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We propose a manifestly U-duality invariant modular form for the D6R4 interaction in the effective

action of type IIB string theory compactified on T2. It receives perturbative contributions up to genus

three, as well as nonperturbative contributions from D-instantons and ðp; qÞ string instantons wrapping T2.

Our construction is based on constraints coming from string perturbation theory, U-duality, the decom-

pactification limit to ten dimensions, and the equality of the perturbative part of the amplitude in type IIA

and type IIB string theories. Using duality, parts of the perturbative amplitude are also shown to match

exactly the results obtained from 11 dimensional supergravity compactified on T3 at one loop. We also

obtain parts of the genus one and genus k amplitudes for the D2kR4 interaction for arbitrary k � 4. We

enhance a part of this amplitude to a U-duality invariant modular form.
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1. INTRODUCTION

It is an important problem to construct the low energy
effective action of string theory. Not only does it yield
valuable information about the perturbative and nonpertur-
bative structure of string theory, but it also elucidates the
role of U-duality. The effective action of string theory can
be constructed perturbatively in�0, the inverse of the string
tension. Of course there are also expected to be corrections
which are nonperturbative in �0. Constructing certain in-
teractions in the effective action is sometimes tractable in
theories with maximal supersymmetry. These special in-
teractions are Bogomol’nyi-Prasad-Sommerfield (BPS),
and receive only a finite number of perturbative contribu-
tions, as well as corrections due to various instantons. We
shall consider the special case of toroidal compactification
of type IIB superstring theory to eight dimensions, such
that it preserves all the 32 supersymmetries.

Certain classes of BPS interactions in the low energy
eight dimensional effective action are expected to satisfy
nonrenormalization theorems. For example, the D2kR4

interactions (at least for sufficiently low values of k), where
k is a non-negative integer, are expected to receive only a
finite number of perturbative contributions, as well as non-
perturbative corrections from D-instantons, and ðp; qÞ
string instantons wrapping T2. Here R4 stands for the
t8t8R

4 interaction [1–3], and can be expressed entirely in
terms of four powers of the Weyl tensor. The U-duality
symmetry and maximal supersymmetry imposes strong
constraints on these interactions.

Type IIB superstring theory compactified on T2 has a
conjectured U-duality symmetry group SLð2;ZÞU �
SLð3;ZÞM [4,5]. The complex structure modulus U of T2

transforms nontrivially under SLð2;ZÞU as

U ! aUþ b

cUþ d
; (1)

where a, b, c, d 2 Z, and ad� bc ¼ 1.
The SLð3;ZÞM factor of the U-duality group arises in a

somewhat involved way. The theory has an SLð2;ZÞ� (S-
duality) symmetry under which the complexified coupling

� ¼ �1 þ i�2 ¼ C0 þ ie�� (2)

transforms as

� ! a�þ b

c�þ d
; (3)

while the combination BR þ �BN transforms as

BR þ �BN ! BR þ �BN

c�þ d
; (4)

where BNðBRÞ is the modulus from the Neveu-
Schwarz–Neveu-Schwarz (NS-NS) Ramond-Ramond (R-
R) two-form on T2. It also has an SLð2;ZÞT (T-duality)
symmetry under which the Kahler structure modulus of T2

T ¼ BN þ iV2; (5)

transforms as

T ! aT þ b

cT þ d
; (6)

where V2 is the volume of T2 in the string frame. It also acts
on the complex scalar � defined by

� ¼ �BR þ i�1V2; (7)

as

� ! �

cT þ d
; (8)

while leaving the eight dimensional dilaton invariant. The
SLð2;ZÞ� and SLð2;ZÞT symmetries can be intertwined*abasu@ias.edu
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and embedded into the SLð3;ZÞM factor of the U-duality
group.

The part of the supergravity action involving the scalars
can be written in the Einstein frame as (we are following
the conventions of [6])

S� 1

l6s

Z
d8x

ffiffiffiffiffiffiffiffiffiffi�ĝ8
p

�
�
�@�U@̂� �U

2U2
2

þ 1

4
Trð@�M@̂�M�1Þ þ . . .

�
; (9)

where the hat denotes quantities in the eight dimensional
Einstein frame. In (9), M is a symmetric matrix with
determinant one given by

M ¼ �1=3
1=�2 �1=�2 ReðBÞ=�2
�1=�2 j�j2=�2 Reð ��BÞ=�2

ReðBÞ=�2 Reð ��BÞ=�2 1=�þ jBj2=�2

0
@

1
A;
(10)

where B ¼ BR þ �BN , and � ¼ ð�2V2
2 Þ�1.

In the Einstein frame, where the metric is U-duality
invariant, the coefficients of these protected D2kR4 inter-
actions should be given by modular forms of the U-duality
group, which are invariant under SLð2;ZÞU � SLð3;ZÞM
transformations. Constructing these modular forms for
toroidal compactifications of type II string theory and M
theory that preserve maximal supersymmetry, and analyz-
ing their nonrenormalization properties have been worked
out for some of these operators in various dimensions [6–
23] (see [24,25] for reviews). In eight dimensions, a modu-
lar form for the D4R4 interaction has been proposed
recently [26]. In this work, we shall propose a manifestly
U-duality invariant modular form for theD6R4 interaction
in the effective action. By this, we actually mean the

ðs3 þ t3 þ u3ÞR4 (11)

interaction involving the elastic scattering of two
gravitons.

To summarize, we propose that modular form is given
by

E ð3=2;3=2ÞðMÞ þ 20
3E3ðM�1ÞSLð3;ZÞE3ðU; �UÞSLð2;ZÞ

þ fðU; �UÞ þ 1
2E3=2ðMÞSLð3;ZÞE1ðU; �UÞSLð2;ZÞ; (12)

where EsðMÞSLð3;ZÞ (EsðM�1ÞSLð3;ZÞ) is the nonholomorphic
modular invariant Eisenstein series of SLð3;ZÞM of order s
in the fundamental (antifundamental) representation. Also

EsðU; �UÞSLð2;ZÞ is the nonholomorphic modular invariant
Eisenstein series of SLð2;ZÞU. These Einstein series sat-
isfy the Laplace equation on the fundamental domain of
moduli space. On the other hand, fðU; �UÞ and Eð3=2;3=2ÞðMÞ
are SLð2;ZÞU and SLð3;ZÞM invariant modular forms,
respectively, that satisfy the Poisson equation on the fun-
damental domain of moduli space given by

�SLð2;ZÞUfðU; �UÞ ¼ 12fðU; �UÞ � 6ðE1ðU; �UÞÞ2; (13)

and

�SLð3;ZÞEð3=2;3=2ÞðMÞ ¼ 12Eð3=2;3=2ÞðMÞ � 3
2ðE3=2ðMÞÞ2:

(14)

We begin by constructing the perturbative part of the
modular form. Constraints coming from string perturbation
theory, U-duality, the decompactification limit to ten di-
mensions, and the equality of the perturbative part of the
amplitude in type IIA and type IIB string theories, lead us
to propose the complete perturbative part of the modular
form.1 This receives contributions only up to genus three in
string perturbation theory. Using duality, we next provide
evidence for some of these contributions by analyzing the
one-loop four graviton scattering amplitude in 11 dimen-
sional supergravity compactified on T3.
We next propose the exact expression for the modular

form based on constraints of supersymmetry and the ten
dimensional SLð2;ZÞ� invariant answer. This provides
the nonperturbative completion of the perturbative part of
the modular form and involves contributions from
D-instantons, as well as from ðq; qÞ string instantons wrap-
ping T2. Analyzing one-loop 11 dimensional supergravity
compactified on T3, we also obtain parts of the genus one
and genus k amplitudes for the D2kR4 interaction for
arbitrary k � 4. We enhance a part of this amplitude to a
U-duality invariant modular form. We also make some
comments about generalizing our construction to toroidal
compactifications with maximal supersymmetry to lower
dimensions. In the appendices, relevant details for the
Eisenstein series of SLð2;ZÞ and SLð3;ZÞ and the torus
amplitude are summarized. They also contain a discussion
about possible contributions to the modular form we might
have missed, where we provide arguments that they should
vanish.

II. THE PERTURBATIVE PART OF THE
PROPOSED MODULAR FORM

We begin by constructing the perturbative part of the
proposed modular form. The low energy effective action
for type IIB superstring theory in ten dimensions includes
the interaction (in the string frame) [21]

S� l4s
Z

d10x
ffiffiffiffiffiffiffi�g

p ð�ð3Þ2e�2� þ 2�ð3Þ�ð2Þ þ 6�ð4Þe2�

þ 2

9
�ð6Þe4� þ . . .ÞD6R4; (15)

1Since the R4 interaction involves the even-even spin struc-
tures only, the perturbative contributions have to be the same in
the two type II string theories. Thus this part of the amplitude
must be symmetric under the interchange of U and T, while the
eight dimensional IIA dilaton goes to the IIB dilaton and vice
versa.
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where the . . . involve contributions from D-instantons.
Thus from (15), we see that the D6R4 interaction receives
perturbative contributions only up to genus three.
Compactifying on T2 of volume V2l

2
s in the string frame,

this leads to an interaction in the eight dimensional
Einstein frame given by

S� l6s
Z

d8x
ffiffiffiffiffiffiffiffiffiffi�ĝ8

p ðV2e
��Þ2ð�ð3Þ2e�2� þ 2�ð3Þ�ð2Þ

þ 6�ð4Þe2� þ 2
9�ð6Þe4� þ . . .ÞD̂6R̂4: (16)

Thus the modular form for the D6R4 interaction must
include, among other terms,

ðV2e
��Þ2ð�ð3Þ2e�2� þ 2�ð3Þ�ð2Þ þ 6�ð4Þe2�

þ 2
9�ð6Þe4�Þ: (17)

We first construct the perturbative part of the modular
form.

A. Constraints using string perturbation theory

Let us consider the perturbative contributions to the
D6R4 interaction. As mentioned before, by this interac-
tion, we actually mean the term

ðs3 þ t3 þ u3ÞR4 (18)

in the four graviton scattering amplitude.
Consider the tree-level and one-loop amplitudes for this

interaction using string perturbation theory. The sum of the
contributions to the four graviton amplitude at tree level
[1,3] and at one loop [3,27] in type II string theory com-
pactified on T2 is proportional to2�

�V2e
�2� �ð�l2ss=4Þ�ð�l2s t=4Þ�ð�l2su=4Þ

�ð1þ l2ss=4Þ�ð1þ l2st=4Þ�ð1þ l2su=4Þ
þ 2�I

�
R4; (19)

where V2 is the volume of T2 in the string frame, s, t, u are
the Mandelstam variables, and I is obtained from the one-
loop amplitude. We are looking at the part of the amplitude
involving the even-even spin structures, and hence the
amplitude is the same for type IIA and type IIB string
theories. Now I is given by

I ¼
Z
F

d2�

�2
2

ZlatFð�; ��Þ; (20)

where F is the fundamental domain of SLð2;ZÞ, and

d2� ¼ d�d ��=2. The relative coefficient between the
tree level and the one-loop terms in (19) is fixed using
unitarity [28]. In (20), the lattice factor Zlat which depends
on the moduli is given by [29]

Zlat ¼ V2

X
m1;m2;n1;n22Z

e
�ð�=�2Þ

P
i;j

ðGþBNÞijðmiþni�Þðmjþnj ��Þ

¼ V2

X
A2Matð2�2;ZÞ

exp

�
�2�iTðdetAÞ

� �T2

�2U2

�������� 1 U
� �

A
�

1

 !��������2
�
; (21)

where

Gij ¼ T2

U2

1 U1

U1 jUj2
� �

: (22)

Also the dynamical factor Fð�; ��Þ in (20), which is
independent of the moduli, is given by

Fð�; ��Þ ¼
Z
T

Y3
i¼1

d2�i

�2

ð	12	34Þl2s sð	14	23Þl2s tð	13	24Þl2su:

(23)

In (23), �i (i ¼ 1; . . . ; 4) are the positions of insertions of
the four vertex operators on the toroidal world sheet, and
�4 has been set equal to � using conformal invariance.
Also d2�i ¼ d�R

i d�
I
i , where �R

i (�I
i ) are the real (imagi-

nary) parts of �i. The integral over T is over the
domain T ¼ f�1=2 � �R

i < 1=2; 0 � �I
i <�2g. Finally,

ln	ð�i � �j;�Þ is the scalar Green function between the

points �i and �j on the toroidal world sheet.

Expanding (20) to sixth order in the momenta, we get
that

I ¼ l6s
3
ðs3 þ t3 þ u3Þ½Î1 þ Î2�; (24)

where

Î1 ¼ 4
Z
F L

d2�

�2
2

Zlat

Z
T

Y3
i¼1

d2�i

�2

ln	̂ð�1 � �2;�Þ

� ln	̂ð�1 � �3;�Þ	̂ð�2 � �3;�Þ; (25)

and

Î 2 ¼
Z
F L

d2�

�2
2

Zlat

Z
T

Y3
i¼1

d2�i

�2

½ln	̂ð�1 � �2;�Þ�3; (26)

which can be depicted diagrammatically as in Fig. 1.
In the expressions above, we have defined

	̂ð�i � �i;�Þ ¼ 	ð�i � �j;�Þ � 1
2 lnjð2�Þ1=2
ð�Þj2:

(27)

Thus we have removed the zero mode part of the scalar
propagator, which does not contribute to the on-shell am-
plitude using sþ tþ u ¼ 0.
In (25) and (26), note that the one-loop contribution has

been integrated over the restricted fundamental domain
F L of SLð2;ZÞ, which is obtained from F by restricting2The calculation actually yields R4 at the linearized level.
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to �2 � L. This is necessary to separate the analytic parts
of the amplitude from the nonanalytic parts (see [30] for a
detailed discussion). The integral overF L gives both finite
and divergent terms to the amplitude in the limit L ! 1.
The terms which are finite in this limit are the analytic parts
of the amplitude. The parts which diverge in this limit
cancel in the whole amplitude when the contribution
from the part of the moduli space F with �2 > L is also
included. In addition to these divergences which cancel,
the contribution from F with �2 > L also gives the vari-
ous nonanalytic terms in the amplitude. Keeping this in
mind, we shall consider only the contributions which are
finite in the limit L ! 1 and drop all divergent terms. In
the calculations, we shall see that the domain of integration
F shall often be changed to the upper half-plane or a strip.
Then truncating to F L to calculate the analytic terms
cannot be done when the integration over F L produces
divergences of the form lnL [30]. However, for our case
there are no logarithmic divergences, and so this is not a
problem for us.

In calculating both Î1 and Î2, we need to add the con-
tributions from the zero orbit, the nondegenerate orbits,
and the degenerate orbits of SLð2;ZÞ, respectively [29].

(i) The contribution from the zero orbit involves setting
A ¼ 0 in (21).

(ii) The contribution from the nondegenerate orbits in-
volves setting

A ¼ k j
0 p

� �
; (28)

where k > j � 0, p � 0 in (21), and changing the
domain of integration to be the double cover of the
upper half-plane.

(iii) The contribution from the degenerate orbits involves
setting

A ¼ 0 j
0 p

� �
(29)

such that ðj; pÞ � ð0; 0Þ in (21), and changing the
domain of integration to be the strip 0<�2 <L,
j�1j< 1=2.

The details of the calculation of Î1 and Î2 are given in the
appendix. This gives us

Î1 ¼ 1

8�6
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ;

Î2 ¼ 1

32�6
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ

þ 3

32�3
�ð2Þ�ð3ÞðE1ðU; �UÞSLð2;ZÞ þ E1ðT; �TÞSLð2;ZÞÞ:

(30)

Thus the total amplitude in (19) gives�
�ð3Þ2e�2�V2 þ 10

�5
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ

þ �ð3ÞðE1ðU; �UÞSLð2;ZÞ þ E1ðT; �TÞSLð2;ZÞÞ
�

� l6sðs3 þ t3 þ u3ÞR4: (31)

B. Constraints using U-duality and the
decompactification limit

Having obtained the tree level and the one-loop contri-
butions to the scattering amplitude, we now show how U-
duality and the decompactification limit constrains the
perturbative structure of the modular form. Now (31) leads
to the term in the effective action in the Einstein frame
given by

l6s
Z

d8x
ffiffiffiffiffiffiffiffiffiffi�ĝ8

p
V2e

�2�

�
�ð3Þ2e�2�V2 þ 10

�5
E3ðU; �UÞSLð2;ZÞ

� E3ðT; �TÞSLð2;ZÞ þ �ð3ÞðE1ðU; �UÞSLð2;ZÞ

þ E1ðT; �TÞSLð2;ZÞÞ
�
D̂6R̂4: (32)

Thus the tree level and the one-loop contributions to the
modular form are given by

�ð3Þ2ð�22V2Þ2 þ �22V2

�
10

�5
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ

þ �ð3ÞðE1ðU; �UÞSLð2;ZÞ þ E1ðT; �TÞSLð2;ZÞÞ
�
: (33)

Note that the U dependent parts of the modular form in

(33) involving E3ðU; �UÞSLð2;ZÞ and E1ðU; �UÞSLð2;ZÞ are
SLð2;ZÞU invariant. Thus whatever multiplies these terms
must be SLð3;ZÞM invariant. Thus in (33), the two expres-
sions

�22V2E3ðT; �TÞSLð2;ZÞ; (34)

which multiplies E3ðU; �UÞSLð2;ZÞ, and
�22V2; (35)

which multiplies E1ðU; �UÞSLð2;ZÞ, must both be enhanced to
invariant modular forms of SLð3;ZÞM. Such modular

I
1

I
2

FIG. 1. Schematics of the torus amplitude.
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forms need not be simple expressions involving Eisenstein
series of SLð3;ZÞM. For example, the modular forms for
the R4 and the D4R4 interactions in ten dimensions are
given by Eisenstein series of SLð2;ZÞ� which satisfies the
Laplace equation on the fundamental domain of SLð2;ZÞ�,
however, the modular form for the D6R4 interaction is
more complicated, and satisfies a Poisson equation on the
fundamental domain of SLð2;ZÞ�. However, we now argue
that there are simple and natural modular forms of
SLð3;ZÞM to which (34) and (35) can be ehanced to.

In order to motivate natural candidates for these modular
forms, from (33) note that the genus g contribution to the
perturbative part of the modular form involves ð�22V2Þ2�g.
Given the structure of the perturbative contributions to

EsðMÞSLð3;ZÞ which follow from (A13), we see that the
possible choices are severely restricted. In fact, there are
only two possibilities:

(i) E�3=2ðMÞSLð3;ZÞ, which contributes at genus one and
three, and

(ii) E3=2ðMÞSLð3;ZÞ, which contributes at genus one and
two.

The only other possibility based on the �22V2 dependence

is E�9=2ðMÞSLð3;ZÞ, which contributes at genus zero and

five. However the tree-level contribution is proportional

to ð�22V2Þ2E6ðT; �TÞSLð2;ZÞ, which is inconsistent with the
known tree-level amplitude.

In fact, from (A13), we see that3

E�3=2ðMÞSLð3;ZÞpert ¼ 1

60
ð�22V2Þ�1 þ 3

2�5
�22V2E3ðT; �TÞSLð2;ZÞ;

(36)

which has a genus one contribution involving (34), where
we have also used the relation (A5). Also we have that

E3=2ðMÞSLð3;ZÞpert ¼ 2�ð3Þ�22V2 þ 2E1ðT; �TÞSLð2;ZÞ; (37)

which has a genus one contribution involving (35). This
suggests a natural enhancement

10

�5
�22V2E3ðT; �TÞSLð2;ZÞE3ðU; �UÞSLð2;ZÞ

! 20

3
E�3=2ðMÞSLð3;ZÞpert E3ðU; �UÞSLð2;ZÞ;

�ð3Þ�22V2E1ðU; �UÞSLð2;ZÞ ! 1

2
E3=2ðMÞSLð3;ZÞpert E1ðU; �UÞSLð2;ZÞ:

(38)

Thus (33) gets enhanced to

�ð3Þ2ð�22V2Þ2 þ �ð3Þ�22V2E1ðT; �TÞSLð2;ZÞ
þ 1

9ð�22V2Þ�1E3ðT; �TÞSLð2;ZÞ

þ 20
3E�3=2ðMÞSLð3;ZÞpert E3ðU; �UÞSLð2;ZÞ

þ 1
2E3=2ðMÞSLð3;ZÞpert E1ðU; �UÞSLð2;ZÞ; (39)

where we have added the term involving

ð�22V2Þ�1E3ðT; �TÞSLð2;ZÞ by hand. This is a genus three
contribution and has to be added to ensure the perturbative
equality of the type IIA and type IIB scattering amplitudes,
for reasons explained before.
However as we shall explain below, (39) cannot be the

complete perturbative part of the modular form, because it
does not give the correct perturbative contributions on
decompactifying to ten dimensions: the genus two contri-
bution vanishes as we shall shortly explain, contradicting
(15). We thus add a term

fðT; �TÞ þ fðU; �UÞ (40)

by hand to (39), where fðT; �TÞ (fðU; �UÞ) is invariant under
SLð2;ZÞT (SLð2;ZÞU) transformations. This yields a genus
two contribution, and is also manifestly symmetric under
the interchange of T and U. We shall fix fðT; �TÞ later.
Thus, adding (39) and (40), we propose that the com-

plete perturbative part of the modular form is given by

�ð3Þ2ð�22V2Þ2 þ �ð3Þ�22V2E1ðT; �TÞSLð2;ZÞ þ fðT; �TÞ
þ 1

9ð�22V2Þ�1E3ðT; �TÞSLð2;ZÞ þ fðU; �UÞ
þ 20

3E�3=2ðMÞSLð3;ZÞpert E3ðU; �UÞSLð2;ZÞ

þ 1
2E3=2ðMÞSLð3;ZÞpert E1ðU; �UÞSLð2;ZÞ: (41)

Thus, converting to the string frame, we see that (41)
yields the contributions

genus 0: �ð3Þ2;

genus 1:
10

�5
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ þ �ð3Þ

� ðE1ðU; �UÞSLð2;ZÞ þ E1ðT; �TÞSLð2;ZÞÞ;
genus 2: E1ðU; �UÞSLð2;ZÞE1ðT; �TÞSLð2;ZÞ þ fðT; �TÞ
þ fðU; �UÞ;

genus 3:
1

9
ðE3ðU; �UÞSLð2;ZÞ þ E3ðT; �TÞSLð2;ZÞÞ;

(42)

and so the perturbative part of the amplitude is the same in
type IIA and type IIB string theories.
We now show that in ten dimensions, (41) without the

fðT; �TÞ þ fðU; �UÞ term gives all the contributions in (15)
except the genus two contribution. We first decompactify
to nine dimensions by defining3We use �ð�3Þ ¼ 1=120.
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T2 ¼ r1rB; U2 ¼ r1
rB

; (43)

where r1 is the direction that is being decompactified.
Here r1 and rB are the radii of T2 in the string frame.
Now let us take the limit r1 ! 1, so that T2, U2 ! 1.
This leads to the nine dimensional interaction

l5s
Z

d9x
ffiffiffiffiffiffiffiffiffiffi�g9

p �
ðrBe�2�Þ�ð3Þ2 þ

	
15

�4
�ð5Þ�ð6Þ

�
r5B þ 1

r5B

�

þ 2�ð2Þ�ð3Þ
�
rB þ 1

rB

�

þ 4�ð2Þ2ðrBe�2�Þ�1 þ 2

9
�ð6Þ

� ðrBe�2�Þ�2

�
r3B þ 1

r3B

��
D6R4;

(44)

where we have set ls
R
d8x

ffiffiffiffiffiffiffiffiffiffi�g8
p

r1 ¼ R
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p

. We

have dropped a term that diverges in the nine dimensional
limit. This term comes from the genus one amplitude and is
given by

40

�5
�ð6Þ2l5s

Z
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p

r51D6R4: (45)

This term is only one of an infinite number of such diverg-
ing terms coming from the infinite number of analytic
terms. These diverging terms as well as the nonanalytic
terms must add up to give the massless threshold singu-
larity in nine dimensions, and hence do not form a part of
the D6R4 interaction in nine dimensions. Clearly because
the infinite number of divergent terms must add to give the
threshold singularity, every divergent term must be inde-
pendent of the dilaton, and hence must come from the
decompactification limit of the genus one amplitude only.
The fact that there are no divergent terms from the higher
genus amplitudes is a consistency check of our proposal.
Also, note that the one-loop amplitude in (44) precisely
agrees with string perturbation theory [31], providing a
nontrivial check for our proposed modular form.

Finally, taking the limit rB ! 1, we get the term in the
ten dimensional effective action

l4s
Z

d10x
ffiffiffiffiffiffiffi�g

p �
�ð3Þ2e�2� þ 2�ð3Þ�ð2Þ

þ 2

9
�ð6Þe4�

�
D6R4; (46)

where we have set ls
R
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p

rB ¼ R
d10x

ffiffiffiffiffiffiffi�g
p

. We

have dropped a divergent term given by

15

�4
�ð5Þ�ð6Þl4s

Z
d10x

ffiffiffiffiffiffiffi�g
p

r4BD
6R4: (47)

Apart from the genus two term, (46) precisely matches (15)
providing some more evidence for the perturbative part of
the modular form. Dropping the fðT; �TÞ þ fðU; �UÞ term in
(42), note that the ten dimensional contribution comes
entirely from the terms which are independent ofU in (42).

Finally, let us consider the divergent term (47). This has
been computed directly in ten dimensions in [15], where it
was shown that the divergent term and the genus two
contribution together are proportional to

2
3 �ð4Þe4�

B þ 1
2�ð5Þr4B: (48)

This is exactly what we get by adding the genus two
contribution in (46) and the divergence in (47),4 up to an
overall irrelevant numerical factor of �ð6Þ=3�ð4Þ. This
provides another strong check of our proposal.

III. EVIDENCE USING ELEVEN DIMENSIONAL
SUPERGRAVITYAT ONE LOOP ON T3

We now provide some evidence for the perturbative part
of the proposed modular form by considering the four
graviton scattering amplitude in 11 dimensional supergrav-
ity compactified on T3. Of course 11 dimensional super-
gravity cannot give the complete answer. There are extra
contributions due to membrane instantons wrapping the
T3. This will give contributions depending on the Kahler
structure modulus in type IIA, and complex structure
modulus in type IIB string theory. So the supergravity
analysis will miss such contributions, and we shall see
that it yields the leading U2 behavior of some of the terms,
which arise while going from the M theory to the string
theory coordinates.
In order to look at the supergravity contributions to the

D6R4 interaction, we need to go beyond the one-loop
amplitude.5 Two and three-loop contributions (and possi-
bly higher loops as well) also contribute to the amplitude
[15,32–34] which we shall not discuss. We shall see that
the one-loop supergravity amplitude coupled with the ge-
nus zero string theory amplitude will give us some of the
terms in our proposed modular form.
So let us consider one-loop supergravity in 11 dimen-

sions compactified on T3. Apart from the overall kinematic
factor which contains the spacetime dependence, the cal-
culation simplifies and boils down to a box diagram cal-
culation in scalar field theory with cubic interaction,
essentially because of supersymmetry. The four graviton
amplitude is given by [15,35–37]

A4 ¼ �4
11

ð2�Þ11 K̂½IðS; TÞ þ IðS;UÞ þ IðU; TÞ�; (49)

where K̂ involves theR4 interaction at the linearized level,
and

4We also use �ð5Þ ¼ �4=90.
5In this section, loops refer to spacetime loops in 11 dimen-

sional supergravity on T3. We shall refer to the world sheet
expansion of string perturbation theory as the genus expansion.
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IðS; TÞ ¼ 2�4

l311V3

Z 1

0

d�

�

Z 1

0
d!3

Z !3

0
d!2

Z !2

0
d!1

� X
fl1;l2;l3g

e�GIJlIlJ�=l
2
11�QðS;T;!rÞ�; (50)

where QðS; T;!rÞ ¼ �S!1ð!3 �!2Þ � Tð!2 �!1Þð1�
!3Þ.6 Here V3 is the volume of T3 in the M theory metric.
Denoting the torus directions as 1, 2, and 3, we choose
G11 ¼ R2

11 to be the metric along the M theory circle, thus

R11 ¼ e2�
A=3. Though we need the ðs3 þ u3 þ t3ÞR4 term,

we shall later find it useful to extract a part of the momen-
tum independent amplitude from (49) in order to fix nor-
malizations. This is given by

A4ðS ¼ T ¼ U ¼ 0Þ

¼ �4
11K̂

ð2�Þ11 �
�4

l311V3

Z 1

0

d�

�

X
fl1;l2;l3g

e�GIJlIlJ�=l
2
11

¼ �4
11K̂

ð2�Þ11 � �
4
Z 1

0

d�

�5=2

X
fl̂1;l̂2;l̂3g

e��GIJ l̂I l̂J l
2
11
=�; (51)

where we have done Poisson resummation using (A16).

Considering the l̂1 � 0, l̂2 ¼ l̂3 ¼ 0 piece, (51) gives [9]

A4ðS ¼ T ¼ U ¼ 0Þ ¼ �4
11K̂

ð2�Þ11l311
½�3�ð3Þe�2�A þ . . .�:

(52)

Let us now focus on the ðs3 þ u3 þ t3ÞR4 interaction,
which is contained in the analytic part of (50). The relevant
expression is given by [26]

IðS; TÞanal ¼ 2�4G3
ST

3!l311V3

X
ðl1;l2;l3Þ�ð0;0;0Þ

Z 1

0
d��2e�GIJlIlJ�=l

2
11

¼ 2�7G3
ST

3!

X
ðl̂1;l̂2;l̂3Þ�ð0;0;0Þ

Z 1

0
d�

ffiffiffiffi
�

p
e��GIJ l̂I l̂J l

2
11
=�;

(53)

where

G 3
ST ¼

Z 1

0
d!3

Z !3

0
d!2

Z !2

0
d!1ð�QðS; T;!rÞÞ3

¼ 12

9!
ððs2tþ st2Þ þ 3ðs3 þ t3ÞÞ: (54)

We are interested only in those terms in (53) that lead to
the perturbative string contributions given in the previous
section. There are two contributions to this:

(i) the ðl̂2; l̂3Þ ¼ ð0; 0Þ, l̂1 � 0 part of (53), which we
call IðS; TÞ1anal and

(ii) the ðl̂2; l̂3Þ � ð0; 0Þ, l1 ¼ 0 part of (53), where we

have undone the Poisson resummation over l̂1 to go
to l1, which we call IðS; TÞ2anal.

Proceeding along the lines of [26], we get that

IðS; TÞ1anal ¼
�9

135
G3

STl
3
11e

2�A
; (55)

where we have used �ð�3Þ ¼ 1=120, and

IðS; TÞ2anal ¼
2�7G3

ST

3!R11l11

X
ðl̂2;l̂3Þ�ð0;0Þ

Z 1

0
d��e��l2

11
l̂i l̂jgij=ð�R11Þ;

(56)

where we have used the IIA string frame metric

gAi�1;j�1 ¼ R11

�
Gij �

G1iG1j

G11

�
; (57)

where i; j ¼ 2, 3. Using

gAij ¼
TA
2

UA
2

1 UA
1

UA
1 jUAj2

� �
; (58)

we get that

IðS; TÞ2anal ¼
4�4

3!

�
l11
R11

�
3ðTA

2 Þ2G3
STE3ðUA; �UAÞSLð2;ZÞ:

(59)

Thus adding (55) and (59), we see that the perturbative
part is given by

IðS; TÞanal ¼
�
�9

135
l311e

2�A þ 4�4

3!
ðTA

2 Þ2E3ðUA; �UAÞSLð2;ZÞ

�
�
l11
R11

�
3
�
G3

ST: (60)

Finally, using

G 3
ST þ G3

SU þG3
UT ¼ 60

9!
ðs3 þ t3 þ u3Þ; (61)

we get that

A4 ¼ �4
11K̂

ð2�Þ11l311

�
�3�ð3Þe�2�A

þ 60

9!

	
4�4

3!
ðTA

2 Þ2E3ðUA; �UAÞSLð2;ZÞ þ �9

135
e4�

A




� l6sðs3 þ t3 þ u3Þ
�
; (62)

where we have used l11 ¼ e�
A=3ls.

In order to fix the genus zero contribution, we note that
the tree-level amplitude is given by

TA
2 e

�2�A

�
�ð3Þ þ �ð3Þ2

2 � 96 l
6
sðs3 þ t3 þ u3Þ þ . . .

�
R4: (63)

Thus given the genus zero R4 interaction in (62), we can6Note that � has dimensions of ðlengthÞ2.
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also deduce the precise coefficient of the ðs3 þ t3 þ u3ÞR4

interaction at genus zero. This contribution has to come
from the two-loop four graviton amplitude.

This leads to terms in the IIB effective action in the
string frame

l6s
Z

d8x
ffiffiffiffiffiffiffiffiffiffi�g8

p �
�3�ð3Þ2
2 � 96 e�2�V2 þ 60

9!

�
	
4�4

3!
E3ðT; �TÞSLð2;ZÞU3

2 þ ðe�2�V2Þ�2

� �9

135
U3

2


�
D6R4: (64)

These are contributions at genus zero, one, and three,
respectively. Given theU2 dependence and the perturbative
equality of the type IIA and type IIB amplitudes, it is
natural to guess that a part of the amplitude with the
complete U dependence is

�3l6s
2 � 96

Z
d8x

ffiffiffiffiffiffiffiffiffiffi�g8
p �

�ð3Þ2e�2�V2

þ 10

�5
E3ðT; �TÞSLð2;ZÞE3ðU; �UÞSLð2;ZÞ

þ 1

9
ðe�2�V2Þ�2ðE3ðU; �UÞSLð2;ZÞ þ E3ðT; �TÞSLð2;ZÞÞ

�
�D6R4; (65)

where we have used �ð6Þ ¼ �6=945. This precisely
matches some of the terms in (42).

IV. THE EXPRESSION FOR THE EXACT
MODULAR FORM

Given the expression (41) for the perturbative part of the
modular form, it is natural to propose that the exact ex-
pression for the modular form is given by

E ð3=2;3=2ÞðMÞ þ 20
3E�3=2ðMÞSLð3;ZÞE3ðU; �UÞSLð2;ZÞ

þ fðU; �UÞ þ 1
2E3=2ðMÞSLð3;ZÞE1ðU; �UÞSLð2;ZÞ; (66)

where7

Eð3=2;3=2ÞðMÞpert ¼ �ð3Þ2ð�22V2Þ2 þ �ð3Þ�22V2E1ðT; �TÞSLð2;ZÞ
þ fðT; �TÞ þ 1

9ð�22V2Þ�1E3ðT; �TÞSLð2;ZÞ:
(67)

We now construct fðT; �TÞ, and also obtain the nonper-
turbative completion of (67). Now, the modular form
Eð3=2;3=2Þð�; ��Þ for the D6R4 interaction in ten dimensions

satisfies a Poisson equation

�SLð2;ZÞEð3=2;3=2Þð�; ��Þ ¼ 12Eð3=2;3=2Þð�; ��Þ � 6ðE3=2ð�; ��ÞÞ2
(68)

on the fundamental domain of SLð2;ZÞ� [21]. The source
term in (68) is the square of the modular form for the R4

interaction, which can be understood based on consider-
ations of supersymmetry. Because SLð2;ZÞ� � SLð3;ZÞM,
and the U dependence in the expression (66) is already
fixed, it is natural to propose that Eð3=2;3=2ÞðMÞ satisfies a
Poisson equation on the fundamental domain of SLð3;ZÞM
given by

�SLð3;ZÞEð3=2;3=2ÞðMÞ ¼ �Eð3=2;3=2ÞðMÞ þ 
ðE3=2ðMÞÞ2;
(69)

where � and 
 are numbers. Again, the source term in (69)
is the square of the modular form for theR4 interaction in
eight dimensions [6].
Let us first consider the perturbative content of (69). We

use the relation

�
pert
SLð3;ZÞ ¼ �SLð2;ZÞT þ 3�2 @2

@�2
; (70)

where � ¼ �22V2 is the eight dimensional dilaton. Now
(70) can be obtained based on symmetries alone. From
(67), we see that every term in the perturbative part of
Eð3=2;3=2ÞðMÞ is of the form �kgkðT; �TÞ, where gkðT; �TÞ is
SLð2;ZÞT invariant. Thus �

pert
SLð3;ZÞ must have the form

�pert
SLð3;ZÞ ¼ �1�SLð2;ZÞT þ �2�

2 @2

@�2
þ �3�

@

@�
; (71)

where �1, �2, and �3 are numbers. In order to determine

them, we act with �pert
SLð3;ZÞ on EsðMÞpertSLð3;ZÞ, which is given

by the first two terms in (A13), such that

�
pert
SLð3;ZÞEsðMÞpertSLð3;ZÞ ¼ 2sð2s=3� 1ÞEsðMÞpertSLð3;ZÞ. The first

term in (A13) gives �2 ¼ 3, �3 ¼ 0, while using (A6), we
see that the second term in (A13) gives �1 ¼ 1, leading to
(70).
Using (67) and (70) and

E3=2ðMÞpert ¼ 2��ð3Þ þ 2E1ðT; �TÞSLð2;ZÞ; (72)

we see that (69) gives us the set of equations

�þ 4
 ¼ 6; �þ 8
 ¼ 0;
�

9
¼ 4

3
; (73)

and

�SLð2;ZÞTfðT; �TÞ ¼ �fðT; �TÞ þ 4
ðE1ðT; �TÞÞ2: (74)

Here we have used the relation (A6) for s ¼ 1 and s ¼ 3.8

7Using (A17), we could also use the relation
E�3=2ðMÞSLð3;ZÞ ¼ E3ðM�1ÞSLð3;ZÞ in (66).

8We use the relation �SLð2;ZÞTE1ðT; �TÞ ¼ 0 for the unregular-
ized expression.
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So (73) is solved by

� ¼ 12; 
 ¼ �3
2; (75)

thus (74) reduces to

�SLð2;ZÞTfðT; �TÞ ¼ 12fðT; �TÞ � 6ðE1ðT; �TÞÞ2: (76)

Thus (76) gives us the equation for fðT; �TÞ (and fðU; �UÞ
as well), while (69) reduces to

�SLð3;ZÞEð3=2;3=2ÞðMÞ ¼ 12Eð3=2;3=2ÞðMÞ � 3
2ðE3=2ðMÞÞ2;

(77)

thus giving us an explicit equation satisfied by the modular
form Eð3=2;3=2ÞðMÞ. Note that the solution of the homoge-

neous equation �SLð3;ZÞhðMÞSLð3;ZÞðMÞ ¼ 12hðMÞSLð3;ZÞ �
ðMÞ (which is the Eisenstein series EsðMÞSLð3;ZÞ for 4s=3 ¼
1	 ffiffiffiffiffiffi

17
p

) cannot be added to a particular solution of (77)
simply because this is inconsistent with the structure of
terms obtained using string perturbation theory.

We next understand the structure of fðT; �TÞ in more
detail.

A. Understanding the structure of fðT; �TÞ
The structure of (76) is very similar to (68), which has

been analyzed in [21], and our analysis is along similar
lines. In (76) we substitute

fðT; �TÞ ¼ f0ðT2Þ þ
X
k�0

fkðT2Þe2�ikT1 : (78)

Here f0ðT2Þ receives perturbative contributions from the
zero world sheet instanton sector, as well as nonperturba-
tive contributions from world sheet instanton and anti-
instanton pairs of equal and opposite NS-NS charge. On
the other hand, the remaining part of (78) receives contri-
butions from world sheet instantons of nonvanishing NS-
NS charge. Substituting the regularized expression for
E1ðT; �TÞ given by (A8), we get the equation satisfied by
f0ðT2Þ�

T2
2

@2

@T2
2

� 12

�
f0ðT2Þ ¼ �6

�
ð2�ð2ÞT2 � � lnT2Þ2

þ 4�2
X
k�0

�2ðk; 1Þe�4�jkjT2

�
:

(79)

Now writing

f0ðT2Þ ¼ f̂0ðT2Þ þ
X
k�0

f̂kðT2Þe�4�jkjT2 ; (80)

where f̂0ðT2Þ is the contribution from the zero world sheet

instanton sector, and f̂kðT2Þ is the contribution from the
world sheet instanton anti-instanton sector with vanishing
NS-NS charge, from (79) we get differential equations for

f̂0ðT2Þ and f̂kðT2Þ. For f̂0ðT2Þ we get

�
T2
2

@2

@T2
2

� 12

�
f̂0ðT2Þ ¼ �6ð2�ð2ÞT2 � � lnT2Þ2; (81)

which has the solution

f̂0ðT2Þ ¼ �2

720
½65� 20�T2 þ 48�2T2

2�

þ �2 lnT2

�
��T2

3
þ 1

2
lnT2 � 1

12

�

þ �1T
4
2 þ

�2

T3
2

; (82)

where �1 and �2 are arbitrary constants. We shall fix them
soon.

For f̂kðT2Þ, we get�
T2
2

�
@2

@T2
2

� 8�jkj @

@T2

þ ð4�jkjÞ2
�
� 12

�
f̂kðT2Þ

¼ �24�2�2ðk; 1Þ; (83)

which has the solution

f̂kðT2Þ ¼ � �2ðk; 1Þ
448jkj3�T3

2

½24ð4�jkjT2 þ 1Þ2

þ ðð4�jkjT2Þ3 � 3Þ2 þ 15

þ ð4�jkjT2Þ4ð2� 4�jkjT2Þ
þ ð4�jkjT2Þ7e4�jkjT2Eið�4�jkjT2Þ�; (84)

where EiðxÞ is the exponential integral function. Using the
relation [38]

Ei ð�xÞ ¼ e�x

�
� 1

x
þ
Z 1

0
dt

e�t

ðtþ xÞ2
�
; x > 0;

(85)

we see that the last term in (84) has the correct structure to
be a world sheet instanton contribution.
For the world sheet instantons with nonvanishing NS-NS

charge, we get the equation�
T2
2

�
@2

@T2
2

� 4�2k2
�
� 12

�
fkðT2Þ

¼ �24�ð2�ð2ÞT2 � � lnT2Þ�ðk; 1Þe�2�jkjT2

� 24�2
X

k1�0;k2�0;k1þk2¼k

�ðk1; 1Þ�ðk2; 1Þe�2�ðjk1jþjk2jÞT2 ;

(86)

which in principle can be solved iteratively by expanding
in large T2.
Substituting (82) and the corresponding expression for

f̂0ðU2Þ into (66), we can easily study the decompactifica-
tion limit as before. Only the T2

2 term in the expression for

f̂0ðT2Þ (and the U2
2 term in the expression for f̂0ðU2Þ)

contributes in this limit. In nine dimensions, in addition
to (44) it also gives a term
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6�ð4Þl5s
Z

d9x
ffiffiffiffiffiffiffiffiffiffi�g9

p ðrBe�2�Þ�1

�
r2B þ 1

r2B

�
D6R4; (87)

where we have used �ð4Þ ¼ �4=90. However, it also gives
a divergent contribution

�1l
5
s

Z
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p ðrBe�2�Þ�1

�
r4B þ 1

r4B

�
r21D6R4 (88)

which we shall return to soon.
Further decompactifying to ten dimension, this gives an

additional contribution to (46) which is equal to

6�ð4Þl4s
Z

d10x
ffiffiffiffiffiffiffi�g

p
e2�D6R4; (89)

which precisely gives the missing genus two contribution
in (15). This is a nontrivial consistency check on our
proposed modular form.

Note that we can send

fðT; �TÞ ! fðT; �TÞ þ �E4ðT; �TÞSLð2;ZÞ; (90)

for arbitrary � in (76) because E4ðT; �TÞSLð2;ZÞ satisfies the
homogeneous equation

�SLð2;ZÞE4ðT; �TÞSLð2;ZÞ ¼ 12E4ðT; �TÞSLð2;ZÞ: (91)

In the zero world sheet instanton sector, this involves
shifting the coefficient of the T4

2 term

�1 ! �̂1 
 �1 þ 2��ð8Þ; (92)

and the T�3
2 term

�2 ! �̂2 
 �2 þ 5�

8
��ð7Þ: (93)

In the sector with world sheet instanton charge k, the extra
terms are automatically solutions of the homogeneous
equation in (86).

We now provide two arguments that we must set the

coefficient of the T4
2 term to zero, thus �̂1 ¼ 0. From (88),

note that we get a divergent contribution with a nontrivial
dilaton dependence. As discussed before, the divergences
add to give threshold singularities, and hence must come

only from the genus one amplitude. Thus it follows that

�̂1 ¼ 0.

The vanishing of �̂1 can also be argued based on the
factorization properties of the amplitude. Stripping off the
eight dimensional dilaton factor from the various loop
amplitudes, from (42), (82), and (92), we see that for large

T2, the genus two amplitude goes as T2
2 þ �̂1T

4
2 , while the

genus one amplitude goes as T2. Now considering the
degeneration limit of the genus two surface into two genus
one surfaces as in Fig. 2, we see that the large T2 limit of
the genus two amplitude should scale no larger than T2

2 ,

thus �̂1 ¼ 0.
Note that from (42), it follows that the genus three

amplitude at large T2 goes as T3
2 . This is consistent with

the degeneration limits described in Fig. 2, when �̂1 ¼ 0.

We now proceed to calculate �̂2 along the lines of [21].

Multiplying (76) by E4ðT; �TÞSLð2;ZÞ and integrating over the
restricted fundamental domain of SLð2;ZÞT , we get that

Z
F L

d2T

T2
2

E4ðT; �TÞSLð2;ZÞ�SLð2;ZÞTfðT; �TÞ

¼ 12
Z
F L

d2T

T2
2

E4ðT; �TÞSLð2;ZÞfðT; �TÞ

� 6
Z
F L

d2T

T2
2

E4ðT; �TÞSLð2;ZÞðE1ðT; �TÞÞ2: (94)

We have restricted the integral to be over F L as the
integrals diverge and we regulate them and finally take
L ! 1. Integrating by parts, and using (91), from (94) we
get that

Z 1=2

�1=2
dT1

�
ESLð2;ZÞ
4

@f

@T2

� f
@ESLð2;ZÞ

4

@T2

�
T2¼L

¼ �6
Z
F L

d2T

T2
2

E4ðT; �TÞSLð2;ZÞðE1ðT; �TÞÞ2: (95)

Using (82) with �2 replaced by �̂2, the left-hand side of
(95) yields

T
2
2

T
2

T
2

T2
3

T 2 T2
2

FIG. 2. Degeneration limits of the genus two and genus three surfaces.
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�ð8Þ
�
�14�̂2 � 4�4

15
L5 � �3

2
L4 � 8�2

9
L3 þ 2�3L4 lnL

� 4�2L3ðlnLÞ2 þ 8�2

3
L3 lnL

�
: (96)

Using the Poincaré series representation for ESLð2;ZÞ
4 , and

the Rankin-Selberg formula the right-hand side of (95)
yields

�ð8Þ
�
� 48

5
�ð2Þ2L5 � 3��ð2ÞL4 � 8�2

9
L3

þ 12�ð2ÞL4 lnL� 4�2L3ðlnLÞ2 þ 8�2

3
L3 lnL

�

� 48�2�ð8Þ
Z L

0
dT2T

2
2

X
k�0

�2ðk; 1Þe�4�jkjT2 ; (97)

leading to

�̂ 2 ¼ 3

14�

X1
k¼1

�2ðk; 1Þ
k3

¼ 1

4
�ð3Þ�ð5Þ; (98)

using an identity due to Ramanujan [39].

B. Understanding the nonperturbative structure
of Eð3=2;3=2ÞðMÞ

Having understood the perturbative part of Eð3=2;3=2ÞðMÞ,
let us focus on the nonperturbative part of Eð3=2;3=2ÞðMÞ.
From (77), we can see what are the various kinds of non-
perturbative contributions Eð3=2;3=2ÞðMÞ receives. This al-

lows us to write

E ð3=2;3=2ÞðMÞnonpert ¼
X
k�0

ðfkð�iÞe2�ik�1 þ ukð�iÞÞ

þ X
k�0

ðgkð�i; �1Þe2�ikBR

þ vkð�i; �1ÞÞ
þ X

k�0;l�0

hk;lð�i; �1Þe2�iðk�1þlBRÞ;

(99)

where �i ¼ fBN; V2; �2g. In (99), fkð�iÞ involves charge k
(single and double) D-instanton contributions, while
gkð�i; �1Þ involves (single and double) ðp; qÞ string instan-
ton contributions carrying R-R charge k. The hk;lð�i; �1Þ
term involves contributions from charge k D-instantons
and R-R charge l ðp; qÞ string instantons put together.
Also ukð�iÞ includes D-instanton anti-D-instanton contri-

butions with total charge zero, which goes as e�4�jkj�2 for
large �2. Finally, vkð�i; �1Þ includes ðp; qÞ and ðp0; q0Þ
string instanton contributions with total R-R charge zero,

which goes as e�4�jk�jV2 in the sector with only D-strings.
From (77), we obtain explicit differential equations

satisfied by these nonperturbative contributions. Defining

�̂ ¼ �22
@2

@�22
þ V2

2@
2
BN

þ 3@�ð�2@�Þ; (100)

we get that

ð�̂� 4�2k2�22 � 12Þfkð�iÞ ¼ �48��2V2ð�22V2�ð3Þ þ E1ðT; �TÞSLð2;ZÞÞjkj�
�
k;
3

2

�
K1ð2�jkj�2Þ

� 96ð��2V2Þ2
X

ki�0;k1þk2¼k

jk1k2j�
�
k1;

3

2

�
�

�
k2;

3

2

�
K1ð2�jk1j�2ÞK1ð2�jk2j�2Þ: (101)

Further defining

�ðk; l; sÞ ¼ X
m>0;mjk;l

1

m2s�1
; (102)

such that �ðk; 0; sÞ ¼ �ðk; sÞ, we also get that

ð�̂þ �22@
2
�1 � V2

2 ½4�2k2j�j2 þ 4�ik�1@BN
� � 12Þgkð�i; �1Þ

¼ �24�ð�22V2�ð3Þ þ E1ðT; �TÞSLð2;ZÞÞ
X
l

�ðk; l; 1Þe�2�jl�k�jV2þ2�ilBN

� 24�2
X

ki�0;li;k1þk2¼k

�ðk1; l1; 1Þ�ðk2; l2; 1Þe�2�ðjl1�k1�jþjl2�k2�jÞV2þ2�iðl1þl2ÞBN ; (103)

and

ð�̂þ �22½@2�1 þ 4�ik@�1 � 4�2k2� � V2
2 ½4�2k2j�j2 þ 4�ik�1@BN

� � 12Þhk;lð�i; �1Þ

¼ �96�2�2V2

X
m

jkj�
�
k;
3

2

�
�ðl; m; 1ÞK1ð2�jkj�2Þe�2�jm�l�jV2þ2�imBN : (104)

The remaining two differential equations are given by
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ð�̂� 12Þukð�iÞ ¼ �96ð��2V2Þ2jkj2�2ðk; 32ÞK2
1ð2�jkj�2Þ; (105)

and

ð�̂þ �22@
2
�1 � 12Þvkð�i; �1Þ ¼ �24�2

X
l1;l2

�ðk; l1; 1Þ�ðk; l2; 1Þe�2�ðjl1�k�jþjl2þk�jÞV2þ2�iðl1þl2ÞBN : (106)

V. MORE PREDICTIONS FROM ELEVEN
DIMENSIONAL SUPERGRAVITYAT ONE LOOP

ON T3

We can generalize the calculations in Sec. III to make
predictions for some of the perturbative contributions to
the D2kR4 interaction for arbitrary values of k � 4. We
show below that we obtain parts of the genus one and genus
k contributions to the amplitude. However, it need not be
the case that the D2kR4 interaction is protected for all
values of k.

The analytic part of the amplitude relevant for the
D2kR4 interaction is given by [26]

IðS; TÞanal ¼ 2�4Gk
ST

k!l311V3

X
ðl1;l2;l3Þ�ð0;0;0Þ

Z 1

0
d��k�1e�GIJlIlJ�=l

2
11

¼ 2�4þkGk
ST

k!

X
ðl̂1;l̂2;l̂3Þ�ð0;0;0Þ

Z 1

0
d��k�5=2

� e��GIJl̂I l̂J l
2
11=�; (107)

where

G k
ST ¼

Z 1

0
d!3

Z !3

0
d!2

Z !2

0
d!1ð�QðS; T;!rÞÞk:

(108)

Following the same steps as in Sec. III, the two pertur-
bative contributions are given by

IðS; TÞ1anal ¼ 4�2kþ5=2�

�
3

2
� k

�
�ð3� 2kÞl2k�3

11 e2ð2k�3Þ�A=3

� Gk
ST

k!
; (109)

and

IðS; TÞ2anal ¼
2�4l2k�3

11

kRk
11

ðTA
2 Þk�1Gk

STEkðUA; �UAÞSLð2;ZÞ:
(110)

This leads to

A4 ¼ �4
11K̂

ð2�Þ11l311

�
2�4

k
ðTA

2 Þk�1EkðUA; �UAÞSLð2;ZÞ

þ 4�2kþ5=2

k!
�

�
3

2
� k

�
�ð3� 2kÞe2ðk�1Þ�A

�
l2ks W k;

(111)

where

W k ¼ Gk
ST þGk

SU þ Gk
UT: (112)

Now W k contains all the possible 2kth power of the
derivatives acting on R4 consistent with the kinematical
structure of the amplitude. This is unique up to k ¼ 5,
namely, for k ¼ 4, W 4 � ðs2 þ t2 þ u2Þ2, while for k ¼
5, W 5 � ðs2 þ t2 þ u2Þðs3 þ t3 þ u3Þ. For k ¼ 6, there
are two independent structures and so W 6 � ðs2 þ t2 þ
u2Þ3 þ ðs3 þ t3 þ u3Þ2, leading to two different spacetime
structures for the D12R4 interaction. Thus when we mean
the D2kR4 interaction, we mean that these various possi-
bilities have already been taken into account. Thus, (111)
leads to terms in the IIB effective action given by

l2ks
Z

d8x
ffiffiffiffiffiffiffiffiffiffi�g8

p �
2�

k
ðUB

2 ÞkEkðTB; �TBÞSLð2;ZÞ

þ 4�2k�1=2

k!
�

�
3

2
� k

�
�ð3� 2kÞðe�2�B

TB
2 Þ1�k

�ðUB
2 Þk

�
D2kR4: (113)

Given the perturbative equality of the amplitude in the two
type II theories, and (A1), it is natural to enhance the ðUB

2 Þk
factors to EkðUB; �UBÞSLð2;ZÞ, and symmetrize inUB and TB.
Thus (113) gets enhanced to

l2ks
Z

d8x
ffiffiffiffiffiffiffiffiffiffi�g8

p � ð2kÞ!
ð2�Þ2k�1jB2kjk

EkðTB; �TBÞSLð2;ZÞ

� EkðUB; �UBÞSLð2;ZÞ þ 4�ðkþ 1
2Þ�ðk� 1Þ�ð2k� 2Þ
�2k�3=2jB2kj

� ðe�2�B
TB
2 Þ1�kðEkðTB; �TBÞSLð2;ZÞ

þ EkðUB; �UBÞSLð2;ZÞÞ
�
D2kR4; (114)

where we have used the relations [38]

�ð2kÞ ¼ 22k�1�2kjB2kj
ð2kÞ! ; (115)

where k is a positive integer, B2k are the Bernoulli num-
bers, the identity (A3), and

�ð2xÞ ¼ 22x�1=2ffiffiffiffiffiffiffi
2�

p �ðxÞ�
�
xþ 1

2

�
: (116)
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Thus from (114), we see that 11 dimensional supergravity
gives predictions for parts of the genus one and genus k
amplitudes for the D2kR4 interaction, for arbitrary k.

Thus from (114), we see that at genus one, there

is a contribution proportional to EkðTB; �TBÞSLð2;ZÞ �
EkðUB; �UBÞSLð2;ZÞ. For low values of k, it is easy to see
that there is such a contribution. For k ¼ 2, as shown in
[26], this arises from the only diagram that contributes to
the torus amplitude given by Fig. 3.

For k ¼ 3, from Fig. 1, we see that Î1 gives such

a contribution proportional to E3ðTB; �TBÞSLð2;ZÞ �
E3ðUB; �UBÞSLð2;ZÞ. However, there is also another contri-

bution from Î2.
For k ¼ 4, again we can see that the part of the torus

amplitude coming from the diagram in Fig. 4 is propor-

tional to E4ðTB; �TBÞSLð2;ZÞE4ðUB; �UBÞSLð2;ZÞ. This can be
obtained by using the relation

Z
T

Y3
i¼1

d2�i

�2

ln	̂ð�1 � �2;�Þ ln	̂ð�1 � �3;�Þ

� 	̂ð�2 � �4;�Þ	̂ð�3 � �4;�Þ

¼ 1

ð4�Þ4
X

ðm;nÞ�ð0;0Þ

�4
2

jm�þ nj8

¼ 1

ð4�Þ4 E4ð�; ��ÞSLð2;ZÞ; (117)

and generalizing the calculation of Î1 summarized in
Appendix B 1. However, just like in the k ¼ 3 case, other
parts of the torus amplitude should also give the same
contribution, so the final numerical coefficient will be
different.

So from the discussion above, one can see that when the
k points form a polygon with no internal lines, the integral

over the vertex operator insertions is proportional to

Ekð�; ��ÞSLð2;ZÞ, while it leads to the contribution predicted
from supergravity. However, this topology is no more
possible for k � 5, and so there is no particularly simple
contribution to the torus amplitude that gives the answer.
The various contributions must add to give the answer
predicted from supergravity. It would be interesting to
see this explicitly coming out of the torus amplitude.
After converting to the Einstein frame, let us consider

the UB dependent coefficient of the D̂2kR̂4
interaction in

(114).9 Since it involves EkðUB; �UBÞSLð2;ZÞ, which is
SLð2;ZÞU invariant, whatever multiplies it in the whole
amplitude should be SLð3;ZÞM invariant. In fact, this con-
tribution is given by

2�ðkþ 1
2Þ

�jB2kj ð2�5=2�2kðe�2�B
TB
2 Þ1�2k=3�ðk� 1Þ�ð2k� 2Þ

þ �3=2�2k�ðkÞðe�2�B
TB
2 Þk=3EkðTB; �TBÞSLð2;ZÞÞ

� EkðUB; �UBÞSLð2;ZÞ

¼ 2�ðkþ 1
2Þ�ð32 � kÞ

�jB2kj E3=2�kðMÞSLð3;ZÞpert EkðUB; �UBÞSLð2;ZÞ

¼ 2�ðkþ 1
2Þ�ð32 � kÞ

�jB2kj EkðM�1ÞSLð3;ZÞpert EkðUB; �UBÞSLð2;ZÞ;
(118)

on using (A17). Extending it to the nonperturbative com-
pletion, we get the manifestly U-duality invariant modular
form

2�ðkþ 1
2Þ�ð32 � kÞ

�jB2kj
EkðM�1ÞSLð3;ZÞEkðUB; �UBÞSLð2;ZÞ:

(119)

Thus one-loop supergravity and U-duality gives a predic-
tion for a part of the complete modular form.
Decompactifying to nine dimensions, we see that (114)

gives the interaction

l2k�1
s

Z
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p �

4�3=2

k!
�ð2k� 1Þ�

�
k� 1

2

�

�
�
r2k�1
B þ 1

r2k�1
B

�
þ 4�2 �ð2k� 2Þ

kðk� 1Þ ðe�2�B
rBÞ1�k

�
�
rkB þ 1

rkB

��
D2kR4; (120)

which contributes at genus one and at genus k. It also gives
the divergent contribution

4�

k
�ð2kÞl2k�1

s

Z
d9x

ffiffiffiffiffiffiffiffiffiffi�g9
p

r2k�11 D2kR4 (121)

FIG. 3. Schematics of the D4R4 torus amplitude.

FIG. 4. Schematics of part of the D8R4 torus amplitude.

9The remaining part which depends only on TB must form part
of an SLð3;ZÞM invariant modular form.
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which leads to the threshold singularities. Further decom-
pactifying (120) to ten dimensions, this leads to the inter-
action

4�2 �ð2k� 2Þ
kðk� 1Þ l2k�2

s

Z
d10x

ffiffiffiffiffiffiffi�g
p

e�2ð1�kÞ�B
D2kR4;

(122)

which contributes at genus k, while the genus one contri-
bution vanishes. It also gives the divergent contribution

4�3=2

k!
�ð2k� 1Þ�

�
k� 1

2

�
l2k�2
s

Z
d10x

ffiffiffiffiffiffiffi�g
p

r2ðk�1Þ
B D2kR4;

(123)

corresponding to the threshold singularities.

VI. DISCUSSION

We have made a proposal for the modular form for the
D6R4 interaction and showed that it satisfies several non-
trivial consistency checks. Some parts of the torus ampli-
tude, however, have been constructed based on the
perturbative equality of the type IIA and type IIB ampli-
tudes, and some heuristic arguments. Calculating the full
amplitude explicitly would be useful in verifying the pro-
posal we make.

Let us make some comments about the possible modular
form for the D6R4 interaction in toroidal compactifica-
tions preserving maximal supersymmetry to lower dimen-
sions, where the U-duality group is no longer reducible.
The scalars parametrize the coset manifold M ¼ G=H,
where G is a noncompact group, and H is its maximal
compact subgroup [40,41]. The conjectured U-duality

group is Ĝ, the discrete version of G. Thus in the

Einstein frame the term in the supergravity action involv-
ing the scalars is given by

S� 1

l8�d
s

Z
d10�dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ĝ10�d

p
Trð@�M@̂�M�1Þ; (124)

whereM parametrizesM. Based on the D6R4 interaction
in ten dimensions as well as the modular form we propose,
it is conceivable that the U-duality invariant modular form
in lower dimensions is given by the solution of the Poisson

equation on the fundamental domain of Ĝ given by

�ĜEð3=2;3=2ÞðMÞ ¼ �1Eð3=2;3=2ÞðMÞ � �2ðE3=2ðMÞÞ2;
(125)

where �1 and �2 are constants.
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APPENDIX A: EXPRESSIONS FOR THE
EISENSTEIN SERIES

In the section below, we write down explicit expressions
for the Eisenstein series of SLð2;ZÞ and SLð3;ZÞ that are
useful in the main text.

1. The Eisenstein series for SLð2;ZÞ
The Eisenstein series of order s for SLð2;ZÞ is defined

by

EsðT; �TÞSLð2;ZÞ ¼
X

ðp;qÞ�ð0;0Þ

Ts
2

jpþ qTj2s

¼ 2�ð2sÞTs
2 þ 2

ffiffiffiffi
�

p
T1�s
2

�ðs� 1=2Þ
�ðsÞ �ð2s� 1Þ þ 2�s

ffiffiffiffiffi
T2

p
�ðsÞ

X
m1�0;m2�0

��������m1

m2

��������s�1=2

� Ks�1=2ð2�T2jm1m2jÞe2�im1m2T1

¼ 2�ð2sÞTs
2 þ 2

ffiffiffiffi
�

p
T1�s
2

�ðs� 1=2Þ
�ðsÞ �ð2s� 1Þ þ 4�s

ffiffiffiffiffi
T2

p
�ðsÞ

X
k�0

jkjs�1=2�ðk; sÞKs�1=2ð2�T2jkjÞe2�ikT1 ; (A1)

where

�ðk; sÞ ¼ X
m>0;mjk

1

m2s�1
: (A2)

Using the relations

�ð2s� 1Þ�ðs� 1
2Þ ¼ �2s�3=2�ð2� 2sÞ�ð1� sÞ (A3)

and

KsðxÞ ¼ K�sðxÞ; (A4)

we see that

�ðsÞEsðT; �TÞSLð2;ZÞ ¼ �2s�1�ð1� sÞE1�sðT; �TÞSLð2;ZÞ:
(A5)

Now (A1) satisfies the Laplace equation

�SLð2;ZÞEsðT; �TÞSLð2;ZÞ ¼ 4T2
2

@2

@T@ �T
EsðT; �TÞSLð2;ZÞ

¼ sðs� 1ÞEsðT; �TÞSLð2;ZÞ (A6)

on the fundamental domain of SLð2;ZÞT .
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We shall need the expression for E1ðT; �TÞSLð2;ZÞ in the
main text. From (A1), note that this diverges because �ð1Þ
is infinite, and thus needs to be regularized. We regularize
the second term in (A1) by setting 1� s ¼ � and taking
the limit � ! 0, where we also use

�ð�Þ ¼ 1

�
þ �þOð�Þ; (A7)

where � is the Euler constant. Using an MS-like regulari-
zation scheme, where we drop the 1=� pole term as well as
terms involving the Euler constant, we get that (using
�ð2Þ ¼ �2=6)

E1ðT; �TÞSLð2;ZÞ ¼ �2

3
T2 � � lnT2

þ 2�
ffiffiffiffiffi
T2

p X
m�0;n�0

��������mn
��������1=2

� K1=2ð2�T2jmnjÞe2�imnT1

¼ �� lnðT2j
ðTÞj4Þ; (A8)

where we have used

K1=2ðxÞ ¼
ffiffiffiffiffi
�

2x

r
e�x; (A9)

and the definition of the Dedekind eta function


ðTÞ ¼ e�iT=12
Y1
k¼1

ð1� e2�ikTÞ: (A10)

This yields the same result as in [29].

2. The Eisenstein series for SLð3;ZÞ
The Eisenstein series of order s for SLð3;ZÞ in the

fundamental representation is defined by

EsðMÞSLð3;ZÞ ¼ X0

mi

ðmiMijmjÞ�s

¼ X0

mi

��s=3

�jm1 þm2�þm3Bj2
�2

þm2
3

�

��s
;

(A11)

where mi are integers, and the sum excludes
fm1; m2; m3g ¼ f0; 0; 0g. The integers mi transform in the
antifundamental representation of SLð3;ZÞ, and the matrix
Mij is given by (10).

Using the integral representation

EsðMÞSLð3;ZÞ ¼ ��s=3�s

�ðsÞ
�
Z 1

0

dt

tsþ1

X0

mi

e��ðjm1þm2�þm3Bj2=�2þm2
3
=�Þ=t;

(A12)

we can evaluate (A12) to get that

EsðMÞSLð3;ZÞ ¼ 2ð�22V2Þ2s=3�ð2sÞ þ
ffiffiffiffi
�

p
�ðs� 1=2Þ
�ðsÞ ð�22V2Þ1=2�s=3Es�1=2ðT; �TÞSLð2;ZÞ

þ 2�s

�ðsÞ �
s=3þ1=2
2 V2s=3

2

X
m1�0;m2�0

��������m1

m2

��������s�1=2

Ks�1=2ð2��2jm1m2jÞe2�im1m2�1

þ 2�s

�ðsÞ �
1�2s=3
2 V1�s=3

2

X
m1�0;m3�0;m2

��������m2 �m1�

m3

��������s�1

Ks�1ð2�jm3ðm2 �m1�ÞjV2Þe2�im3ðm1BRþm2BNÞ: (A13)

Now (A11) satisfies the Laplace equation [6]

�SLð3;ZÞEsðMÞSLð3;ZÞ ¼
�
4�22

@2

@�@ ��
þ 1

��2
j@BN

� �@BR
j2

þ 3@�ð�2@�Þ
�
EsðMÞSLð3;ZÞ

¼ 2sð2s� 3Þ
3

EsðMÞSLð3;ZÞ (A14)

on the fundamental domain of SLð3;ZÞM.
We can also define the Eisenstein series of order s in the

antifundamental representation by

EsðM�1ÞSLð3;ZÞ ¼ X0

m̂i

ðm̂iM
ijm̂jÞ�s; (A15)

where m̂i transforms in the fundamental representation of

SLð3;ZÞ. Now using the resultX0

l̂i

e���Gijl̂i l̂j ¼ ��3=2
ffiffiffiffiffiffiffiffiffiffi
detG

p X0

li

e��Gijlilj=� (A16)

for invertible matrices, which can be derived using Poisson
resummation, we get that

EsðM�1ÞSLð3;ZÞ ¼ E3=2�sðMÞSLð3;ZÞ: (A17)

Thus there is a simple relationship between the
Eisenstein series for the fundamental and the antifunda-
mental representations.

APPENDIX B: CALCULATING Î1 AND Î2

Here we provide various details of calculating Î1 and Î2,
which are needed to calculate the torus amplitude.
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1. Calculating Î1

We first evaluate (25), for which we use the representa-
tion

ln	̂ð�;�Þ ¼ 1

4�

X
ðm;nÞ�ð0;0Þ

�2

jm�þ nj2

e�½ ��ðm�þnÞ��ðm ��þnÞ�=�2 (B1)

for the scalar propagator on the torus. This leads to the
relation [30]

Z
T

Y3
i¼1

d2�i

�2

ln	̂ð�1 � �2;�Þ ln	̂ð�1 � �3;�Þ	̂ð�2 � �3;�Þ

¼ 1

ð4�Þ3
X

ðm;nÞ�ð0;0Þ

�3
2

jm�þ nj6 ¼
1

ð4�Þ3 E3ð�; ��ÞSLð2;ZÞ;

(B2)

where we have used (A1).
Thus,

ð4�Þ3
4

Î1 ¼
Z
F L

d2�

�2
2

ZlatE3ð�; ��ÞSLð2;ZÞ ¼ Î11 þ Î21 þ Î31;

(B3)

where Î11, Î
2
1, and Î31 are the contributions from the zero

orbit, the nondegenerate orbits, and the degenerate orbits of
SLð2;ZÞ, respectively, as mentioned in the main text.

In order to evaluate (B3), from (A1) we use the expres-
sion

E3ð�; ��ÞSLð2;ZÞ ¼ 2�ð6Þ�3
2 þ

3��ð5Þ
4�2

2

þ �3
ffiffiffiffiffiffiffi
�2

p X
m1�0;m2�0

��������m1

m2

��������5=2

� K5=2ð2��2jm1m2jÞe2�im1m2�1 : (B4)

In doing the integrals, we frequently make use of the
definition

KsðxÞ ¼ 1

2

�
x

2

�
s Z 1

0

dt

tsþ1
e�t�x2=4t: (B5)

Integrating over the restricted fundamental domain F L

of SLð2;ZÞ, we keep only the finite terms in the limit L !
1. The details of the calculation are very similar to [26]
and so we only mention the results.

(i) The contribution from the zero orbit gives [30]

Î 1
1 ¼ V2

Z
F L

d2�

�2
2

E3ð�; ��ÞSLð2;ZÞ ¼ 0; (B6)

up to L dependent terms.

(ii) The contribution from the nondegenerate orbits gives

Î21 ¼ 2V2

Z 1

�1
d�1

Z 1

0

d�2

�2
2

E3ð�; ��ÞSLð2;ZÞ

� X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2

¼ 2
ffiffiffiffiffi
T2

p
E3ðU; �UÞSLð2;ZÞ X

p�0;k�0

��������pk
��������5=2

� K5=2ð2�T2jpkjÞe2�ipkT1 ; (B7)

where we have also used

K1=2ðxÞ ¼
ffiffiffiffiffi
�

2x

r
e�x; K3=2ðxÞ ¼

ffiffiffiffiffi
�

2x

r
e�x

�
1þ 1

x

�
;

K5=2ðxÞ ¼
ffiffiffiffiffi
�

2x

r
e�x

�
1þ 3

x
þ 3

x2

�
;

(B8)

and the identity

K1=2ðxþ yÞffiffiffiffiffiffiffiffiffiffiffiffi
xþ y

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
xþ y

p
xy

K3=2ðxþ yÞ

þ 3ðxþ yÞ3=2
x2y2

K5=2ðxþ yÞ

¼
ffiffiffiffiffiffiffiffi
2xy

�

s
� K5=2ðxÞK5=2ðyÞ

xþ y
: (B9)

(iii) The contribution from the degenerate orbits gives

Î31 ¼ V2

Z 1=2

�1=2
d�1

Z 1

0

d�2

�2
2

E3ð�; ��ÞSLð2;ZÞ

� X
ðj;pÞ�ð0;0Þ

e�ð�T2=�2U2ÞjjþpUj2

¼ 2

�3

�
2�ð6ÞT3

2 þ
3��ð5Þ
4T2

2

�
E3ðU; �UÞSLð2;ZÞ:

(B10)

Thus from (B3), we get that

Î 1 ¼ 1

8�6
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ: (B11)

2. Calculating Î2

We next evaluate (26), for which we use the representa-
tion

ln	̂ð�;�Þ ¼ �2

4�

X
n�0

1

n2
e2�inðIm�Þ=�2 þ 1

4

X
m�0;k2Z

1

jmj
� e2�imðk�1þRe�Þ�2��2jmjjk�ðIm�Þ=�2j (B12)

for the scalar propagator on the torus. Again we write

Î 2 ¼ Î12 þ Î22 þ Î32; (B13)
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where Î12, Î
2
2, and Î32 are the contributions from the zero

orbit, the nondegenerate orbits, and the degenerate orbits of
SLð2;ZÞ, respectively.

(i) The contribution from the zero orbit gives [30]

Î12 ¼ V2

Z
F L

d2�

�2
2

Z
T

Y3
i¼1

d2�i

�2

½ln	̂ð�1 � �2;�Þ�3

¼ T2

32�
�ð2Þ�ð3Þ; (B14)

up to L dependent terms. This integral can be eval-
uated by using the Rankin-Selberg identity to unfold
the integration over the fundamental domain to the
upper half-plane, using the Poincaré series represen-
tation of the scalar propagator.

(ii) The contribution from the nondegenerate orbits gives

Î22 ¼ 2V2

Z 1

�1
d�1

Z 1

0

d�2

�2
2

Z
T

Y3
i¼1

d2�i

�2

½ln	̂ð�1 � �2;�Þ�3 X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2

¼ Î2;12 þ Î2;22 þ Î2;32 ; (B15)

where

Î2;12 ¼ 2V2

X
m1�0;m2�0;m3�0

�ðm1 þm2 þm3Þ
m2

1m
2
2m

2
3

Z 1

�1
d�1

Z 1

0

d�2

�2
2

�
�2

4�

�
3 X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2

¼ 4T2�ð6Þ
ð4�Þ3

Z 1

�1
d�1

Z 1

0
d�2�2

X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2

¼ �ð6ÞU3
2

ffiffiffiffiffi
T2

p
16�3

X
p�0;k�0

��������pk
��������5=2

K5=2ð2�T2jpkjÞe2�ipkT1 ; (B16)

Î2;22 ¼ 3V2

32�

Z 1

�1
d�1

Z 1

0

d�2

�2

Z 1

0
dx

Z 1

0
dy

X
m�0

1

m2
e2�imðx�yÞX

n�0

1

n2

� X
ðr1;r2Þ2Z

e2�inðr1�r2Þ�1�2�jnj�2ðjr1�ðx�yÞjþjr2�ðx�yÞjÞ X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2

¼ 3V2

32�2

Z 1

�1
d�1

Z 1

0
d�2

X
n�0

1

n2
X
m�0

1

jmj3
d

d�2

	
tan�1

�
2�2jnj
jmj

�
 ð1� e�4�jnj�2Þ
ð1� 2 cosð2�n�1Þe�2�jnj�2 þ e�4�jnj�2Þ

� X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2 : (B17)

Now using the representation [38]

tan�1x ¼ �

2
� X1

k¼0

ð�1Þk
ð2kþ 1Þx2kþ1

¼ �

2
� 1

x
þ 1

3x3
þ . . . ; (B18)

we see that only the k ¼ 0 and k ¼ 1 terms in (B18) contribute to (B17) while doing the sum over m. While the
constant term trivially vanishes, the terms for k � 2 vanish on doing the sum over m, because �ð�2pÞ ¼ 0 for all
positive integers p. Thus, using �ð0Þ ¼ �1=2, we get that

Î2;22 ¼ 3V2

32�2

Z 1

�1
d�1

Z 1

0
d�2

X
n�0

1

jnj3
�
�ð2Þ
�2

2

þ 1

8n2�4
2

�	
1þ 2e�2�jnj�2ðcosð2�n�1Þ � e�2�jnj�2Þ

1� 2 cosð2�n�1Þe�2�jnj�2 þ e�4�jnj�2




� X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2 : (B19)

Now in (B19), the terms in f. . .g are 1, and another term which exponentially decreases as �2 ! 1. We call these
two contributions Î2;22 ð1 onlyÞ and Î2;22 ðnot 1Þ, respectively.
The term involving 1 gives us
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Î2;22 ð1 onlyÞ ¼ 3
ffiffiffiffiffi
T2

p
32�2

�
2�ð2Þ�ð3Þ X

p�0;k�0

��������pk
��������1=2

K1=2ð2�T2jpkjÞe2�ipkT1

þ �ð5Þ
4U2

2

X
p�0;k�0

��������pk
��������5=2

K5=2ð2�T2jpkjÞe2�ipkT1

�
; (B20)

while Î2;22 ðnot1Þ can be expanded in a power series in e�2�jnj�2 for large�2, and integrated term by term. This gives
a far more complicated expression which we shall return to later.
Finally, the remaining expression is given by

Î2;32 ¼ V2

32

Z 1

�1
d�1

Z 1

0

d�2

�2
2

Z 1

0
dx

Z 1

0
dy

X
m1;m2;m2�0;l1;l2;l32Z

�ðPi miÞ
jm1m2m3j e

2�imili�1�2��2jmijjli�ðx�yÞj

� X
k>j�0;p�0

e�2�iTkp�ð�T2=�2U2Þjk�þjþpUj2 : (B21)

We shall also return to this expression later.
(iii) The contribution from the degenerate orbits gives

Î32 ¼ V2

Z 1=2

�1=2
d�1

Z L

0

d�2

�2
2

Z
T

Y3
i¼1

d2�i

�2

½ln	̂ð�1 � �2;�Þ�3 X
ðj;pÞ�ð0;0Þ

e�ð�T2=�2U2ÞjjþpUj2

¼ Î3;12 þ Î3;22 þ Î3;32 ; (B22)

where

Î 3;1
2 ¼ V2

Z L

0

d�2

�2
2

Z 1

0
dx

Z 1

0
dy

�
�2

4�

�
3
�X
m�0

1

m2
e2�imðx�yÞ

�
3 X
ðj;pÞ�ð0;0Þ

e�ð�T2=�2U2ÞjjþpUj2

¼ T3
2E3ðU; �UÞSLð2;ZÞ

32�6

X
m�0;n�0;p�0

�ðmþ nþ pÞ
m2n2p2

¼ �ð6Þ
16�6

T3
2E3ðU; �UÞSLð2;ZÞ: (B23)

Also

Î 3;2
2 ¼ 3V2

64�

Z L

0

d�2

�2

Z 1

0
dx

Z 1

0
dy

X
m�0;n�0;k2Z

1

m2n2
e2�imðx�yÞ�4��2jnjjk�ðx�yÞj X

ðj;pÞ�ð0;0Þ
e�ð�T2=�2U2ÞjjþpUj2

¼ 3V2

64�2

X
m�0;n�0

1

jmj3n2
Z 1

0
dx

d

dx

	
tan�1

�
2jnjx
jmj

�
 X
ðj;pÞ�ð0;0Þ

e�ð�T2=xU2ÞjjþpUj2 : (B24)

Using the representation (B18), once again we see that only the k ¼ 0 and k ¼ 1 terms in (B18) contribute to (B24).
Thus we get that

Î 3;2
2 ¼ 3

32�3
�ð2Þ�ð3ÞE1ðU; �UÞSLð2;ZÞ þ 3�ð5Þ

128�5T2
2

E3ðU; �UÞSLð2;ZÞ: (B25)

Also we have that

Î 3;3
2 ¼ V2

64

Z L

0

d�2

�2
2

Z 1

0
dx
Z 1

0
dy

X
m1;m2;m2�0;l1;l2;l32Z

�ðPi miÞ�ð
P

i limiÞ
jm1m2m3j e�2��2jmijjli�ðx�yÞj X

ðj;pÞ�ð0;0Þ
e�ð�T2=�2U2ÞjjþpUj2 :

(B26)

Although (B26) is a complicated expression, it is not difficult to see that the integrand goes as Oðe��2Þ as �2 ! 1, and
does not involve any power law suppressed terms. Thus we have that

Î 3;3
2 ¼ T2

X
M;N

gMN

Z 1

0
d�2�

�M
2 e�N�2

X
ðj;pÞ�ð0;0Þ

e�ð�T2=�2U2ÞjjþpUj2 ; (B27)
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where gM;N are unspecified functions of M and N; M is an integer and N is nonzero.
Let us denote the terms independent of T1 andU1 in the various expressions as perturbative in T andU, respectively (not

to be confused with string perturbation theory). Thus Î3;32 is perturbative in T, but has a nontrivial dependence on U1. First

let us consider the terms in Î3;32 which are perturbative in U as well. In order to do this, we use the relation

X
ðj;pÞ�ð0;0Þ

e�ð�T2=�2U2ÞjjþpUj2 ¼ X
j�0

e�ð�T2jjj2=U2�2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U2�2

T2

s X
p�0

e�ð�p2T2U2=�2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U2�2

T2

s X
p�0;ĵ�0

e2�ipĵ
�U�ð�U2=T2�2ÞðpT2þĵ�2Þ2 : (B28)

We now outline the principal steps to deduce the various terms on the right-hand side of (B28). The first term is obtained by
setting p ¼ 0, while to obtain the remaining terms which have p � 0, we Poisson resum on j to go to the variable ĵ. The
second term is given by the ĵ ¼ 0 contribution, while the third term has ĵ � 0. Thus the first two terms in (B28) give the
perturbative contributions.

This gives

Î 3;3
2 ðpertÞ ¼ 2

X
M;N

gMN

ð�N�1ÞðM�1Þ=2TðM�3Þ=2
2

X
j�0

�
U2

jjj2
�ðM�1Þ=2

KM�1

�
2jjj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�NT2

U2

s �

þ 2
X
M;N

gMN

ð�N�1Þð2M�3Þ=4ðU2T2Þð2M�5Þ=4
X
p�0

1

jpjM�3=2
KM�3=2ð2jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�NT2U2

p Þ: (B29)

We now fix Î3;32 ðpertÞ using the constraint that the am-
plitude must be the same in the two type II string theories.
Note that the perturbative parts come only from the zero
orbit and the degenerate orbit contributions to the ampli-
tude. Thus from the perturbative contributions already
calculated in Î12, Î

3;1
2 , and Î3;22 we see that Î3;32 ðpertÞ must

contain

� 3�ð2Þ�ð3Þ
32�2

lnT2: (B30)

We now argue that there are no other perturbative con-

tributions to Î3;32 ðpertÞ. Suppose there are other such con-
tributions apart from (B30): because these are the only
remaining ones, and they must be symmetric under inter-
change of U2 and T2, they must be of the form

hðU2Þ þ hðT2Þ þ
X
i

riðU2ÞriðT2Þ: (B31)

Thus the derivative with respect to U2 of the total
perturbative contributions (B30) and (B31) is given by

@hðU2Þ
@U2

þX
i

@riðU2Þ
@U2

riðT2Þ: (B32)

Consider the large U2 limit of (B32). Let hðU2Þ �U�
2 , and

riðU2Þ �U�i

2 for large U2.
10 Thus (B32) has to contain a

term

�U��1
2 þ T2

X
i

�2
i ðU2T2Þ�i�1 (B33)

at large U2. Now consider the large U2 behavior of the U2

derivative of (B29). For large x, using the relation

KsðxÞ �
ffiffiffiffiffi
�

2x

r
e�x; (B34)

we see that the second term does not contribute. On the
other hand, for small x using the relations

K0ðxÞ � � lnx; KmðxÞ � �ðmÞ
2

�
x

2

��m
; m > 0;

(B35)

from the first term, we get that

@Î3;32

@U2

ðpertÞ � � T2

U2

X
N

g1N þ 2
X

M>1;N

gMN�ðMÞ�ð2M� 2Þ
�M�1

�
�
U2

T2

�
M�2

; (B36)

which can never be of the form (B33). Thus

Î 3;3
2 ðpertÞ ¼ � 3�ð2Þ�ð3Þ

32�2
lnT2: (B37)

This contribution has a logarithmic dependence on T2 and
must arise from the infinite sum over N in (B29). Any

constant term in Î3;32 ðpertÞ can be absorbed in the regulari-
zation of the infrared divergences. Thus we see that

10Assuming a more general behavior of the form hðU2Þ �
U�

2 ðlnU2Þ�̂, riðU2Þ �U�i

2 ðlnU2Þ�̂i does not change the conclu-
sions below.
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Î
pert
2 ¼ 1

32�6
E3ðU; �UÞSLð2;ZÞpert E3ðT; �TÞSLð2;ZÞpert

þ 3

32�3
�ð2Þ�ð3ÞðE1ðU; �UÞSLð2;ZÞpert

þ E1ðT; �TÞSLð2;ZÞpert Þ: (B38)

Extending (B38) to its nonperturbative completion, we get
that

Î 2 ¼ 1

32�6
E3ðU; �UÞSLð2;ZÞE3ðT; �TÞSLð2;ZÞ

þ 3

32�3
�ð2Þ�ð3ÞðE1ðU; �UÞSLð2;ZÞ þ E1ðT; �TÞSLð2;ZÞÞ:

(B39)

Considering the various nonperturbative contributions

that have already been calculated in Î2;12 , Î2;22 ð1 onlyÞ,
Î3;12 , and Î3;22 , we get all the terms in (B39) with the precise

coefficients apart from just one term. This term isffiffiffiffiffiffiffiffiffiffiffi
U2T2

p
32

X
p�0;k�0

��������pk
��������5=2

K5=2ð2�T2jpkjÞe2�ipkT1

� X
m�0;n�0

��������mn
��������5=2

K5=2ð2�T2jmnjÞe2�imnU1 : (B40)

Now (B40) depends on T1, and thus cannot be obtained

from Î3;32 . Thus

Î 3;3
2 ðnonpertÞ ¼ 0: (B41)

So (B40) must be obtained from the only remaining con-
tributions leading to

Î2;22 ðnot1Þ þ Î2;32 ¼
ffiffiffiffiffiffiffiffiffiffiffi
U2T2

p
32

X
p�0;k�0

��������pk
��������5=2

� K5=2ð2�T2jpkjÞe2�ipkT1

� X
m�0;n�0

��������mn
��������5=2

� K5=2ð2�T2jmnjÞe2�imnU1 : (B42)

This concludes the calculation of the torus amplitude.
We have obtained some parts of the amplitude based on
consistency and heuristic arguments, but have not explic-
itly calculated those contributions. It would be nice to
calculate them explicitly. In the next appendix, we provide
some more evidence that the extra contributions in (B31)
vanish.

APPENDIX C: A SELF-CONSISTENCY CHECK
FOR THE TORUS AMPLITUDE

In the previous section, we have calculated the four
graviton amplitude on the torus. Some parts of the ampli-

tude were obtained using indirect arguments and not by
explicit calculations. We now show that the answer we got
is consistent with the structure we have proposed for the
modular form.
We mentioned that there can be additional contributions

to the torus amplitude given by (B31). Let hðT; �TÞpert 

hðT2Þ. We now show that hðT; �TÞ ¼ 0 based on very differ-
ent considerations compared to the previous discussion.
This contribution yields an additional term �hðT; �TÞ to
(67). Repeating the arguments as before, we get back the
results of Sec. IV, along with an extra equation given by

�SLð2;ZÞThðT; �TÞ ¼ 12hðT; �TÞ: (C1)

This is, of course, solved by E4ðT; �TÞSLð2;ZÞ. Thus adding
E4ðT; �TÞSLð2;ZÞ þ E4ðU; �UÞSLð2;ZÞ to the torus amplitude,
we see that in nine dimensions this leads to a divergent
term

2�ð8Þl5s
Z

d9x
ffiffiffiffiffiffiffiffiffiffi�g9

p �
r4B þ 1

r4B

�
r31D6R4: (C2)

However, from (45) we see that the divergence needed to
produce threshold singularities should go as r51, and is also
independent of rB. This has a different behavior than (C2),
thus hðT; �TÞ ¼ 0.
Also the T4

2 dependence of the torus amplitude at large
T2 is inconsistent with the large T2 scaling behavior of the
genus two and three amplitudes based on considerations of
degeneration limits of the Riemann surfaces as discussed
before, which leads to the same conclusion.
The remaining terms in (B31) give an additional pertur-

bative (in the string coupling) contribution to the proposed
modular form

�
X
i

riðT; �TÞriðU; �UÞ; (C3)

where riðT; �TÞpert 
 riðT2Þ. Thus riðU; �UÞ must be an

SLð2;ZÞU invariant modular form, while �riðT; �TÞ must
get enhanced to an SLð3;ZÞM invariant modular form
riðMÞ. Now using the symmetry under interchange of U
and T, we conclude that riðMÞ receives only one perturba-
tive contribution at genus zero, and instanton corrections.
On the other hand, we know that riðMÞ must satisfy the

Laplace equation, or a Poisson equation on moduli space.
If it satisfies the Laplace equation, it will have two pertur-
bative contributions, contradicting the statement above. If
it satisfies a Poisson equation, considerations of supersym-
metry constrain the source term to involve the modular

form for theR4 interaction, namely, E3=2ðMÞSLð3;ZÞ, which
has a genus zero and a genus one contribution. Thus the
solution of the Poisson equation will have more than one
perturbative contribution, again contradicting the state-
ment above. Thus riðMÞ ¼ 0, and (B31) vanishes.
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