result for
GR

PP that is accurate to leading order in �V2.

Given this formula (15), lim �V!0G
R
PP ð!; 0Þ ¼ 0 as re-

quired by the restoration of translational invariance in this
limit. However, we have no guarantee that at fixed nonzero
�V the lim!!0G

R
PP ð!; 0Þ=!, which is proportional to a dc

thermal conductivity, is finite. Yet physically, we expect
the system with impurities to be well behaved in response
to low frequency perturbations. These considerations sug-
gest that the response of the system is governed by a
modified Green’s function where a contact term has been
subtracted:

i�ð!; 0ÞT! � GR
PP ð!; 0Þ � �0: (16)

The quantity �ð!; 0Þ might be called a momentum con-
ductivity; in Appendix A we show that indeed hP i ¼
��ð!; 0ÞrT. By � we mean a diagonal component of
the conductivity matrix; there is no off-diagonal conduc-
tion in the absence of a magnetic field.
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We can now read off �0 in (16). In a translationally
invariant system in the absence of a magnetic field, the
momentum conductivity �ð!; 0Þ ¼ ið�þ PÞ=!T where �
is the energy density and P the pressure. This result can be
seen from hydrodynamics [8] or from the Ward identity
arguments in [9]. The fact that the imaginary part of the
conductivity behaves like 1=! implies that the real part
will contain a �ð!Þ, because with some suitable i� pre-
scription 1=! ¼ Pð1=!Þ � i��ð!Þ. This delta function is
expected for the energy flow in a translationally invariant
system, which has no way to dissipate momentum. From
the fact that translation invariance implies GR

PP ð!; 0Þ ¼ 0,

it follows that

�0 ¼ �þ P: (17)

That �0 ¼ lim!!0G
R
PP ð!; 0Þ remains finite as �V ! 0 is

consistent with the fact that the!! 0 and �V ! 0 limits of
GR

PP ð!; 0Þ do not commute.1

1. The memory function method

Now we extract the time scale from GR
PP ð!; 0Þ. The

memory function Mð!Þ is defined by

Mð!Þ � !GR
PP ð!; 0Þ

�0 �GR
PP ð!; 0Þ

; (18)

which can be formally inverted to yield

GR
PP ð!; 0Þ ¼

�0Mð!Þ
!þMð!Þ : (19)

The reason for introducing this function is to reinterpret the
small ! limit ofMð!Þ as an inverse scattering time i=�imp.

We comment on this interpretation below. At finite !, by
translational invariance we expect GR

PP ð!; 0Þ to vanish in

the absence of impurities. We also expect that the inverse
scattering time goes to zero with no impurities. Thus,
consistent with Eq. (18), we take both Mð!Þ and
GR

PP ð!; 0Þ to scale as �V2. These statements do not hold

when there is a nonvanishing background magnetic field.
For the moment we are setting B ¼ 0. As we noted, �0 ¼
GR

PP ð0; 0Þ is independent of �V to leading order. Thus from

Eq. (18), and using Eq. (15), we find the approximate
expression for Mð!Þ:

Mð!Þ � !GR
PP ð!; 0Þ
�0

¼ �ðGR
FF ð!; 0Þ �GR

FF ð0; 0ÞÞ=!
�0

:

(20)

The approximation is up to terms ofOð �V3Þ. We would like

to take the small ! limit of this expression. Because �V is
dimensionful, one should expect that in order to obtain the
true !! 0 limit it will be necessary to resum higher order
contributions in �V=!2��O . Indeed, we have already noted
that the !! 0 and �V ! 0 limits do not commute. Using
(20) directly to compute the relaxation time scale, is often
called the ‘‘memory function method,’’ see for instance
Refs. [24,25]. It was shown in Ref. [26] that this method
generally does not give the correct answer for small fre-
quencies !2��O < �V.
We can obtain reliable results in the case when the

temperature is large compared to the strength of the scat-

tering potential: �V1=ð2��OÞ � T. Given this separation of
scales, at low frequencies !� T, the constraint !2��O >
�V, for the validity of perturbation theory, should be re-
placed by the weaker constraint T2��O > �V. In the lan-
guage of the renormalization group, �V is a relevant
operator and we must choose a scale at which to evaluate
it. At nonzero temperature and at frequencies !< T, we
expect the temperature to act as a cutoff in the renormal-
ization flow for �V. In higher order corrections to the
memory function M, the ratio �V=T2��O will appear in
place of �V=!2��O . Thus at high temperatures, we are
justified in treating the impurities perturbatively, including
at very low frequencies.
Evaluated perturbatively, the expression for the memory

function (20) has an overall factor of �V2, and no other
dependence on �V. Scaling therefore implies that the fre-
quency dependence must be some function of !=T. Thus
the hydrodynamic limit !� T is equivalent to taking
!! 0 in (20). We can identify

i

�imp
¼ 1

�0

lim
!!0

�ðGR
FF ð!; 0Þ �GR

FF ð0; 0ÞÞ
!

¼ � 1

�0

dGR
FF ð!; 0Þ
d!

��������!¼0
: (21)

Using the fact that ReGR
FF is an even function while

ImGR
FF is an odd function of !, we find our main result

of the section where

1

�imp
¼ � 1

�0

lim
!!0

ImGR
FF ð!; 0Þ
!

: (22)

Let us clarify the physical meaning of �imp. Strictly, the

momentum relaxation time scale is given by the imaginary
part of the pole inGR

PP ð!; 0Þ that is closest to the real axis.
The identification of the zero frequency limit as the inverse
relaxation time scale

i

�imp
¼ lim

!!0
Mð!Þ; (23)

is valid so long as the putative pole at �i=�imp is suffi-

ciently close to the real axis, in the sense that

1In the absence of an external electric field, � is related to the
thermal conductivity �	 and thermoelectric coefficient 
̂ defined,
for example, in Ref. [9] via � ¼ �	þ 
̂�. Thus at vanishing
chemical potential �, the thermal conductivity is �. With no
chemical potential, then �0 ¼ sT, with s the entropy density,
leading to �	 ¼ is=!.
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��������M
� �i
�imp

�
� i

�imp

��������� 1

�imp

: (24)

It is easy to check, for instance, that this will be true if
GR

PP ð!; 0Þ has several poles, but one is much closer to

the real axis than the others. Given that 1=�imp �
�V2=T3�2�O � T is parametrically small compared to the
temperature scale, we expect that (24) holds. However, if
the coefficient of �V2 in (12) becomes sufficiently large,
then that expression is no longer reliable as a relaxation
time scale.

We argued above that at high temperatures, potentially
dangerous �V=!2��O corrections would be replaced by
corrections in �V=T2��O . While �V=!2��O corrections
would tend to add more poles close to the origin of the
complex ! plane, �V=T2��O corrections are suppressed.

B. Impurity plus an external magnetic field

There is great formal similarity between adding to the
Lagrangian a random potential coupled to a scalar operatorR
d3xVðxÞOðxÞ and adding an external Uð1Þ gauge field

coupled to a global current �R
d3xA�ðxÞJ�ðxÞ. This sec-

ond case was considered in detail in Ref. [9]. A constant
magnetic field has F ¼ dA ¼ Bdx ^ dy. Any potential A
for this field strength will formally break translation in-
variance, which is one way to see why GR

PP ð!; 0Þ can be

nonzero in the absence of impurities but in the presence of
a background magnetic field.

From the Ward identity results in Ref. [9], with �V ¼ 0
one has

!GR
PP ð!; 0Þ ¼ B2ðGR

JJ ð!; 0Þ �GR
JJ ð0; 0ÞÞ=!; (25)

where J ¼ Jini is the electric current. The !! 0 limit of
the current-current Green’s function needs to be taken with
care, as the B! 0 and !! 0 limits do not commute.

At �V ¼ 0, GR
JJ ð0; 0Þ vanishes for real ni, but there is

still a Hall conductivity [7,9],

lim
!!0

GR
JxJyð!; 0Þ
!

¼ i�=B: (26)

To see the Hall effect within our formalism, it is convenient
to let the ni be complex and think of GR as an inner
product. This method of complexifying the conductivities
was found to be useful in [9]. In this paper we will do so for

this section and Appendix B only. Taking ni ¼ ð1;�iÞ= ffiffiffi
2

p
,

we find

2GR
JJ ¼ GR

JxJx � iGR
JxJy þ iGR

JyJx þGR
JyJy : (27)

By rotational invariance, this expression simplifies to

GR
JJ ¼ GR

JxJx � iGR
JxJy : (28)

Combining Eqs. (15) and (25) then to include both
impurities and a magnetic field leads to

!2GR
PP ð!; 0Þ ¼ �ðGR

FF ð!; 0Þ �GR
FF ð0; 0ÞÞ

þ B2ðGR
JJ ð!; 0Þ �!�=BÞ: (29)

Like Eq. (15), we believe this expression is exact when the
right-hand side is evaluated in a background with non-
trivial B and �V and GR

JO ¼ 0. We have been loose in our

derivation, but the result can be made rigorous through a
Ward identity argument. The potential cross term propor-
tional to GR

JO will vanish anyway to leading order in �V

after averaging over V. But in fact, we will see shortly that
the Green’s function GR

JO ¼ 0 vanishes for the M2 brane

theory at leading order in 1=N before averaging.
We call poles hydrodynamic if they are close to the

origin of the complex ! plane compared to the scales T
and �. In the previous section, in the absence of a B field,
we argued that for small �V there was a hydrodynamic pole
inGR

PP at�i=�imp. In Ref. [9], we saw that in the presence

of a small magnetic field but in the absence of impurities,
there are a pair of hydrodynamic poles at

	!c � i� ¼ Bð	�� i�BÞ
�þ P

; (30)

both in GR
PP and GR

JJ . These poles correspond to damped

relativistic cyclotron motion.2 Here � is the electrical
conductivity of the CFT.
Physically, if we have a small but nonzero �V or B, we

expect the !! 0 response of the system to be well be-
haved. The poles in the Green’s functions should interpo-
late continuously between the cases in which either �V or B
vanish. Thus, contemplating (29), it is natural to expect that
the hydrodynamic poles in the presence of both �V andB are

� i��1
imp � i�	!c: (31)

This combination of �imp and the cyclotron pole was also

found in the hydrodynamic analysis of [8]. In Eq. (31) we
see that there are two sources for momentum relaxation;
one is impurities and the other can naı̈vely be thought of as
due to collisions of positively and negatively charged ex-
citations of the theory undergoing cyclotron motion in
opposite directions. In Appendix B, we demonstrate how
the memory function method can be used to extract the
correct poles from the hydrodynamic expressions for GPP
and GJJ , and we also show that these hydrodynamic

expressions satisfy the relation (29).
The impurity relaxation time scale �imp appearing in

Eq. (31) is given by the same formula as before,
Eq. (22), but can now have a B dependence, provided B
is kept small so that our expression for the cyclotron pole is
reliable. In more detail, our hydrodynamic expression for �
is correct to order B2 but we expect it to receive unknown
corrections at Oð �V2Þ. This is because the �þ P appearing

2Again, our time dependence is e�i!t. Thus � > 0 and �imp >
0 lead to exponential damping at long times.
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in the definition of � in (30) will have a �V2 dependence.
Our expression (22) for 1=� is correct to order �V2 and in
principle we know its full B dependence. However, we
expect the hydrodynamic approximation to fail at OðB3Þ.
Thus, 1=� should be trustworthy at order OðB2 �V2Þ but no
higher. Problematically, we do not know the corresponding
OðB2 �V2Þ correction to �. This uncertainty turns out to not
be important for many of our considerations. In particular,
when studying the Nernst effect at � ¼ 0 we will find that
there is no dependence on �.

IV. IMPURITYRELAXATION IN THETRUNCATED
M2 BRANE THEORY

We have shown that computing the impurity relaxation
time scale boils down to the two-point function of Eq. (12).
In this section we will perform the calculation for a trun-
cation of the M2 brane CFT, using an adaptation of the
AdS/CFT dictionary for real time two-point functions
proposed in [27]. As noted in the Introduction, the trunca-
tion of the M2 brane theory is not consistent, and we make
a nonstandard choice of conformal dimension for one of
the scalars.

The CFT at finite temperature with a nonzero charge
density and background magnetic field is dual to a dyonic
black hole in AdS4 [7]. Such a black hole is a solution to
the Einstein-Maxwell theory with a negative cosmological
constant. To this gravitational theory we would like to add
a neutral scalar field  dual to our relevant operator O.

From the M2 brane point of view, this Einstein-Maxwell
theory with a neutral scalar should be a sector of 11
dimensional supergravity compactified on an S7. After
the compactification, we are left with an N ¼ 8 super-
symmetric gravitational theory on a four-dimensional
spacetime with a negative cosmological constant and infi-
nite towers of Kaluza-Klein states. The isometry group
SOð8Þ of the S7 determines many features of the lower
dimensional theory.

It is believed to be consistent to truncate this compacti-
fication to the lowest states in the Kaluza-Klein towers.
This truncation is calledN ¼ 8 gauged supergravity. The
bosonic content of the truncation is the four-dimensional
graviton, an SOð8Þ gauge field, and a scalar and pseudo-
scalar transforming under 35 dimensional representations
of SOð8Þ. These fields and their superpartners are thought
not to act as sources for the other excited modes in the
Kaluza-Klein towers, and hence the truncation is called
consistent.

There exists a further truncation of N ¼ 8 gauged
supergravity to an Abelian sector [28]. Consider the
Cartan subalgebra of soð8Þ. The group SOð8Þ acts naturally
on R8, and we can think of the elements of the Cartan
subalgebra as generators of rotations in the 12, 34, 56, and
78 planes of R8. The action for the Abelian truncation
involves only the four Uð1Þ gauge fields corresponding to
these four rotations and the three scalar and pseudoscalar

fields neutral under these four Uð1Þ gauge groups. The full
action for this Abelian truncation can be found, for ex-
ample, in Ref. [29].
To see which scalar fields remain neutral, it is useful to

think of the 35 dimensional representation of SOð8Þ as the
set of symmetric traceless quadratic polynomials in the
coordinates on R8, xixj. The Uð1Þ’s generated by the
Cartan subalgebra act as phase rotations on the complex
combinations zi ¼ x2i�1 	 ix2i for i ¼ 1, 2, 3, 4. Thus the
neutral quadratic scalars must be jzij2 � jziþ1j2. There are
three independent such scalars. By allowing the dual op-
eratorsO to couple to the impurity potential, we are break-
ing the SOð8Þ symmetry of the M2 brane theory. However,
the operators are neutral under the Uð1Þ symmetry for
which we have a background B field and charge density.
Indeed, models for ‘‘real world’’ electronic systems often
involve neutral impurities (see for example [30]).
We will make a further truncation of this theory and

consider only the gauge field corresponding to a simulta-
neous rotation in all four planes, along with the scalar and
pseudoscalar pair corresponding to just one of these neutral
elements of the 35 dimensional representation. As we
consider scalar two-point functions, we will only need
the action to quadratic order in the scalars:

S¼� 1

2	2
4

Z
d4x

ffiffiffiffiffiffiffi�gp �
R�1

2
½ð@�Þð@�Þþð@��Þð@��Þ�

þ2L�2

�
3þ1

2
ð2þ�2Þ

�
�L2

�
1þ1

2
ð2��2Þ

�


F��F
��þ1

2
L2������F��F��

�
: (32)

Here ����� is the totally antisymmetric tensor with
�0123 ¼ 1=

ffiffiffiffiffiffiffi�gp
, and L is a length scale which determines

the AdS radius. The dyonic black hole is a solution to the
equations of motion provided that  ¼ � ¼ 0. As we can
see in (32), however, the fact that �����F��F�� does not

vanish for the dyonic background implies that fluctuations
in  and � source each other. This mixing is why we keep
the two scalar fields. We comment below on the physical
implications of the doubling.
We note that in a charged background, our final trunca-

tion to the two scalars plus the diagonal Maxwell field is
not consistent. We have neglected a quadratic coupling
between the neutral scalar fields and fluctuations of a
nondiagonal combination of the four Uð1Þ gauge fields of
the full M2 brane theory [29]. Specifically, we are throwing
away the terms

SG ¼ � 1

2	2
4

Z
d4x

ffiffiffiffiffiffiffi�gp ð�L2G��G
�� � 2L2F��G

��

þ L2������F��G��Þ; (33)

where G�� ¼ �Fð1Þ
�� þ �Fð2Þ

�� � �Fð3Þ
�� � �Fð4Þ

�� is the field

strength for a nondiagonal subgroup of Uð1Þ4. We will
continue to ignore this extra field for two reasons. First,
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it makes the fluctuation analysis much more complicated.
Second, from our condensed matter point of view, we need
only one gauge field to model electricity and magnetism,
and it is not clear to what this other gauge field would
correspond. In Appendix C we give more details about this
coupling.

The black hole has metric

1

L2
ds2 ¼ 
2

z2
½�fðzÞdt2 þ dx2 þ dy2� þ 1

z2
dz2

fðzÞ ; (34)

and carries both electric and magnetic charge

F ¼ h
2dx ^ dyþ q
dz ^ dt; (35)

where q, h and 
 are constants. The function

fðzÞ ¼ 1þ ðh2 þ q2Þz4 � ð1þ h2 þ q2Þz3: (36)

The Hawking temperature, dual magnetic field and charge
density of this black hole are [7]

B ¼ h
2; � ¼ �q
2�0; T ¼ 
ð3� h2 � q2Þ
4�

:

(37)

Note that q2 þ h2 � 3, whereas � and B are unbounded.
We have expressed the charge density in terms of the
conductivity of the dual CFT at � ¼ B ¼ 0,

�0 ¼ 2L2=	2
4 ¼

ffiffiffi
2

p
N3=2=6�: (38)

In this last equality, we reexpressed the dimensionless
L2=	24 in terms of the number N of coincident M2 branes
[31]. These relations can be inverted to give 
ðT; �; BÞ as
the solution of

3
4 � 4�T
3 ¼ B2 þ �2=�2
0: (39)

We would now like to consider small fluctuations of the
scalar fields and � about this black hole background. It is
useful to diagonalize the quadratic Lagrangian (32) first by
defining

 þ ¼ hþ q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ h2

p and  � ¼ q� h�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ h2

p : (40)

The two fields will be dual to two relevant operators O	.
For our dyonic black hole background

L4F��F
�� ¼ 2z4ðh2 � q2Þ;

1
2L

4�����F��F�� ¼ �4z4hq:
(41)

Substituting into the action (32) one obtains the following
decoupled actions for the scalar fields:

S	 ¼ � 1

2	2
4

Z
d4x

ffiffiffiffiffiffiffi�gp �
� 1

2
ð@� 	Þð@� 	Þ

þ 1

L2
½1� z4ðq2 þ h2Þ� 2	

�
: (42)

The equations of motion are therefore

h 	 ¼ ðm2 	 2z4ðq2 þ h2Þ=L2Þ 	; (43)

where m2L2 ¼ �2. Note that this mass is above the
Breitenlohner-Freedman [32] bound m2L2  �9=4. De-
pending on the sign of 	, the electromagnetic field pro-
vides a potential for the scalar that either pushes the scalar
away from or toward the horizon. We will assume that the
scalar field has the following dependence on x, y, and t:
� eikx�i!t. Thus, the equation of motion becomes

z4
�
f

z2
 0	

�0 � q2q2z2 	 þw2 z
2

f
 	 �m2L2 	

� 2z4ðq2 þ h2Þ 	 ¼ 0; (44)

where we have defined the dimensionless frequency and
wave vector w � !=
 and q � k=
, and also f0 ¼
df=dz. Near the boundary, z ¼ 0, of this asymptotically
AdS4 geometry, the scalar has the usual behavior

 	 ¼ z3��ðAð!; kÞ þOðz2ÞÞ þ z�ðBð!; kÞ þOðz2ÞÞ;
(45)

where �ð�� 3Þ ¼ m2L2.
In the standard M2 brane theory, representation theory

of SOð8Þ and the superconformal symmetry guarantees
that  has conformal dimension �O ¼ 1 while the pseu-
doscalar � has dimension �O ¼ 2 [21–23,31]. Introducing
nonzero B and �, as we have seen, mixes  and �. We
speculate that in the dyonic black hole background, it is the
linear combinations  	 which have definite conformal
dimension rather than  and � independently. We shall
avoid these subtleties by taking both  and � to have
dimension �O ¼ 1. The standard M2 brane theory is re-
lated to this choice of conformal dimension by a deforma-
tion by a double trace operator [14]. This choice has the
added benefit of providing a second scalar to analyze with
conformal dimension one, and therefore relevant.
The dimensions�O ¼ 1 and�O ¼ 2 both correspond to

the mass m2L2 ¼ �2. The fact that there are two possible
conformal dimensions associated with the same mass has
important consequences here. Having chosen the smaller
conformal dimension, it is the faster falloff that is dual to a
source for O in the boundary theory [33]

JO ¼ 
3��OAð!; kÞ; (46)

whereas the slower falloff gives the expectation value

hOi ¼ �0

4

�Oð2�O � 3ÞBð!; kÞ: (47)

From these expressions one can read off the Green’s func-
tion

hOi ¼ GR
OOð!; kÞJO: (48)

Thus

GR
OOð!; kÞ ¼ ��0

4


Bð!; kÞ
Að!; kÞ : (49)
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The standard procedure for scalars of mass m2L2 ¼ �2
would have yielded GR

OO � A=B. Because our operators

have the smaller conformal dimension, we get the result
(49).

Our job is to determine the dimensionless function F
appearing in the scaling relation (13). We will need to
compute two scaling functions F	, one for each scalar
field  	. An observation that simplifies our task is that
the differential equation (44) depends on B and � only in
the combination h2 þ q2, or equivalently B2 þ �2=�2

0.

Thus, F is a function of B2 þ �2=�2
0 only.3 Using the

fact that for the dyonic black hole [7,9]

� ¼ �0

3

2
ð1þ h2 þ q2Þ; P ¼ �

2
; s ¼ ��0


2;

(50)

and that for the M2 theory (12) becomes

1

�imp
¼ �V2

T
F

�
1

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q �
; (51)

the expressions in the preceding paragraphs imply that

F

�
1

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q �
¼ � sT

16�2ð�þ PÞ limw!0



Z
dqq3Im

Bðw; qÞ
wAðw; qÞ : (52)

It is interesting to recall from [9] that the dc conductivity
for the M2 brane, with nonvanishing B and � is given by

� ¼ ðsTÞ2
ð�þ PÞ2 �0; (53)

allowing us to rewrite (52) as

F

�
1

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q �
¼ � 1

16�2

ffiffiffiffiffiffi
�

�0

s
lim
w!0



Z
dqq3Im

Bðw; qÞ
wAðw; qÞ : (54)

The physical meaning of this formula is not clear, because
in general there is no particular reason for the impurity
relaxation time scale to be related to the electrical con-
ductivity of the CFT in the absence of impurities. It re-
mains for us to solve for Aðw; qÞ and Bðw; qÞ numerically.

A. Comment on discrete symmetries

Before turning to computations, we should comment
that we have found two relevant operators O	, both with
dimension �O	 ¼ 1. Both operators preserve the global

Uð1Þ symmetry and in principle, they could both be
sourced by impurities. However, these operators transform

differently under the discrete symmetries charge conjuga-
tion C, parity P , and time reversal T .
Usually we make a sharp distinction between the way

operators transform and the way states transform. The
situation here is complicated by the fact that our fields
 	 dual to the O	, and hence the O	 themselves, are
defined in (40) in terms of the state and, in particular, the
choice of background magnetic field B and charge density
�. In studying  	, when we act with C, P , and T , we will
act on both the operator and the underlying state.
From the gauged N ¼ 8 supergravity construction we

know that  and � are both real fields and thus do not
transform under C. At the same time is a scalar while � is
a pseudoscalar. Thus we haveP ðÞ ¼  andP ð�Þ ¼ ��.
From the CPT theorem, we must have under time reversal
that T ðÞ ¼  while T ð�Þ ¼ ��.
The transformation properties of the electromagnetic

field under C, P , and T are well known. In our case, the
strength of the electric field of the black hole, which is dual
to the charge density � on the boundary, is characterized by
the value of q. The magnetic field strength B is fixed by the
value of h. Under parity, we know the electric field is a
vector while the magnetic field is a pseudovector. Thus we
haveP ðqÞ ¼ �qwhileP ðhÞ ¼ h. C flips the sign of both q
and h. Finally, the magnetic field famously breaks time
reversal symmetry, and so T ðhÞ ¼ �h while T ðqÞ ¼ q.
Assembling these facts about q, h,  and � together we

find that

C ð þÞ ¼ � þ; P ð þÞ ¼  þ; T ð þÞ ¼ � þ;

Cð �Þ ¼ � �; P ð �Þ ¼ � �; T ð �Þ ¼  �:
(55)

The subscript of  	 thus corresponds to the eigenvalue of
the field under P . In adding impurities, we are faced with a
choice: we can let the impurities break T but not P or P
but not T . In the next section, we will see the behavior of
the scattering time �imp for the Oþ impurities is markedly

different from the O� impurities.
Note that Oþ transforms the same way under the dis-

crete symmetries as the magnetic field while O� trans-
forms as the electric field. It is thus tempting to call theOþ
impurities magnetic and the O� impurities electric. The
underlying scalar fields  and � are of course neutral. The
nontrivial transformation of  	 under C comes from the
dressing by the dyonic black hole background, or equiv-
alently, the presence of magnetic field and charge density
in the field theory.

V. NUMERICAL RESULTS FOR 1=�imp

The prescription for computing the retarded Green’s
function [27] is that we solve the equation for our scalar
field in the black hole background (44) with ingoing
boundary conditions at the black hole horizon z ¼ 1,

3Amusingly, this dependence only on the combination h2 þ q2

remains true in the full M2 brane theory, in which one keeps the
second gauge field to which  and � couple. See Appendix C.
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 � ð1� zÞiw=ðh2þq2�3Þ: (56)

It is convenient to impose these boundary conditions by
defining a new function SðzÞ such that

 ðzÞ � exp

�
iw

Z z

0

x2

fðxÞdx
�
SðzÞ: (57)

Thus SðzÞ is nicely behaved at the horizon and we can
impose Sð1Þ ¼ 1. It is straightforward to integrate the
equation for SðzÞ numerically from the horizon to the
boundary at z ¼ 0. Near the boundary one can read off
the value of the ratio B=A that we need to compute the
scaling function F.

Given B=A, we then need to compute the integral (52)
over k. This integral may not converge, and indeed we
discuss below a large � and B regime where it does not for
the  � scalar field. However, the divergence comes from
bad behavior at finite k. At large kwe expect the imaginary
part of the Green’s function to be exponentially damped.
Appendix D presents a WKB analysis that demonstrates
this damping. Qualitatively, we may understand the behav-
ior from the bulk as follows. At large k, the Green’s
function is dominated by a spacelike geodesic which stays
close to the boundary of the spacetime and far from the
black hole horizon; it is the horizon that is responsible for
producing dissipative effects and a nonzero contribution to
the imaginary part of the Green’s function.

We begin by considering the two-point function corre-
sponding to the scalar field  þ, that is, magnetic impuri-

ties. The result for Fþ is plotted in Fig. 1(a). As the
combination B2 þ �2=�2

0 is increased, the inverse scatter-

ing time becomes smaller and smaller. There is also a
competing physical process that we described in
Sec. III B above: the cyclotron resonance. If we keep
B=T2 small (h� 1), then we can trust our hydrodynamic
approximation of the location of the cyclotron pole at!c �
i�, given in (30). In Fig. 2, we plot the dimensionless �=T
against �=T2�0 for an appropriately small B=T2 ¼ 1. We
see that at large �, the damping due to the cyclotron
resonance also gets small while the frequency changes
more slowly. The reduction in damping both from impuri-
ties and the B field at large � may make the hydrodynamic
cyclotron mode easier to observe experimentally than the
results in [8] suggested, as there the dependence of �imp on

B and � was not considered.
We also would like to consider the scaling function F�

for the  � scalar fields. The result is plotted in Fig. 1(b),
and is somewhat dramatic. We define the related dimen-
sionless quantities

Q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ q2

q
and Q � 1

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
: (58)

We find that F� increases monotonically as a function ofQ
or Q and at a finite value Q� ¼ 0:766 54, which corre-
sponds to Q� ¼ 20:80, 1=�imp diverges. This divergence

reveals some interesting physics in the ‘‘pure’’ CFTwhich
we will return to shortly. Note that we cannot trust our
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FIG. 1 (color online). The function F	 for the M2 brane theory for (a) the scalar field  þ and (b)  �.
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FIG. 2 (color online). (a) The real part of the cyclotron frequency and (b) momentum relaxation due to the cyclotron resonance at
B ¼ T2.
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memory function formalism if 1=�imp gets too large.

Higher order and nonperturbative effects are important in
this regime.

From a gravitational standpoint, we may attempt a
qualitative understanding of the decrease (increase) of
1=�imp with � and B for the  þ ( �) field. From (44),

the scalar  	 experiences a potential of the form
	2z4ðh2 þ q2Þ. Thus for  þ, the potential repels the scalar
from the black hole horizon while for  �, the potential has
the opposite effect. The black hole horizon is responsible
for dissipation in the system, and we expect the more the
probability distribution of the scalar is peaked near the
horizon, the larger the imaginary part of the scalar
Green’s function will be and hence the larger 1=�imp will

be. The decrease in F	 with B and � for  þ and the
corresponding increase for  � in Figs. 1(a) and 1(b) are
thus qualitatively understood.

A. A black hole instability

The divergence in F� is caused by an underlying insta-
bility in the truncated M2 brane theory at large Q.
Numerically we have found that the divergence in F�
appears to be caused by a diffusion-type pole in the scalar
Green’s function moving onto the real k axis. Near the
critical value Q�, the pole has the approximate form

GR
OO � 1

Cðh; qÞ � q2 þ 6iw=5þ � � � : (59)

The ellipsis denotes higher order terms in ! and k and
Cðh; qÞ ¼ 1:3911ðQ�Q�Þ. In Figs. 3(a) and 3(b) we have
plotted the location of the pole as a function of Q. Note
that in both plots, for k2 and Im!, the curves reach the real
axis at Q� ¼ 20:80. At this point, two changes occur
simultaneously. First, 1=�imp diverges because, at ! ¼ 0,

there is a (double) pole on the real k axis that is integrated
over in (52). Second, at k ¼ 0, the imaginary part of !
switches sign leading to exponential growth in the scalar
mode at long times.

This exponential growth in time is indicative of an
underlying instability in the CFT when Q>Q�. Indeed,
the retarded Green’s function cannot have poles in the

upper half ! plane, indicating that for Q>Q� we are no
longer in the correct vacuum. To evaluate the impurity time
for Q>Q�, we would need to find a different stable
supergravity background in which the  � field was at a
local minimum. This instability illustrates the dangers in
this particular black hole background of working in a
consistent truncation in which we set  � ¼ 0; had we
ignored fluctuations in  �, we would have missed this
instability.
This instability in the theory is interesting from a purely

gravitational perspective. First note that poles in the
Green’s function (49) occur when the denominator
Að!; kÞ vanishes. This vanishing means there exist on shell
modes with the behavior  	 ¼ zþOðz3Þ near the confor-
mal boundary z ¼ 0. Because of the nonstandard boundary
conditions for the  	 fields, these modes are physical. For
the critical value Q ¼ Q�, the physical mode is static, with
! ¼ 0. This ‘‘threshold’’ mode separates oscillating
modes, with Q<Q� and Im!< 0, from exponentially
growing modes, with Q>Q� and Im!> 0. For Q>Q�
there is an on shell classical instability of the black hole.
A classical instability of the full finite temperature M2

brane was discovered in [15,16]. To see that instability, it is
necessary to retain more than one Maxwell field in the
bulk, whereas we have truncated to a diagonal combina-
tion. Converting to our variables, the Gubser-Mitra insta-
bility occurs with h ¼ 0 and at qGM ¼ 1, corresponding to
the value �GM=�0T

2 � 39:5. This charge density is larger
than necessary for the instability we have described. Given
that the two instabilities occur in different theories, one
might be cautious about attaching much meaning to the
relative values of the critical charges.4
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FIG. 3 (color online). The location of the smallest pole in GR
O�O�

as a function of B and �: (a) the pole in the complex k plane for
! ¼ 0. Note k2 is real. (b) The pole in the complex ! plane for k ¼ 0. Note Reð!Þ ¼ 0.

4In fact, the analysis in [15,16] also employs an inconsistent
truncation. Although that work does include the gauge field G, it
does not include the pseudoscalar �, which is sourced by G. See
Appendix C. For an investigation of threshold modes ! ¼ k ¼
0, this �Gxy coupling will vanish and so should not affect the
location of the Gubser-Mitra instability. Note also, [15,16] work
with conformal dimension � ¼ 2 for the operator dual to , so
their dual theory is also related to the standard M2 brane theory
by a double trace deformation.
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The classical Gubser-Mitra instability occurs at pre-
cisely the same value of the charge density at which the
charged black hole with four Uð1Þ gauge fields becomes
thermodynamically unstable. This coincidence led Gubser
and Mitra to the correlated stability conjecture, that for
translationally invariant horizons, thermodynamic and
classical dynamic instabilities should always coincide.

In contrast, our black hole with only one Uð1Þ gauge
field is always thermodynamically stable [7]; it only be-
comes thermodynamically unstable when embedded into
the full M2 brane theory, with four independent charges.
Given this dynamical instability without a corresponding
thermodynamic instability, we have a counterexample to
the correlated stability conjecture. The physics underlying
our counterexample appears to be very similar to the
counterexamples discussed in [17]. The mismatch between
thermodynamic and classical instability is possible be-
cause the instability is due to scalar fields that are not
associated to conserved charges. The instability indicates
a phase transition to an ordered phase, characterized by a
condensate for the operator O� dual to the field  �. As
noted in [17], it seems appropriate to widen the notion of
thermodynamic instability of black holes in these cases to
allow for variations of the value of the scalar field at the
conformal boundary. Because this phase transition is asso-
ciated with breaking an underlying Z2 symmetry,  � !
� �, of the truncated supergravity action, the transition is
likely to be second order.

VI. THE NERNST EFFECT IN THE TRUNCATED
M2 BRANE THEORY

Place a system in a thermal gradient and a perpendicular
magnetic field. The Nernst effect is the observation of an
electric field that is created orthogonal to both the thermal
gradient and the background magnetic field. The Nernst
coefficient is the electric field generated per unit of thermal
gradient and magnetic field

N ¼ E

BrT : (60)

Recent experimental interest in the Nernst effect in
superconductors was sparked by the observation by Ong
et al. of an anomalously large Nernst effect in the pseudo-
gap region of the high-Tc superconductors [34]. This ob-
servation was interpreted as signaling the presence of
vortices, and hence the persistence of a phase disordered
Cooper pair condensate, above the transition temperature.
The Nernst effect has since been used to probe the presence
of long-lived Cooper pair fluctuations in conventional
superconductors [35] and also to capture the proximity of
a Mott insulating phase in certain organic superconductors
[18].

The Nernst effect depends strongly on the impurity
relaxation time. Therefore, the B and � dependence of
�imp that we explored above may have measurable con-

sequences for observations of the Nernst effect in various
types of superconductors. In this section, we explore the
dependence of the Nernst effect on �imp. We argue that

there are qualitative similarities between aspects of the T
and B dependences of the Nernst effect observed in organic
superconductors [18] and the Nernst effect we predict at
� ¼ 0. In the underdoped cuprate superconductors [34,36],
for a range of typical values of the doping, we find that the
relatively large size of � compared with experimentally
accessible values of Bmake �imp relatively insensitive to B.

The exception to this last statement is very close to the
insulating state at doping xI ¼ 1=8, where � ¼ 0 is again
appropriate.
A hydrodynamic approach to the Nernst effect was

developed in Ref. [8]. That work led to the following
formula for the Nernst coefficient in a relativistic theory
with speed of light v. For the next couple of formulas only
we shall not set v ¼ 1, as we have been doing in this paper,
and shall also show explicitly the unit electric charge e. It
was found that

N ¼ v2

T

�
1=�imp

ð!2
c=�þ 1=�impÞ2 þ!2

c

�
: (61)

Restoring the v and e dependences of the cyclotron pole,
we have

!c ¼ eB�v2

�þ P
and � ¼ �B2v2

�þ P
: (62)

In Ref. [8] the hydrodynamic expression (61) was used
to reproduce some features of the experimentally observed
Nernst effect in the cuprates. However, in the absence of a
microscopic theory, the simplifying assumption was made
that the functions of state, the conductivity � and the
impurity scattering time �imp did not depend significantly

on the dimensionless ratios �=T2 and B=T2. For the M2
brane theory, �ð�=T2; B=T2Þ was computed in Ref. [9],
and in this paper we have computed �imp. Thus we have all

the ingredients necessary for an exact computation of the
Nernst coefficient at a quantum critical point.
The Nernst effect is a direct probe of the impurity

relaxation time. We see in (61) that a nonzero �imp is

necessary for the Nernst coefficient to be finite. This
connection becomes particularly striking in the limit of
vanishing charge density, � ¼ 0, where (61) becomes sim-
ply

N ¼ v2�imp

T
¼ v2

�V2FðB=T2Þ ; (63)

where in the second step we used (51) for the M2 brane
theory. One nice feature of this formula is that the depen-
dence on � has dropped out, and with it the uncertainties of
order �V2B2 that we discussed at the end of Sec. III B.
Using our numerical results from the previous section, it

is straightforward to plot the Nernst coefficient for the
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truncated M2 brane theory as a function of B and T, which
is how the experimental data are often presented
[18,36,37]. In Fig. 4(a) we plot the Nernst coefficient in
the case of vanishing charge density (63). We have taken
the impurity potential to couple to the Oþ operator. If we
had taken theO� operator, the dark and light regions of the
plot would have been interchanged. For ease of comparison
with experiments, we should consider plotting in SI units.
In order to convert B=T2 from our ‘‘natural units,’’ with
v ¼ kB ¼ @ ¼ e ¼ 1, one must first introduce the velocity
v ¼ �v m=s, and then note that

Tesla

ðkelvinÞ2 ¼ 8:8
 10�8�2
v

k2B
e@v2

: (64)

We now need to specify the number �v. A convenient
choice is �v ¼ 3400, as this makes the conversion factor
8:8
 10�8�2

v ¼ 1. Curiously, this appears to be in a
physically reasonable ballpark, at least for the cuprate

superconductors. This value corresponds to @v ¼
22 meV �A, whereas the value estimated in [8] for under-

doped lanthanum strontium cuprate was 47 meV �A and the
characteristic velocity observed in yttrium barium cuprate

(YBCO) was 35 meV �A [38]. While all plots in this section
are in natural units, in Fig. 4(a), for concreteness only, we

have assumed @v ¼ 22 meV �A and put kelvin and Tesla on
the axis labels.

In Fig. 4(a), the range of temperatures and magnetic
fields has been constrained by the validity of the hydro-
dynamic approximation, which for the M2 brane theory
requires B=T2 & 10 [9]. Outside this regime one does not
expect (61) to hold. Although the M2 brane theory can be
studied beyond the hydrodynamic regime [9], in that case
our arguments in Sec. III B for combining the effect of
impurities and the magnetic field do not hold.

The qualitative form of Fig. 4(a) is determined from the
fact that N � 1=FðB=T2Þ, with F a monotonically decreas-
ing function. This scaling will be a universal feature of the

Nernst effect at � ¼ 0 in the vicinity of a quantum critical
point. The scaling near a general quantum critical point
will be

N � T2�2�O

FðB=T2Þ : (65)

We illustrate this general form in Fig. 4(b), taking FðxÞ ¼
1=ð1þ x2Þ for concreteness. It is interesting to note that
this qualitative form appears to arise in Fig. 3(b) of
Ref. [18] at low magnetic fields and just above the super-
conducting phase transition temperature, Tc. The authors
of Ref. [18] study organic superconductors, and their
Fig. 3b is, like our Fig. 4, a plot of NðT; BÞ. Their system
also has zero charge density, as it is not doped. The region
of interest (low B, just above Tc) is precisely that for which
[18] proposes that strongly correlated electron physics is
important, as are the effects of a nearby Mott transition.
We can try to compute the Nernst signal with a finite

charge density using the formula (61). As a benchmark,
one can compare with experimental results for the under-
doped cuprate superconductors. It was argued in [8] that
the charge density was given by the difference in the
doping from the commensurate insulating state at xI ¼
1=8, divided by the area of a unit lattice cell. For under-
doped LSCO, at x� xI ¼ �0:025 for example, the lattice

constant is a ¼ 3:78 �A, leading to

� ¼ eðx� xIÞ
a2

� 0:028
C

m2
: (66)

The conductivity at the critical point can be estimated to be
[39]

�0 � 4e2

h
� 1:6
 10�4 C

2

J s
; (67)

allowing us to obtain
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FIG. 4 (color online). (a) The Nernst signal N for the truncated M2 brane theory as a function of B and T, with vanishing charge
density � ¼ 0. The impurity potential is coupled to Oþ. Lighter denotes a larger Nernst coefficient. (b) The Nernst signal in the
vicinity of a general quantum critical point with � ¼ 0 and �O ¼ 1. The shading is logarithmically spaced.
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�

�0
� 175 T: (68)

We have expressed the result in Tesla, so that it may be
compared to the value of the background magnetic field.
The value of 175 T is significantly larger than the typical
magnetic fields applied in experiments measuring the
Nernst effect in the cuprate superconductors. In our ex-
pression for the Nernst coefficient, the magnetic field B
only appears in the combination B2 þ �2=�2

0. Therefore

the large value of the charge density in (68) swamps out the
B dependence, and the resulting plot of NðT; BÞ shows
simply vertical lines. We might note however that both
(66) and (67) are only tentative identifications, so the result
(68) could change substantially. In particular, the conduc-
tivity (67) assumes the putative nearby superconductor-
insulator quantum phase transition in the cuprates is in
the same universality class as the films reviewed in [39].

It was suggested in [8] that the quantity that should be
compared with measurements of the Nernst effect in the
cuprates is not N, but rather the off-diagonal thermoelec-
tric coefficient 
xy. This was to isolate the contribution of

critical superconducting fluctuations from noncritical fer-
mionic contributions to the conductivity. This coefficient
gives the electrical current generated by an applied thermal
gradient: Jx ¼ �
xy@yT. It is related to the Nernst re-

sponse by the electrical conductivity, roughly 
xy �
�xxBN. Here �xx is the full conductivity of the system,
not just that of the critical fluctuations. The thermoelectric
coefficient has a B dependence that is not swamped out by
a large charge density [8], and indeed reproduces various
features of the experimental data for NðT; BÞ in the cup-
rates. The large charge density implies that if we use our
M2 brane expressions for the impurity time scale
�impð�; B; TÞ, we will not introduce any extra dependence

on B into the previous results of [8]. In any case, the high

critical temperature of the cuprates combined with the
value for the velocity v, discussed above, implies that
B=T2, �=T2 � 1 over the region of interest. Therefore it
is consistent to neglect the B and � dependence of �imp and

the �þ P for these systems.
In Fig. 5 we have plotted the Nernst coefficient for the

truncated M2 brane theory with �=�0 ¼ 8:3
 10�5 and
�=�0 ¼ 10, in each case with �V ¼ 0:1. We have again
usedOþ as the operator coupling to the impurity potential.
The plots are significantly different and less universal than
the vanishing charge density case of Fig. 4. As � becomes
nonzero, a local maximum appears at small temperatures
and moves rapidly to the right as the charge density is
increased. Note that unlike the � ¼ 0 case we considered
previously, Fig. 5(a), in particular, is vulnerable to the
unknown �V2B2 corrections to � that we mentioned in
Sec. III B above. Its qualitative form however should be
correct, as it needs to interpolate between Figs. 4 and 5(b).
What we learn from these plots is that (with �V ¼ 0:1) a

very small �=�0 � 10�5 is already sufficient to produce
significant deviations from the � ¼ 0 result. This suggests
that one would have to tune very close to the insulating
doping of xI ¼ 1=8 in order to see the scaling � ¼ 0
behavior of Eq. (65). However, it is curious that the ob-
servations in [36] do appear to show similar behavior at
low B and with T just above Tc.

VII. DISCUSSION

A. Summary of results for the impure CFT

In this paper we have derived a general formula (12) for
the impurity relaxation time scale at a quantum critical
point. Some of our steps in Sec. III were adapted from
earlier works [24–26]. We then used our formula to obtain
�imp for the truncated M2 brane theory. We found that there
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FIG. 5 (color online). The Nernst signal N for the truncated M2 brane theory as a function of B and T, with (a) charge density
�=�0 ¼ 8:3
 10�5 and (b) charge density �=�0 ¼ 10, and �V ¼ 0:1 in both cases. The impurity potential is coupled to Oþ. Lighter
denotes a larger Nernst coefficient.
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were two relevant operators O	 that were neutral under a
global Uð1Þ symmetry. This led to the following results:

(i) For the ‘‘magnetic’’ operator dual to the scalar field
 þ, increasing the magnetic field B and charge
density � suppresses momentum relaxation due to
impurities, see Fig. 1(a). At small B and sufficiently
large �, this implies that the cyclotron resonance
described in [8,9] may be easier to observe experi-
mentally than previously estimated because the im-
purity damping effects become smaller.

(ii) For the operator dual to the scalar field  �, in con-
trast, the inverse relaxation time increases when the
charge density � and magnetic field B are increased.

Beyond the critical value Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
�

21T2, the inverse relaxation time actually diverges.
See Fig. 1(b). We saw that the divergence is associ-
ated with a new instability in the underlying finite
temperature CFT. The scalar field  � develops an
unstable mode when the Q gets too large. This
instability is dual to a phase transition to an ordered
state in which O� condenses.

(iii) The Nernst coefficient for the truncated M2 brane
theory with vanishing charge density, � ¼ 0, is
shown in Fig. 4 with impurity relaxation due to the
Oþ operator. We noted that our dependence on T and
B is qualitatively similar to the results for low mag-
netic fields and for temperature close to the critical
temperature observed in various types of supercon-
ductors [18,36,37]. This comparison makes most
sense for the data in [18], in which the system is
not doped. It is interesting to note, however, the
similarity in the Nernst response between the differ-
ent superconductors in this regime.

B. Some directions for future work

Our results are perturbative in the strength of the impu-
rity potential �V and valid at high temperatures. We fur-
thermore used the memory function formalism, which
requires 1=�imp not to be too large. Various techniques

have been developed in condensed matter theory for treat-
ing random disorder more exactly. It would be very inter-
esting to see if these can be applied to the M2 brane theory.

Our treatment of the M2 brane theory was not com-
pletely satisfactory. We made an inconsistent truncation in
order to avoid dealing with more than oneUð1Þ gauge field.
We also made a nonconventional choice for the conformal
dimension of our supergravity mode �. One clear project
for the future is to repeat the calculations presented here
including the extra Uð1Þ gauge field and using the standard
choice of conformal dimension for �.

But it would also be interesting to take a more general
approach. While in our M2 brane theory, the operators we
considered had conformal dimension �O ¼ 1, in general
the spectrum of operator dimensions will depend on the

CFT. Our bulk equation of motion (44) for the scalar field
 dual to the operator O can be generalized to allow the
scalar field to have an arbitrary mass. This is dual to
allowing �O to vary. One could imagine using the AdS/
CFT correspondence more ‘‘phenomenologically’’ to see
how the effects of impurity relaxation depend on the
dimension of O.
One result of this paper is the instability of the truncated

M2 brane theory at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ �2=�2

0

q
� 21T2. We noted that

this instability is a counterexample to the original formu-
lation of the correlated stability conjecture, as the black
hole is thermodynamically stable at this value of the charge
density and magnetic field. As with the previously studied
counterexamples [17], the mismatch between dynamics
and thermodynamics occurs because there is no conserved
charge associated with the scalar fields. The instability
presumably indicates the existence of new dyonic black
hole solutions in which both the scalar  and pseudoscalar
� are nonvanishing. It would be interesting to find these
new solutions and understand their implications for the
dual theory.
In combining the effects of impurities and an external

magnetic field, we were constrained to work in a regime
where B=T2 was not too large. It would be nice to relax this
requirement. An approach via Ward identities looks
promising.
We have noted that the Nernst effect in systems with

vanishing charge density can be a very clean indicator of
the proximity of a quantum critical point, via the scaling
relation (65). Perhaps this scaling can be searched for in
future measurements of the Nernst effect.
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APPENDIX A: RELATING GR
PP TO A

CONDUCTIVITY

The connection between GR
PP ð!; 0Þ and � is established

as follows. The momentum conductivity is defined by

hP i ¼ ��ð!; 0ÞrT: (A1)

The momentum density P can be sourced by fluctuating
the background spacetime metric. Specifically, by defini-
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tion there is a coupling between metric fluctuations and the
stress tensor in the action, �S ¼ 1

2

R
d3xT���g��. (We are

treating T�� as a tensor density rather than a tensor field
and hence have absorbed a factor of

ffiffiffiffiffiffiffi�gp
.) Without loss of

generality by rotation invariance, we can restrict to a
fluctuation only in the spatial direction �g0i. Choosing
nj ¼ �ij, linear response theory then implies

hP i ¼ GR
PP ð!; 0Þ�g0jnj: (A2)

The remaining step is to show that �g0i is gauge equivalent
to a thermal gradient. Recall that under a diffeomorphism
generated by the vector �a, metric perturbations transform
as �gab ¼ @a�b þ @b�a. We choose �i ¼ 0 and @i�0 ¼
��g0i. After this gauge transformation �g0i vanishes and
@i�g00 ¼ 2i!�g0i, assuming the fluctuations have a time
dependence of the form e�i!t. Recall that the Euclidean
time direction is periodic with period 1=T. It is convenient
to fix the period and take g00 ¼ 1=T2. A shift in tempera-
ture thus implies @ig00 ¼ �2@iT=T

3 ¼ �2g00@iT=T, to
leading order in @iT. Putting these formulas together leads
to the intermediate result

�g0i ¼ � g00@iT

i!T
: (A3)

We have to be careful in interpreting this result because we
rescaled time at an intermediate step. Moreover, we re-
scaled g00 without rescaling !. We now need to rescale
time back to the lab frame, where time has period 1=T in
the Euclidean direction, being careful not to rescale !:

�g0i ¼ � @iT

i!T
: (A4)

Thus we find from (A1) and (A2) that

i�ð!; 0ÞT! � GR
PP ð!; 0Þ; (A5)

as claimed in the main text. As we noted, GR
PP ð!; 0Þ needs

to be corrected by a contact term to give a sensible !! 0
limit for the conductivity.

APPENDIX B: HYDRODYNAMICS AND THE
MEMORY METHOD

In this Appendix we show that the results obtained from
hydrodynamics in [8,9] are completely consistent with the
memory function methods. Consider GR

JJ � !�þ for the

choice ni ¼ ð1;�iÞ= ffiffiffi
2

p
. We will henceforth suppress the

superscript R since it is clear we work only with retarded
Green’s functions in this Appendix. In [9], for a transla-
tionally invariant theory in the hydrodynamic limit, it was
argued that this holomorphic conductivity takes the form

�þ ¼ i�
!þ i!2

c=�þ!c

!þ i��!c

: (B1)

Using (25), we find that

GPP ð!Þ ¼ ð�þ PÞ i��!c

!þ i��!c

: (B2)

As expected,GPP ð0Þ ¼ �þ P ¼ �0. Moreover, this result
is entirely consistent with the memory function formalism,

lim
B!0

!GPPð!Þ
�0

¼ i��!c: (B3)

This limit is B=T2 ! 0. The frequency !=T is kept small
but fixed.
In [8], it was shown that an impurity scattering time

could be introduced by making the replacement !! !þ
i=� in the conductivities. This followed from hydrodynam-
ics plus a relaxation of momentum imposed by hand. This
substitution yields

�0þ ¼ i�
!þ i=�þ i!2

c=�þ!c

!þ i=�þ i��!c

(B4)

which agrees with the combination �xy þ i�xx from [8].

We use the superscript 0 to indicate a Green’s function or
conductivity in the presence of impurities. The prescription
is trickier when applied to GPP . The relevant transport
coefficient we will call �þ is related via !T�þ ¼
GPP ð!Þ � �0. Thus

�0þT ¼ � �0

!þ i=�þ i��!c

; (B5)

which then implies that

G0
PP ð!Þ ¼ �0

i=�þ i��!c

!þ i=�þ i��!c

: (B6)

Again, the memory function method works with this modi-
fied G0

PP yielding a pole at the appropriate ! ¼ �i=��
i�þ!c.
Let us now compute

B2ð�0þð!Þ � �þð0ÞÞ ¼ �0

ð!þ i=�Þði��!cÞ
ð!þ i=�þ i��!cÞ ; (B7)

and check the extent to which (25) continues to hold in the
small 1=� and B limit:

lim
B;ð1=�Þ!0

!

�0

�
G0

PP ð!Þ �
B2

!2
ðG0

JJ ð!Þ �GJJ ð0ÞÞ
�

¼ i��!c þ i=�� ði��!cÞ ¼ i=�: (B8)

Indeed, that is exactly the result we were looking for,
suggesting (29) is correct. We have made only an indirect
assumption about the B dependence of 1=�. Our hydro-
dynamic framework is valid only up to OðB2Þ. Thus while
(22) appears to capture the full B dependence of 1=�, in
this hydrodynamic context, we can trust the answer only up
to OðB2Þ.
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APPENDIX C: ACTION FOR FLUCTUATIONS
WITHOUT TRUNCATION

In this Appendix we give, for possible future use, the
untruncated action for perturbations of the dyonic black
hole background (34) and (35).

From Appendix F of [29] one can check that the full
action for 3 scalars, 3 pseudoscalars and 4 gauge fields may
be consistently truncated for linearized perturbations of the
dyonic black hole to one scalar, , one pseudoscalar, �,
and one gauge field G:

S¼� 1

2	2
4

Z
d4x

ffiffiffiffiffiffiffi�gp �
R�1

2
½ð@�Þð@�Þþð@��Þð@��Þ�

þ2L�2

�
3þ1

2
ð2þ�2Þ

�
�L2

�
1þ1

2
ð2��2Þ

�


F��F��þ1

2
L2������F��F���L2G��G

��

�2L2F��G
��þL2������F��G��

�
: (C1)

We have used the same notation as in the main text.

In particular G�� ¼ �Fð1Þ
�� þ �Fð2Þ

�� � �Fð3Þ
�� � �Fð4Þ

��,

whereas the background gauge field is F�� ¼ Fð1Þ
�� þ

Fð2Þ
�� þ Fð3Þ

�� þ Fð4Þ
��.

Once again it is useful to introduce the fields  	 defined
in (40). Evaluated on the dyonic black hole background,
the action becomes

S¼� 1

2	2
4

Z
d4x

ffiffiffiffiffiffiffi�gp �
�1

2
½ð@� þÞð@� þÞ

þð@� �Þð@� �Þ�þL�2ð 2þþ 2�Þ
�L�2z4ðh2þq2Þð 2þ� 2�Þ�L2G��G

��

�4L�2 z
4


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þq2

q
ð
 �Gtzþ þGxyÞ

�
: (C2)

In this expression we note that once again the background
magnetic and electric charges only appear in the combina-
tion h2 þ q2. It should be possible to decouple the equa-
tions of motion following from this action and find the
momentum relaxation in the full theory. Solving the full
equations would also be of interest in terms of revisiting
the computations in [15,16].

APPENDIX D: EXPONENTIAL FALLOFF AT
LARGE k

The exponential falloff of the imaginary part of the
Green’s function with large spatial momentum k can be
seen from a WKB analysis. To perform a WKB analysis of
the differential equation (44), we first transform it into
Schrödinger form. (A very similar analysis was performed
in an appendix of Ref. [27].) To that end, we define a new
wave function �	 such that �	ð�Þ ¼  	ðzÞ=z and a new
radial coordinate �ðzÞ such that @z� ¼ 1=f. With these

new definitions, the differential equation becomes

ð�@2� þ Vð�Þ �w2Þ�	ð�Þ ¼ 0 (D1)

where

Vð�Þ ¼ f

z2
ðm2L2 þ q2z2 þ 2f� z@zf	 2z4ðq2 þ h2ÞÞ:

(D2)

In terms of the new radial variable, we can take

� ¼
Z z

0

dz0

fðz0Þ : (D3)

Thus, the horizon at zh ¼ 1 has been moved to �h ! 1.
The boundary at zb ¼ 0 remains at �b ¼ 0.
Note that for m2L2 ¼ �2 we have Vð0Þ ¼ q2. We are

interested in the case of spacelike momentum, k� !, for
which there are no classical turning points. The wave
function is exponentially damped everywhere. The imagi-
nary part of the retarded Green’s function will be propor-
tional to the probability for the particle to reach the horizon
at zh ¼ 1:

ImGR
OO � exp

�
�2

Z 1

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�Þ �w2

q �
: (D4)

Given that k� !, we can approximately evaluate this
integral to give ImGR

OO � expð�ak=
Þ where we have

defined the coefficient

a � 2
Z 1

0

dzffiffiffiffiffiffiffiffiffi
fðzÞp : (D5)

In other words, the WKB analysis is telling us that ImGR
OO

is exponentially damped for large enough k=
. In the case
where h ¼ q ¼ 0, we may evaluate the integral analyti-
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FIG. 6 (color online). The points are numerically determined
values of the log of the imaginary part of GR

OOð0; kÞ as a function
of k for q2 þ h2 ¼ 1=4 and the  þ scalar field. More
specifically, we plot lnðlimw!0B=wAÞ. The line is a best fit
1:15–3:15q. For these values of q and h, WKB gives us a ¼
2:86.
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cally to findZ 1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z3

p ¼
ffiffiffiffi
�

p
�ð4=3Þ

�ð5=6Þ � 1:402: (D6)

In order for our integral (52) over q ¼ k=
 of the imagi-

nary part of the Green’s function to converge, this expo-
nential damping is important. We observed it numerically
for more general values of h and q. In Fig. 6, we plot the
log of the imaginary part ofGR

OOð0; kÞ as a function of k=

and indeed see linear behavior at large k.
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