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We continue the analysis of the ghost wedge states in the oscillator formalism by studying the spectral

properties of the ghost matrices of Neumann coefficients. We show that the traditional spectral

representation is not valid for these matrices and propose a new heuristic formula that allows one to

reconstruct them from the knowledge of their eigenvalues and eigenvectors. It turns out that additional

data, which we call boundary data, are needed in order to actually implement the reconstruction. In

particular our result lends support to the conjecture that there exists a ghost three strings vertex with

properties parallel to those of the matter three strings vertex.
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I. INTRODUCTION

This paper is complementary to the analysis, started in
[1], of the conjectured equivalence

e�ðn�2=2ÞðLðgÞ
0
þLðgÞy

0
Þj0i ¼ N ne

cySnby j0i � jni; (1)

which is a crucial one in the recent developments in open
string field theory [2–14]. Here jni are the ghost wedge
states in the oscillator formalism [15–19], which of course,
must coincide with the corresponding surface wedge states.
In [1] we dealt with the left-hand side (LHS) of this
equation. We showed that, if we understand it ordered
according to the natural normal ordering, it can be cast
into the midterm form in (1), and we diagonalized the
matrix Sn in such a squeezed state. Then we proved that,
if we are allowed to star-multiply the squeezed states
representing the ghost wedge states jni the same way we
do for the matter wedge states and diagonalize the corre-
sponding matrices, the eigenvalue we obtain in the two
cases are the same. In this paper we focus on the spectral
properties of such operators like Sn and, among other
things, we exhibit evidence that the above if is justified.

To be more precise, in order to fully prove (1) we have
two possibilities. The most direct alternative is to define the
three strings vertex for the ghost part, and thus the star
product, pertinent to the natural normal ordering in the
oscillator formalism; then to construct the wedge states
appropriate for this vertex; finally to diagonalize the latter
and show that they coincide with the midterm of (1) (with

some additional specifications that will be clarified in due
course). Unfortunately, the construction of the ghost vertex
is not so straightforward as one would hope. Relying on the
common lore on this subject, we face a large number of
possibilities, which are mostly linked to the ghost zero
mode insertions and our attempts in this direction so far
have been unfruitful. Before continuing in such a challeng-
ing program it is wise to gather some evidence that the
vertex one is looking for does exist and some indirect
information about it. This is the original motivation of
the present paper, which relies on the second alternative.
Having diagonalized the matrices Sn in the midterm of

(1) in the basis of weight 2 differentials, see [1], one may
wonder whether one can reconstruct the original matrices.
For the matter part this is a standard procedure, simply one
uses the spectral representation of the infinite matrices
involved. But for the ghost sector we are interested in
here things are more complicated (it should be recalled
that the infinite matrices Sn are not square but lame, i.e.,
infinite rectangular). Ultimately, the answer is: yes, we can
reconstruct the Sn matrices; in other words, we can derive
the right-hand side (RHS) of (1) from the LHS, but the
procedure is more involved than in the matter case. In fact,
the traditional spectral representation is not valid for lame
matrices and we have to figure out a new heuristic formula
that allows us to reconstruct them from their eigenvalues
and eigenvectors. It turns out that additional data, which
we call boundary data, are needed in order to actually
implement the reconstruction. Once this is done we can
extract from them basic information about the Neumann
coefficients matrices of the ghost three strings vertex.
The main results of our paper are the study of the

spectral properties of the infinite matrices Sn in the b� c
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ghost bases, the reconstruction recipe for such infinite
matrices (which is an interesting result in itself), and the
evidence for the existence of the three-strings vertex we
need for the ghost sector in the natural normal ordering.

The paper is organized as follows. In Sec. II, which is
essentially pedagogical, we present an example of a three
strings vertex which is not the one we are looking for as it
cannot be diagonalized in the weight 2 basis, but has all the
other good properties we expect of the true vertex. This
example also illustrates the problems one comes across in
constructing a ghost three strings vertex. In Sec. III we
make contact with the results of [1] and give a more
detailed proof that the squeezed states in the midterm of
(1) have the same eigenvalue as the ghost wedge states in
the oscillator formalism. We clarify that this is not enough
to prove that (1) holds, and, in Sec. IV, we show where the
problem lies and propose a new heuristic formula for the
reconstruction of infinite lame matrices. Finally, Sec. V is
devoted to our conclusions. Three appendices contain de-
tails of the calculations needed in the text. In particular,
Appendix C presents a new proof of the fundamental
Eq. (43).

Notation.—Any infinite matrix we meet in this paper is
either square short, long legged, or lame. In this regard we
will often use a compact notation: a subscript s will rep-
resent an integer label n running from 2 to 1, while a
subscript l will represent a label running from �1 to þ1.
So Yss, Yll will denote square short and long legged,
respectively; Ysl, Yls will denote short-long and long-short
lame matrices, respectively. With the same meaning we
will say that a matrix is ðllÞ, ðssÞ, ðslÞ, or ðlsÞ. In a similar
way, we will denote by Vs and Vl a short and long infinite
vector, to which the above matrices naturally apply.
Moreover, while n, m represent generic matrix indices, at
times we will use �n, �m to stress that they are short, i.e.,
�n; �m � 2.

II. THE THREE STRINGS VERTEX

This section is mostly pedagogical. We would like here
to explain what the problems are with defining a three
strings vertex for the ghost sector that fits the purposes of
proving Eq. (1). The first problem we have to face is
normal ordering. We will have in mind two main cases of
normal orderings, those we have called natural and con-
ventional normal ordering in [1]. The former is the obvious
normal ordering required when the vacuum is j0i, the latter
is instead appropriate to the vacuum state c1j0i. A consis-
tent vertex for conventional normal ordering exists, is the
one explicitly computed by Gross and Jevicki, [18], who
used the vacuum c0c1j0i (for general problems connected
with the ghost sector, see [20–23]). But it is not what we
need in the natural normal ordering case. A second prob-
lem is generated by the ghost insertions, which are free and
there is no a priori principle to fix them. We know, how-
ever, that a certain number of conditions should be satis-

fied. One is the Becchi-Rouet-Stora-Tyutin (BRST)
invariance of the three strings vertex. This is unfortunately
hard to translate into a practical recipe for construction.
Other conditions, i.e., cyclicity, bpz-compatibility, and
commutativity of the Neumann coefficients matrices are
more useful from a constructive point of view.
In the sequel we will consider a definite example. Even

though it turns out not to be the right vertex we are looking
for, it will allow us to illustrate many questions which
would sound rather abstruse in the abstract.
To start with we first recall the relevant anticommutator

and bpz rules

½cn; bm�þ ¼ �nþm;0; bpzðcnÞ ¼ �ð�1Þnc�n;

bpzðbnÞ ¼ ð�1Þnb�n:

Then we define the state j0̂i ¼ c�1c0c1j0i, where j0i is the
SL(2,R)-invariant vacuum, the tensor product of states

123h!̂j ¼
1
h0̂j2h0̂j3h0j (2)

carrying total ghost number 6, and

j!i123 ¼ j0i1j0i2j0̂i3 (3)

carrying total ghost number 3. They satisfy 123h!̂j!i123 ¼
1. Finally we write down the general form of the three
strings vertex

hV̂3j ¼ K123h!̂jeÊ; Ê ¼ � X3
r;s¼1

X1
n;m

cðrÞn V̂rs
nmb

ðsÞ
m : (4)

The dual vertex is

jV3i ¼ KeEj!̂i123; E ¼ X3
r;s¼1

X1
n;m

cðrÞyn Vrs
nmb

ðsÞy
m : (5)

The range of m, n is not specified. However, for reasons
that will become clear later, we would like to interpret the

matrices V̂rs
nm and Vrs

nm as square long-legged matrices ðllÞ.
But, as soon as we try to evaluate, for instance, contractions

like hV̂3j!i123 in order to compute the constant K, a
problem arises linked to the presence in the exponent (4)
of couples of conjugate operators c0, b0, c�1, b1, and c1,
b�1. In order to appreciate this problem let us consider the
simple case of ec0V00b0 . Interpreting this expression literally
one gets

ec0V00b0 ¼ 1þ c0V00b0 þ 1
2c0V00b0c0V00b0 þ . . .

¼ 1þ c0ðV00 þ 1
2V

2
00 þ . . .Þb0

¼ 1þ c0ðeV00 � 1Þb0: (6)

It follows that, when inserted in hV̂3j!i123 a term like this
does not yield 1, as one would expect. Moreover if, instead
of the single zero mode we have considered here for
simplicity, we had three, the result would be even more
complicated. All this is not natural. Let us recall that the
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meaning of V̂rs
nm (see [24] and below) is the coefficient of

the monomial zmþ1wn�2 in the expansion of

hV̂3jRðcðsÞðzÞbðrÞðwÞÞj!123i in powers of z and w (with
opposite sign). Therefore interpreting the exponentials in
(4) as in (6) is misleading. It is clear that what they really
mean is something else. To adapt the oscillator formalism
to the desired meaning we proceed as follows.

Let us introduce new conjugate operators �a, �
y
a , a ¼

�1, 0, 1, in addition to cn, bm, such that

½�a; �
y
b �þ ¼ �ab (7)

and they anticommute with all the other oscillators.
Moreover we require them to satisfy

�aj0i ¼ 0; h0j�y
a ¼ 0; (8)

while

h0j�a � 0; �y
a j0i � 0: (9)

Now let us replace in the exponent of (4) ca with �a (but

not cya in the exponent of (5) with �y
a ) and bya in the

exponent of (4) with �y
a (but not ba in the exponent of

(4) with �a—in fact cya and ba will not be needed). With

these rules hV̂3j!i123 ¼ K straightforwardly. The matri-

ces V̂rs
nm and Vrs

nm are naturally square long legged. The

interpretation of V̂rs
nm as the negative coefficient of

order zmþ1 and wn�2 in the expansion of

hV̂3jRðcðsÞðzÞbðrÞðwÞÞj!i123 in powers of z and w, remains

valid provided one replaces bðrÞy�1 , b
ðrÞy
0 , bðrÞy1 in bðrÞðwÞwith

�ðrÞy
�1 , �

ðrÞy
0 , �ðrÞy

1 .

We stress again that the substitution of ca with�a and b
y
a

with �y
a is dictated by the requirement of consistency of the

interpretation of the Neumann coefficient as expansion
coefficients of the b- c propagator.

A. Ghost Neumann coefficients and their properties

It is time to go to a concrete example. To this end one has

to explicitly compute V̂rs
nm and Vrs

nm in (4) and (5). The
method is well known: one expresses the propagator with
zero mode insertions hhcðzÞbðwÞii in two different ways,
first as a conformal field theory (CFT) correlator and then

in terms of V̂3 and one equates the two expressions after
mapping them to the disk via the maps

fiðziÞ ¼ �2�ifðziÞ; i ¼ 1; 2; 3; (10)

where

fðzÞ ¼
�
1þ iz

1� iz

�
2=3

: (11)

Here � ¼ e2�i=3 is one of the three third roots of unity.
However, this recipe leaves several uncertainties due espe-
cially to the ghost insertions. For concreteness in
Appendix Awe make a specific choice of these insertions,
in a way the simplest one: we set the insertions at infinity.

Even so there remain some uncertainties which we fix by
requiring certain properties, in particular, cyclicity, consis-
tency with the bpz operation, and commutativity of the
twisted matrices of Neumann coefficients (the motivation
for the latter will become clear further on). With this
(arbitrary) choice, the ghost Neumann coefficients worked
out in Appendix A satisfy the following set of properties:
(i) cyclicity

V̂ rs
nm ¼ V̂rþ1;sþ1

nm ; (12)

(ii) bpz consistency

ð�1ÞnþmVrs
nm ¼ V̂rs

nm; (13)

(iii) commutativity

Its meaning is the following. Defining X ¼ ĈVrr,

Xþ ¼ ĈV12, X� ¼ ĈV21, we have

XrsXr0s0 ¼ Xr0s0Xrs (14)

for all r, s, r0, s0. In addition, we have

Xþ Xþ þ X� ¼ 1 (15)

and

XþX� ¼ X2 � X; X2 þ ðXþÞ2 þ ðX�Þ2 ¼ 1:

(16)

It should be stressed that all the Xrs matrices are ðllÞ.

B. Formulas for wedge states

Our next goal is to define recursion relations for the
ghost wedge states. To start with we define the star product
of squeezed ghost states of the form

jSi ¼ N expðcySbyÞj0i: (17)

We notice that since the vacuum is j0i we are implicitly
referring to the natural normal ordering. The star product
of two such states jS1i and jS2i is the bpz of the state

hV̂3jjS1i1jS2i2: (18)

However, this formula needs some specifications. We re-
mark that the problem pointed out above, linked to the
presence of couples of conjugate oscillators in the expo-
nents, is present both in (17) and (18). We solve it as we did

in Sec. II, with the help of additional oscillators �a, �
y
b . We

interpret, for instance, (17) as follows. We replace the new
oscillators in it as in Sec. II, then we exploit the anticom-
mutativity properties of the latter to move them to the right

and apply them to j0i, then we substitute back bya in the

place of �y
a . The upshot of this operation is that no bya

oscillator will survive and the state (17) takes the form

jSi ¼ N exp

� X
n¼�1

X
m¼2

cynSnmb
y
m

�
j0i: (19)
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That is, the matrix Snm in the exponent is lame ls. This is
the precise meaning we attach to (17). Let us notice that the
bpz dual expression of (19) is

hSj ¼ N h0j expð�cĈSĈbÞ: (20)

The matrix S here is ll.
After this specification let us define the star product of

jS1i and jS2i. Let us recall the three strings vertex (4) and
(5). Remembering the discussion before (19) we conclude

that V̂rs
nm is sl for r ¼ 1, 2 and ll for r ¼ 3, while Vrs

nm is ls
for r ¼ 1, 2 and ll for r ¼ 3.

In evaluating this product we will have to evaluate
vacuum expectation values (vev’s) of the type

h0̂j expðcFbþ c�þ �bÞ expðcyGby þ �by þ cy	Þj0i:
(21)

Here we are using an obvious compact notation: F, G
denotes matrices Fnm,Gnm, and �,�, �, 	 are anticommut-
ing vectors �n, �n, �n, 	n. We expect the result of this
evaluation to be

h0̂j expðcFbþ c�þ �bÞ expðcyGby þ �by þ cy	Þj0i
¼ detð1þ FGÞ exp

�
��

1

1þ FG
F	 � �

1

1þGF
G�

� �
1

1þ FG
�þ �

1

1þGF
	

�
: (22)

In order for this formula to hold in (21) the operator

denoted b, c must be creation operators with respect to h0̂j
and annihilation operators with respect to the j0i vacuum.
Vice versa, the oscillators denoted cy, by must be all
creation operators with respect to j0i, and annihilation

operators with respect to h0̂j. But this is precisely what
happens if we assume the definition (19) for the squeezed
states and (4) for the vertex with the summation over n
starting from 2 (which is consistent with the interpretation

by means of �y
a and �a, as before (19)).

Therefore it is correct to use formulas like (22) in order
to evaluate the star product (18), but in this case the
matrices F and G will be lame (ls or sl as the case be),
while analogous considerations apply to the vectors �, �,
�, 	 (�, 	 are long vectors, while �, � are short). The star
product of two squeezed states like (17) is

jS1i ? jS2i ¼ jS12i;
where the state in the RHS has the same form as (17), with

the matrix S replaced by S12 ¼ ĈT12. The latter is given by
the familiar formula

T12 ¼ X þ ðXþ; X�Þ 1

1� �12V
�12

X�
Xþ

� �
; (23)

where

�12 ¼ ĈS1 0
0 ĈS2

 !
; V ¼ X Xþ

X� X

� �
: (24)

The normalization of jS12i is given by

N 12 ¼ N 1N 2 detð1�V�12Þ: (25)

Notice that in this formula the four matrices in V�12 are
ss.
These expressions are well defined. However, since they

are expressed in terms of lame matrices we cannot operate
with them in the same way we usually do with the analo-
gous matrices of the matter sector. For that one needs the
identities proved in the previous section, which are only
valid for long square matrices. Luckily in the case of the
wedge states it is possible to overcome this difficulty.
When computing a star product we would like to be able

to apply the formulas of subsection II A, which are ex-
pressed in terms of long square matrices. To this end we
would like (22) to be expressed in terms of long square
matrices, rather than of lame matrices. This is possible at
the price of some modifications.

Let us introduce the new conjugate operators �a, �
y
a ,

a ¼ �1, 0, 1, as above, see (7)–(9) and let us replace in

(22) ca (but not cya ) with �a and bya (but not ba) with �y
a .

Then in the RHS long square matrices and long vectors will
feature (instead of lame matrices and short or long vec-
tors). In the sequel we will use (22) in this sense. Such
modifications, of course, are not for free. We have to justify
them.1 We will show later on that in the case of the wedge
states such a move is justified.
Once this is done the calculation of the star product

works smoothly without any substantial difference with
respect to the matter case. The formulas are the same
Eqs. (23)–(25) above, but expressed in terms of long square
matrices to which we can apply the identities of
subsection II A. This allows us to treat the ghost squeezed
states in a way completely similar to the matter squeezed
states. Of course, it remains for us to comply with the
promise we made of showing that we are allowed to use
long square matrices.
The wedge states are now defined to be squeezed states

jni � jSni that satisfy the recursive star product formula

jni ? jmi ¼ jnþm� 1i: (26)

This implies that the relevant matrices Tn ¼ ĈSn satisfy
the recursion relation

Tnþm�1 ¼ X � ðTn þ TmÞX þ TnTm

1� ðTn þ TmÞXþ TnTmX
(27)

1In the previous cases the introduction of the new oscillators
was simply an auxiliary tool to help us interpret such formulas as
(19). We could have done without them by ad hoc definitions.
But now we are tampering with vev’s, therefore we have to make
sure that we do not modify anything essential.
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or

Tnþ1 ¼ X
1� Tn

1� TnX
; (28)

and the normalization constants are given by

N nþ1 ¼ N nK detð1� TnXÞ: (29)

These relations are derived under the hypothesis that Tn

and X, Xþ, X� commute and by using the identities of
subsection II A. The solution to (28) is well known,
[23,25]. We repeat the derivation in order to stress its
uniqueness. We require that j2i coincide with the vacuum
j0i, both for the matter and the ghost sector.2

This implies, in particular, that T2 ¼ 0 and N 2 ¼ 1,
which entails from (28) that T3 ¼ X, T4 ¼ X

1þX , etc. That

is, Tn is a uniquely defined function of X. But X can be
uniquely expressed in terms of the sliver matrix T

X ¼ T

T2 � T þ 1
; (30)

a formula whose inverse is well known [26,27],

T ¼ 1

2X
ð1þ X� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� XÞð1þ 3XÞp Þ: (31)

Therefore Tn can be expressed as a uniquely defined func-
tion of T. Now consider the formula

Tn ¼ T þ ð�TÞn�1

1� ð�TÞn :

It satisfies (28) as well as the condition T2 ¼ 0, therefore it
is the unique solution to (28) we were looking for.

So far the states jni have been defined solely in terms of
the three strings vertex. One might ask what is their con-
nection with the wedge states defined as surface states,
[2,28–30]. This connection can be established: it can be
shown that, with the appropriate insertion of the zero
modes, the surface wedge matrix S3 is actually Vrr, i.e.,
T3 ¼ X.

It is simple to see that similarly (29) has a unique
solution satisfying N 2 ¼ 1 and K ¼ N 3.

C. Commutation relations with K1

What we have done so far is all very good, but the
concrete example of vertex constructed in Appendix A is
only academical, as the following remark shows. In [1] we
diagonalized the LHS of (1) on the basis of weight 2
differentials, in which the operator K1 is diagonal. In order

to be able to compare this result with the wedge states
defined above we have to make sure that also the matrices
Tn, X, Xþ, X� can be diagonalized in the same basis. In
this subsection we will discuss this problem.
Let us recall the definition of K1:

K1 ¼
X

p;q��1

cypGpqbq þ
X

p;q�2

by�pH �p �qc �q � 3c2b�1; (32)

where

Gpq ¼ ðp� 1Þ�pþ1;q þ ðpþ 1Þ�p�1;q;

H �p �q ¼ ð �pþ 2Þ� �pþ1; �q þ ð �p� 2Þ� �p�1; �q;
(33)

G is a square long-legged matrix, and H a square short-
legged one. In the common overlap we have G ¼ HT . We
notice immediately that K1 annihilates the vacuum

K1j0i ¼ 0: (34)

What is important for us is that the action of K1 commutes

with the matrices we want to diagonalize. Now let Tn ¼
ĈSn, where Sn is the matrix of the squeezed state repre-
senting jni. We have seen that Tn can be either lame or
square ðllÞ. Since we want to diagonalize (28) we must
consider the second alternative. But in order to arrive at
square ðllÞ matrices, at the beginning of this section we

introduced into the game the conjugate oscillators �a, �
y
a ,

a ¼ �1, 0, 1. Therefore, to be consistent, they must appear
also in the oscillator representation ofK1. This can be done
as follows.
We write down K1 as

K1 ¼
X

p;q��1

cypGpqbq þ
X

p;q��1

bypHpqcq; (35)

where G and H have the same expression as before, but
now also H is square long legged and H ¼ GT . What is
important is that in the expression byHc we understand

that bya is replaced by �y
a and ca is replaced by �a (for

simplicity we dispense with writing the new K1 explicitly).
If we write

bðzÞ ¼ X
n�2

bnz
�n�2 þ X

�1�a�1

�y
az�a�2 þ X

n�2

bynzn�2;

(36)

cðzÞ ¼ X
n�2

cnz
n�1 þ X

�1�a�1

�az
�aþ1 þ X

n�2

cynznþ1; (37)

we find the expected conformal action of K1 on these
fields. For instance,

½K1; bðzÞ� ¼ �X
n

ððn� 1Þbnþ1 þ ðnþ 1Þbn�1Þz�n�2

¼ ð1þ z2Þ@bðzÞ þ 4zbðzÞ
after replacing back bya for �y

a .

2It is worth recalling that our purpose in this paper is to
complete the proof started in [1] of (1)

e�ðn�2=2ÞðLðgÞ
0
þLðgÞy

0
Þj0i ¼ N ne

cySnby j0i � jni;
that is, that the LHS does represent the ghost wedge states. In
this light the requirement that the wedge state jni with n ¼ 2
coincide with the vacuum state is natural.
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On the basis of this discussion we expect therefore that

½G; Tn� ¼ 0 (38)

as square long-legged matrices. In particular we should
find that G commutes with X. One can, however, show that
this is not the case for the vertex explicitly constructed in
Appendix A. Therefore that vertex has many good proper-
ties but not this one.

However we will show below it is very plausible that a
three strings vertex that satisfies also (38) exists. Therefore
in the sequel we imagine that we have done everything

with this vertex and will try to justify its existence a
posteriori.

III. THE DIAGONAL RECURSIVE RELATIONS
FOR WEDGE STATES

So far we have worked, so to speak, on the RHS of
Eq. (1). It is now time to make a comparison with the LHS.
In [1] we showed that

e�ðn�2=2ÞðLðgÞ
0
þLðgÞy

0
Þj0i ¼ e�ðtÞecy�ðtÞby j0i; (39)

where t ¼ ð2� nÞ=2,

�ðtÞ ¼ A
sinhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDTÞ2 � BA

p
tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDTÞ2 � BA

p
coshð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDTÞ2 � BA

p
tÞ �DT sinhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDTÞ2 � BA

p
tÞ

(40)

and

�ðtÞ ¼ �
Z t

0
dt0trðB�ðt0ÞÞ (41)

and A, B, DT are matrices extracted from LðgÞ
0 þLðgÞy

0 . In
particular, DT as well as the combination ðDTÞ2 � BA are
ðssÞ matrices, while A is lame ðlsÞ. The purpose of the
paper was to show that the RHS of (40), multiplied by the
twist matrix Ĉ, does satisfy the recursion relations (28) and
(29). This was achieved by diagonalizing the matrices ~A ¼
ĈA;DT and ðDTÞ2 � BA on the weight 2 basis Vð2Þ

n ð
Þ, with
n ¼ 2; 3; . . . . We concluded that if we are allowed to re-
place in (28) and (29) the matrices by their eigenvalues in
such a basis, the recursion relations can be shown to be
true. What remained to be proved was precisely the cor-
rectness of replacing in such formulas the matrices by their
eigenvalues. We are now in the position to do it.

Let us examine first (40), multiplied from the left by the

twist matrix. The RHS is the product of ~A by a matrix
which is diagonal in the weight 2 basis and is of type ðssÞ.
Therefore when we apply the latter to a vector Vð2Þ

s with

components ðVð2Þ
2 ð
Þ; Vð2Þ

3 ð
Þ; . . .Þ, we obtain the same vec-

tor multiplied by the eigenvalue. When we next apply ~A
from the left to the resulting vector, things are a little bit
more complicated because A is an ðlsÞ matrix. The vector
ensuing from the operation would seem to have three
additional entries with n ¼ �1, 0, 1, therefore making
meaningless even the idea of eigenvalue and eigenvector.
However, it was shown in [1] that

X1
q¼2

~ApqV
ð2Þ
q ð
Þ ¼ að
ÞVð2Þ

p ð
Þ; p ¼ 2; 3; . . . ; (42)

X1
q¼2

~AaqV
ð2Þ
q ð
Þ ¼ 0; a ¼ �1; 0; 1 (43)

(for a new proof of (43) see Appendix C); i.e., not only is

the ðssÞ submatrix of ~A diagonal in the weight 2 basis with
eigenvalue að
Þ, but the potential additional vector ele-
ments vanish. This allows us to conclude that the same
property is shared by the matrix �ðtÞ. That is, when apply-
ing �ðtÞ to the weight 2 basis vector Vð2Þ

s as above, we
obtain the corresponding eigenvalue multiplying the same

vector (without additional components): �ðtÞVð2Þ
s ¼

�ð
; tÞVð2Þ
s .

Now let us apply the above to (28). The latter is formu-
lated in terms of long square matrices whose ðlsÞ part has
the form �ðtÞ. Now we can interpret (28) as an infinite
series expansion, in which each term is a monomial of
(possibly different) matrices whose ðlsÞ part has the form

�ðtÞ. Let us consider the weight 2 basis vector Vð2Þ
s ex-

tended by adding three 0 components in position �1; 0; 1,

and let us call it Vð2Þ
l . When we apply any of the above

matrices to it, we get the same extended vector multi-

plied by the matrix eigenvalue: for instance, �ðtÞVð2Þ
l ¼

�ð
; tÞVð2Þ
l . Therefore we can repeat the operation as many

times as needed for any monomial and obtain the same
vector multiplied by the monomial in which each matrix is
replaced by its eigenvalue. Resumming the series we ob-
tain that the relation (28) applied to the weight 2 basis
vector becomes a relation of the same form with the
matrices replaced by the corresponding eigenvalues. But
in [1] we checked that this relation for the eigenvalues is
true. This, which is the main argument in [1] and the
present paper, and is intended to lead to the proof of (1),
has been laid out so far in a rather patchy way due to its
complexity. For the sake of clarity it is worth reviewing it
in full, even at the price of some repetitions.

Proof of the diagonal recursive relations for wedge
states

We wish to show that the eigenvalues of the matrices Sn
in (1) satisfy (28) and (29). This sentence has to be un-
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ambiguously understood. First we notice that T2 ¼ 0,
which is consistent with j2i being identified with the
vacuum j0i and N 2 ¼ 1. Now proving (28) means prov-
ing two things:

T3 ¼ X (44)

and

Tnþ1 ¼ T3

1� Tn

1� TnT3

: (45)

This second equation is demonstrated by setting

Tn � ĈSn ¼ ~�

�
�n� 2

2

�
(46)

and using ~� given by Eq. (40). This gives the explicit
expression

Tn ¼ � ~A
sinhð ffiffiffiffi

�
p

n�2
2 Þffiffiffiffi

�
p

coshð ffiffiffiffi
�

p
n�2
2 Þ þDT sinhð ffiffiffiffi

�
p

n�2
2 Þ ; (47)

where � ¼ ðDTÞ2 � BA. On the basis of the remarks made
at the beginning of this section, we replace everywhere the
matrices by their eigenvalues

ffiffiffiffi
�

p
¼ �j
j

2
; ~A ¼ 
�

2 sinhð
�2 Þ
;

DT ¼ 
�

2
coth

�

�

2

�
:

(48)

By inserting (46) into (45) one can see that the latter is
satisfied (see Sec. 2.5 of [1] for details) if

DT þ ~A ¼
ffiffiffiffi
�

p
coth

�

�

2

�
:

This is immediately verified using (48).
Next, in order to prove (44), we recall that (45) can be

solved by

Tn ¼ T þ ð�TÞn�1

1� ð�TÞn (49)

for some matrix T. This matrix is easily identified to be
T � T1 (this makes sense because the absolute value (of

the eigenvalue) of T turns out to be <1: T ¼ �e�ðj
j�=2Þ).
But, from the defining Eq. (26), T represents the sliver
[26,27,31]. Therefore it is related to X by Eq. (31) or by its
inverse

X ¼ T

T2 � T þ 1
: (50)

This is precisely (49) for n ¼ 3. Therefore (44) is satisfied
and in addition this tells us that the eigenvalue of X is

X ¼ � 1

1þ 2 coshð
�2 Þ
: (51)

Since the recursive constraints propagates this identifica-
tion to all the wedge states this completes our proof.3

Let us come to the normalization constants N n. They
must satisfy a recursion relation

N nK detð1� TnXÞ ¼ N nþ1; (53)

where K is some constant to be determined. We fix it by
requiring that N 2 ¼ 1 so that the wedge state j2i coin-
cides with the vacuum j0i. We have

�n ¼ �
Z tn

0
dttrðB�Þ ¼ �

Z tn

0
dttrð ~A ~�Þ; (54)

where the trace is over the weight 2 basis. Now identifying

N n ¼ e�n;

plugging in the relevant eigenvalues and proceeding as in
Sec. (2.5) of [1] one can easily verify that (53) is satisfied.
This completes our proof that the squeezed states in the

midterm of (1) have the same eigenvalue as the ghost
wedge states in the oscillator formalism.
To complete this argument we must show that our choice

of enlarging the Fock space at the beginning of this section
is justified in the case of the wedge states. Since this
requires the same type of arguments as in the previous
subsection and is somewhat repetitious, wewill account for
it in Appendix B.
Finally, let us remark that without the commutativity

property of the twisted Neumann coefficients matrices
spelled out in Sec. II, it would be impossible to reproduce
the results of [1] where the matrices A, B, C, DT commute
(in the appropriate way).
The results we have obtained in this section consolidate

the result obtained in [1], however is not yet the end our
proof of (1). In the next section we explain why.

IV. MATRIX RECONSTRUCTION FROM THE
SPECTRUM

So far our argument has been carried out by replacing
the matrices involved with their eigenvalues. It would seem
that we are done with the proof of (1). However what we

3It might seem at first sight that Eq. (51) contradicts the well-
known formula found by Gross and Jevicki [17,18,32],

X ¼ �E
M

1þ 2M
E�1; (52)

which relates the twisted ghost Neumann coefficients matrix X
with the corresponding matter matrix of Neumann coefficients
M. If we naively diagonalize X and M on the matter basis of
eigenvectors and use the result of [33], we obtain a value for X
different from (51). However this is an ‘‘optical’’ effect: Eq. (52)
is certainly true numerically, but X andM act on different spaces,
therefore they are different operators. Each must be diagonalized
in its own space. They cannot be diagonalized using the same
basis. There is thus no room for contradiction between (51) and
(52).
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have to show is not only that the eigenvalues of the matri-
ces featuring in the RHS of Eq. (39) coincide with the
eigenvalues of the matrix Sn in (17), where Sn satisfies the
recursion relation (28), but that the matrices themselves
coincide. Now, in general, if one knows eigenvalues and
eigenvectors of a matrix operator one can reconstruct the
original matrix. This is true for the matter sector of (1), but
in the ghost sector this is not the case. In the ghost sectors
things are unfortunately more complicated due to the ex-
istence of zero modes. This section is devoted to explaining
this additional complication.

So far our argument has consisted in applying the ma-

trices involved such as ~A,DT , and, in particular, �ðtÞ to the
weight 2 basis vector Vð2Þ. As shown in [1], the exponent
cy�by in (39) can be written as follows:

cy�by ¼ X
n¼�1;m¼2

cyn�nmðtÞbym

¼ X1
n¼�1;m¼2

Z
d
d
0~cyð
Þ ~Vð�1Þ

n ð
Þ~�nmðtÞ

� ~Vð2Þ
m ð
0Þbyð
0Þ

¼ X1
n¼2

Z
d
d
0~cyð
Þ ~Vð�1Þ

n ð
Þ~�ð
; tÞ ~Vð2Þ
n ð
0Þbyð
0Þ

¼
Z

d
~cyð
Þ~�ð
; tÞbyð
Þ; (55)

where we have introduced

ð�1Þncyn ¼
Z

d
~cyð
Þ ~Vð�1Þ
n ð
Þ;

byn ¼
Z

d
byð
Þ ~Vð2Þ
n ð
Þ; n � 2:

(56)

It is clear that if the LHS of (55) is exactly equal to the
RHS, our proof is complete. However the question is: in
(55) we went from left to right, i.e., from the LHS we
derived the RHS. Can we go the other way? In other words,
given that we know the eigenvalue of some matrix in the
weight 2 basis (or, for that matter, in the weight �1 basis)
can we reconstruct the original matrix? For instance, we
notice that in the intermediate steps of (55) the summation
over n ¼ �1, 0, 1 has disappeared. The obvious question
is: how can we reconstruct these modes when we run the
argument from right to left?

To start with let us recall the definitions of the two bases.
The non-normalized basis (weight 2 basis) is given by

fð2Þ
 ðzÞ ¼ X
n¼2

Vð2Þ
n ð
Þzn�2 (57)

in terms of the generating function

fð2Þ
 ðzÞ ¼
�

1

1þ z2

�
2
e
 arctanðzÞ

¼ 1þ 
zþ
�

2

2
� 2

�
z2 þ . . . (58)

Following [34,35] (see also Appendix B of [1]), we nor-
malize the eigenfunctions as follows:

~V ð2Þ
n ð
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A2ð
Þ

q
Vð2Þ
n ð
Þ; (59)

where

A2ð
Þ ¼ 
ð
2 þ 4Þ
2 sinhð�
2 Þ

:

The non-normalized weight �1 basis is given by

fð�1Þ

 ðzÞ ¼ X

n¼�1

Vð�1Þ
n ð
Þznþ1 (60)

in terms of the generating function

fð�1Þ

 ðzÞ ¼ ð1þ z2Þe
 arctanðzÞ

¼ 1þ 
zþ
�

2

2
þ 1

�
z2 þ . . . (61)

The normalized one is

~V ð�1Þ
n ð
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�1ð
Þ

q
Vð�1Þ
n ð
Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�1ð
Þ

q
¼ P

1




ffiffiffiffiffiffiffiffiffiffiffiffi
A2ð
Þ

p

2 þ 4

;

(62)

whereP denotes the principal value. We reported in [1] the
bi-orthogonalityZ 1

�1
d
 ~Vð�1Þ

n ð
Þ ~Vð2Þ
m ð
Þ ¼ �n;m; n � 2 (63)

and ‘‘bi-completeness’’ relation

X1
n¼2

~Vð�1Þ
n ð
Þ ~Vð2Þ

n ð
0Þ ¼ �ð
; 
0Þ (64)

taking them from [36]. These relations can be formally
proved, but it is evident that they have to be handled with
care. Let us recall again Eqs. (42) and (43), which turned
out to be crucial in the previous sections, and let us do the

following. We multiply (43) by Vð2Þ
n ð
Þ and integrate over


: we get Aan ¼ 0 for n � 2, which is evidently false. On
the other hand, Eq. (43) is correct (we present a new
demonstration of it in Appendix C). Therefore it is appar-
ent that in the above exercise we did something illegal.
This can only be the exchange between the (infinite) sum-
mation and the integration over 
. We remark that the same
kind of exchange occurs also in the intermediate steps of
(55). We are therefore warned that in doing so we may lose
some information. The question is: is there a way to repair
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the illegality we commit in this way and recover the full
relevant information?

In mathematical terms this involves the problem of the
spectral representation for lame operators. Unfortunately
we have not been able to find any treatment of this problem
in the mathematical literature. We proceed therefore in a
heuristic way.

A. The problem

Let us analyze the reconstruction of the matrix ~A. SinceP1
l¼2

~Anl
~Vð2Þ
l ð
Þ ¼ að
Þ ~Vð2Þ

n ð
Þ, we might argue as follows:

Z 1

�1
d
 ~Vð�1Þ

m ð
Það
Þ ~Vð2Þ
n ð
Þ ¼ X1

l¼2

~Anl

Z 1

�1
~Vð�1Þ
m ð
ÞVð2Þ

l ð
Þ

¼ ~Anm (65)

using the bi-orthogonality relations (63). Therefore we

should be able to reconstruct the ~A matrix starting from

a ð
Þ ¼ �


2

1

sinhð�
2 Þ
and the bases. Here are the first few basis elements

Vð2Þ
2 ð
Þ ¼ 1; Vð2Þ

3 ð
Þ ¼ 
;

Vð2Þ
4 ð
Þ ¼ 
2 � 4

2
; Vð2Þ

5 ð
Þ ¼ 1

6

ð
2 � 14Þ;

Vð2Þ
6 ð
Þ ¼ 1

24
ð
4 � 32
2 þ 72Þ; . . .

(66)

and

Vð�1Þ
2 ð
Þ ¼ 1

6

ð
2 þ 4Þ;

Vð�1Þ
3 ð
Þ ¼ 
2ð
2 þ 4Þ

24
;

Vð�1Þ
4 ð
Þ ¼ 


120
ð
4 � 16Þ;

Vð�1Þ
5 ð
Þ ¼ 
2

720
ð
4 � 10
2 � 56Þ;

Vð�1Þ
6 ð
Þ ¼ 


5040
ð
6 � 28
4 � 56
2 þ 288Þ; . . .

(67)

These must be multiplied by the normalization factor

ffiffiffiffiffiffiffiffiffiffiffiffi
A2ð
Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
2 þ 4Þ
2 sinhð�
2 Þ

vuut
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�1ð
Þ

q
¼ P

1




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



2ð
2 þ 4Þ sinhð�
2 Þ
s

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð
ÞA�1ð
Þ

q
¼ 1

2 sinhð�
2 Þ
:

Using these formulas we get

~A 22 ¼ �

24

Z 1

�1
d



2ð
2 þ 4Þ
ðsinhð�
2 ÞÞ2

� 0:5332; (68)

~A 24 ¼ �

480

Z 1

�1
d



2ð
4 � 16Þ
ðsinhð�
2 ÞÞ2

� �0:0762; (69)

~A 33 ¼ �

96

Z 1

�1
d



4ð
2 þ 4Þ
ðsinhð�
2 ÞÞ2

� 0:1524; (70)

~A 35 ¼ �

2880

Z 1

�1
d



4ð
2 � 14Þð
2 þ 4Þ
ðsinhð�
2 ÞÞ2

� �0:0508:

(71)

From the definition of the matrix Anm one should get
instead

~A 22 ¼ �12
15 ¼ �0:8; ~A24 ¼ 16

35 � 0:457

~A33 ¼ �18
35 � �0:514; ~A35 ¼ 22

63 � 0:349:
(72)

As we can see, the reconstructed matrix elements are far
apart from the expected values.
Let us do the same for DT :

DT
22 ¼

�

24

Z 1

�1
d

2ð
2 þ 4Þ coshð�
2 Þ

ðsinhð�
2 ÞÞ2
� 2:665; (73)

DT
24 ¼

�

480

Z 1

�1
d
ð
2ð
4 � 16ÞÞ coshð�
2 Þ

ðsinhð�
2 ÞÞ2
� 0:5333;

(74)

DT
33 ¼

�

96

Z 1

�1
d
ð
4ð
2 þ 4ÞÞ coshð�
2 Þ

ðsinhð�
2 ÞÞ2
� 5:3333;

(75)

DT
35 ¼

�

2880

Z 1

�1
d
ð
4ð
2 � 14Þð
2 þ 4ÞÞ coshð�
2 Þ

ðsinhð�
2 ÞÞ2
� 1:0667: (76)

We should have instead

D22 ¼ 4; D42 ¼ 0; D33 ¼ 6; D53 ¼ 2
3:

(77)

Also here we are far apart from the true values.
We remark that if we do the same exercise for the A and

C matrices of the matter sector (see [1]), we find a perfect
coincidence between the original matrices and the ones
reconstructed by means of the spectrum.
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B. The solution

The idea is to apply the matrix ~A not to the weight 2
basis, but to the weight �1 basis, i.e.,

X1
l¼�1

~Vð�1Þ
l ð
Þ ~Al �m ¼ að
Þ ~Vð�1Þ

�m : (78)

This formula was proved in Appendix D3 of [1]. Then

Z 1

�1
d
 ~Vð�1Þ

�m ð
Það
Þ ~Vð2Þ
�n ð
Þ

¼
Z 1

�1
d


X1
l¼�1

Vð�1Þ
l ð
Þ ~Al �m

~Vð2Þ
�n ð
Þ

¼ X
a¼�1;0;1

~Aa �m

Z 1

�1
d
 ~Vð�1Þ

a ð
Þ ~Vð2Þ
n ð
Þ

þX1
l¼2

~Al �m

Z 1

�1
d
 ~Vð�1Þ

l ð
Þ ~Vð2Þ
�n ð
Þ; (79)

where barred indices denote ‘‘short’’ indices, i.e., �m; �n �
2. Now use the decomposition (see [36] and Appendix B of
[1])

~V ð�1Þ
a ð
Þ ¼ X1

n¼2

ba �n ~V
ð�1Þ
�n ð
Þ: (80)

One can easily obtain

b�1;2nþ3 ¼ ð�1Þnðnþ 1Þ; b0;2nþ2 ¼ ð�1Þn;
b1;2nþ3 ¼ ð�1Þnðnþ 2Þ: (81)

Inserting these into (79) we get

~A �n �m ¼
Z 1

�1
d
 ~Vð�1Þ

�m ð
Það
Þ ~Vð2Þ
�n ð
Þ � X

a¼�1;0;1

ba �n ~Aa �m:

(82)

Now the corrections to the values obtained in (68)–(71) are
easy to compute. For instance

~A 24 ¼ �0:076� ~A04b02 ¼ �0:076þ 8
15 � 0:457; (83)

~A33 ¼ 0:1524� ~A�1;3b�1;3 � ~A1;3b1;3 ¼ 0:1524� 2
3

¼ �0:5142; (84)

and so on.
As for B the answer is easy since B �n �m ¼ A �n �m. Notice

that the terms B �na are different from Aa �n. These terms
should also be considered as known terms.

We can reconstruct in a similar way alsoDT . For this we
must apply C to the �1 basis. This amounts to the same

formulas above, with the substitution of ~A with C and að
Þ
with cð
Þ. Remember that C �n �m ¼ DT

�n �m for �n; �m � 2. In
particular

DT
�n �m ¼ C �n �m

¼
Z 1

�1
d
 ~Vð�1Þ

�m ð
Þcð
Þ ~Vð2Þ
�n ð
Þ � X

a¼�1;0;1

ba �nCa �m:

(85)

For instance,

DT
22 ¼ C22 ¼ 2:6665� C02b02 ¼ 2:6665þ 223 � 4;

(86)

DT
33 ¼ C33 ¼ 5:3333� ðC�1;3b�1;3 þ C1;3b1;3Þ

¼ 5:3333� 2
3 þ 223 � 6; (87)

DT
35 ¼ C35 ¼ 1:0667� ðC�1;3b�1;3 þ C1;3b1;3Þ

¼ 1:0667� 2
5 � 0:6667 ¼ 2

3; (88)

and so on. ~Aa; �n, ~B �n;a, and Ca; �n and C �n;a will be referred to

from now on as boundary terms. Notice that Aa;n ¼
�C�a;n and C �n;�a ¼ B �n;a.

In the absence of a mathematical theorem we formulate
the following: Heuristic rule. In order to reconstruct any
matrix A �n �m ¼ B �n �m and C �n �m ¼ DT

�n �m from its eigenvalues,
apply A and C to the weight �1 basis, separate the �n; �m �
2 part from the zero mode part and operate as in Eq. (79)
above. As for the matrix elements Aa;n and B �n;a they cannot

be reconstructed from the eigenvalues, but they have to be
rather considered as known terms of the problem. We will
refer to them as boundary data.
Usually (for instance in the matter sector) we start from

a matrix (for instance the matrices ~A or C of [1]), diago-
nalize it, and determine the spectrum, i.e., eigenvalues and
eigenvectors. Vice versa, starting from the latter, we can
reconstruct the initial matrix using its spectral
representation.
In the present case the situation is somewhat different.

Given the matrices we can compute the spectrum (see
Sec. 5 of [1]). Vice versa, given the spectrum and the
boundary data Aa;n and B �n;a we can compute the matrices
~A and C and the related ones. This also means that, in order
to determine the eigenvalue of a given diagonalizable
matrix over the weight 2 basis, the ss part of that matrix
contains all the necessary information, but in order to
reconstruct even its ss part we have to know the action of
that matrix over the weight �1 basis, i.e., we need the
information stored in the latter.
It is clear that, with the above heuristic rule, it is possible

to reconstruct, at least in principle, any matrix which can

be expressed as a series of products of ~A, B, C, DT , in
particular ~�ðtÞ. Unfortunately so far we have not been able
to produce a simple, manageable reconstruction algorithm.
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V. CONCLUSION

Let us return to the validity of (1) and reformulate the
question raised at the beginning of the previous section. In
[1] we wrote the LHS of this equation in the form (39). We
have shown above that the RHS of the latter has the form of
a wedge state, and in fact we proved that once the squeezed
state matrix ~�ð
; 2�n

2 Þ � ~�n there is diagonalized in the

weight 2 basis, it coincides with the (diagonalized) matrix
that represents the nth wedge state jni, defined by the
squeezed state (19) whose matrix Tn satisfies the recursion
relations (28).

The next question to be answered is: in view of the
discussion of the previous section, do also the matrices
~�n coincide with the matrices Tn and, in particular, the
matrix elements ð~�nÞa;m with ðTnÞa;m with a ¼ �1, 0, 1 ?

Remember that our reconstruction algorithm tells us that
ð~�nÞa; �m (beside the other matrix elements) is uniquely

determined by the spectrum of ~�n and by the boundary
data. This is true, in particular, for ~�3, which was inter-
preted above as X. We therefore expect that ð~�3Þn;m co-

incides with Xn;m. If this is so, solving (15) and (16), for

X�, we can, in principle, reconstruct the three strings
vertex from the A, B, C, and DT matrices. This vertex
has precisely the features we have hypothesized in
Secs. II and III, in particular, the commutativity of the
twisted matrices of Neumann coefficients (otherwise they
would not be simultaneously diagonalized).

However the reconstruction of X� is not on the same
footing as the reconstruction of X (or T). For the latter, as
we have seen, there exists a precise (though unwieldy)
procedure to obtain it from the A, B, C, and DT matrices.
For X� instead we have to proceed on the basis of (15) and
(16). To discuss this point let us introduce the following
notation: for any matrixM we represent byMee the part of
M with both even entries, Moo the part with both odd
entries, and accordingly Meo, Moe with obvious meaning.
From [1] we know that all the matrices A, B, C, D have
vanishing eo and oe parts. All matrices Tn, and, in par-
ticular, X will therefore share the same property. We expect
instead that X�

eo and X�
oe be nonvanishing. Remember that

Xþ ¼ ĈX�Ĉ. Therefore

Xþ
ee ¼ X�

ee; Xþ
oo ¼ X�

oo; (89)

Xþ
eo ¼ �X�

eo; Xþ
oe ¼ �X�

oe: (90)

Substituting these relations into (15) we find

Xþ
ee ¼ X�

ee ¼ 1
2ð1ee � XeeÞ; (91)

Xþ
oo ¼ X�

oo ¼ 1
2ð1oo � XooÞ: (92)

Therefore both X�
ee and X�

oo are immediately derived from
X. From (16) we get instead

X�
eoX

�
oo ¼ X�

eeX
�
eo; (93)

X�
oeX

�
ee ¼ X�

ooX
�
oe; (94)

and

X�
eoX

�
oe ¼ 1

4ð1ee þ 3XeeÞð1ee � XeeÞ (95)

and a parallel equation with o exchanged everywhere with
e. This means that X�

eo and X�
oe are not determined algo-

rithmically like Tn, but only by solving the quadratic
equations (95) subject to the commutativity relations (93)
and (94).
If the solution to such equations, as we expect, exists,

this is a proof of the validity of (1). In fact the analysis in
Sec. III was carried out under the hypothesis that a vertex,
with the properties illustrated in Sec. II A and with the
twisted matrices of Neumann coefficients commuting with
K1, existed. But we have just shown that such a vertex can
be deduced (reconstructed) directly from the LHS of (1), in
the sense we have just specified.
The information we have extracted from the reconstruc-

tion path taken up in this paper is not conclusive. The
existence proof of the three strings vertex, as we have
just seen, is not complete. On the other hand the missing
part in the proof is rather marginal and, what is more
important, our general characterization of the three strings
vertex (Sec. II A) has not met any inconsistencies. This is
reassuring in the prospect of coping with the task of
explicitly constructing the three strings vertex endowed
with the above properties.
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APPENDIX A: THE GHOST NEUMANN
COEFFICIENTS

In this appendix we explicitly compute V̂rs
nm and Vrs

nm. We
use the definitions (4) and (5). The method is well known:
we express the propagator hhcðzÞbðwÞii in two different

ways, first as a CFT correlator and then in terms of V̂3

and we equate the two expressions after mapping them to
the disk via the maps (10). However, this recipe leaves
several uncertainties. We will fix them by requiring certain
properties, in particular, cyclicity, consistency with the bpz
operation, and commutativity of the twisted matrices of
Neumann coefficients (the reason for the latter will become
clear later on).
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First we have to insert the three c zero modes. One way
is to insert them at different points ti and use the correlator
(A1)

hhcðzÞbðwÞiiðt1;t2;t3Þ ¼ h0jcðzÞbðwÞcðt1Þcðt2Þcðt3Þj0i

¼ 1

z� w

Y3
i¼1

ti � z

ti � w
ðt1 � t2Þ

� ðt1 � t3Þðt2 � t3Þ: (A1)

So we have to compare

hf1 	 cðt1Þf2 	 cðt2Þf3 	 cðt3Þfr 	 cðrÞðzÞfs 	 bðsÞðwÞi
(A2)

with

hV̂3jRðcðrÞðzÞbðsÞðwÞÞj!i123; (A3)

where R denotes radial ordering. If :: denotes the natural
normal ordering, we have, for instance,

RðcðzÞbðwÞÞ ¼X
n;k

: cnbk: z
�nþ1w�k�2 þ 1

z� w
: (A4)

This should be inserted inside (A3). Let us refer to the last
term in (A4) as the ordering term. We notice that the choice
we have made for this term is rather arbitrary. What
precisely has to be inserted in (A3) depends also on the
definition of the three strings vertex, therefore it should be
decided on the basis of a consistent definition of the latter.
For the time being we continue on the basis of (A4), later
on we will introduce the necessary modifications.

To start with let us compute the K constant. We have

hV̂3j!i123¼K¼hf1	cðt1Þf2	cðt2Þf3	cðt3Þi

¼ðf1ðt1Þ�f2ðt2ÞÞðf1ðt1Þ�f3ðt3ÞÞðf2ðt2Þ�f3ðt3ÞÞ
f01ðt1Þf02ðt2Þf03ðt3Þ

:

(A5)

Now

hV̂3jRðcðrÞðzÞbðsÞðwÞÞj!i123
¼ hV̂3j

X
n;k

: cðrÞn bðsÞk : z�nþ1w�k�2 þ 1

z� w
j!i123

¼ K
�
�V̂sr

knz
nþ1wk�2 þ �rs

z� w

�
: (A6)

On the other hand, from direct computation,

hf1 	 cðt1Þf2 	 cðt2Þf3 	 cðt3Þfr 	 cðrÞðzÞfs 	 bðsÞðwÞi

¼ ðf0sðwÞÞ2
f0rðzÞ

1

frðzÞ � fsðwÞ
� ðf1ðt1Þ � f2ðt2ÞÞðf1ðt1Þ � f3ðt3ÞÞðf2ðt2Þ � f3ðt3ÞÞ

f01ðt1Þf02ðt2Þf03ðt3Þ


Y3
i¼1

fiðtiÞ � frðzÞ
fiðtiÞ � fsðwÞ : (A7)

Comparing the last two equations and using (A5) we get

V̂sr
kn ¼ �

I dz

2�i

I dw

2�i

1

znþ2

1

wk�1


�ðf0sðwÞÞ2

f0rðzÞ

� 1

frðzÞ � fsðwÞ
Y3
i¼1

fiðtiÞ � frðzÞ
fiðtiÞ � fsðwÞ �

�rs

z� w

�
: (A8)

After obvious changes of indices and variables we end up
with

V̂rs
nm ¼

I dz

2�i

I dw

2�i

1

zn�1

1

wmþ2


�ðf0rðzÞÞ2
ðf0sðwÞÞ

� 1

frðzÞ � fsðwÞ
Y3
i¼1

fsðwÞ � fiðtiÞ
frðzÞ � fiðtiÞ �

�rs

z�w

�
: (A9)

Now we make a definite choice for the insertions, that is we
take ti ! 1. We remark that this choice leads to simple
formulas but remains anyhow arbitrary.4

Since fið1Þ ¼ ��i we get

Y3
i¼1

fiðtiÞ � fsðwÞ
fiðtiÞ � frðzÞ ¼

fðwÞ3 � 1

fðzÞ3 � 1
: (A10)

It is straightforward to check cyclicity

V̂ rs
nm ¼ V̂rþ1;sþ1

nm : (A11)

Moreover (by letting z ! �z, w ! �w)

V̂ rs
nm ¼ ð�1ÞnþmV̂sr

nm: (A12)

Now let us consider the decomposition

V̂ rs
nm ¼ 1

3ðEnm þ ��r�sUnm þ �r�s �UnmÞ; (A13)

where

Enm ¼
I dz

2�i

I dw

2�i
N nmðz; wÞEðz; wÞ;

Unm ¼
I dz

2�i

I dw

2�i
N nmðz; wÞUðz; wÞ;

�Unm ¼
I dz

2�i

I dw

2�i
N nmðz; wÞ �Uðz; wÞ

(A14)

and

Eðz; wÞ ¼ 3fðzÞfðwÞ
f3ðzÞ � f3ðwÞ ;

Uðz; wÞ ¼ 3f2ðzÞ
f3ðzÞ � f3ðwÞ ;

�Uðz; wÞ ¼ 3f2ðwÞ
f3ðzÞ � f3ðwÞ ;

N nmðz; wÞ ¼ 1

zn�1

1

wmþ2
ðf0ðzÞÞ2ðf0ðwÞÞ�1 f

3ðwÞ � 1

f3ðzÞ � 1
:

4We recall that zero mode insertions can be introduced also by
means of the operator YðtÞ ¼ 1

2@
2cðtÞ@cðtÞcðtÞ instead of three

different cðtiÞ. This has not lead so far to better results.
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After some elementary algebra, using f0ðzÞ ¼ 4i
3

1
1þz2

fðzÞ, one finds

Enm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
1

1þ zw
� w

w� z
� z2

w

1

z� w

�
¼ ð�1Þn�nm � �n;0�m;0 � �n;1�m;�1;

Unm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
fðzÞ
fðwÞ

�
1

1þ zw
� w

w� z

�
� z2

w

1

z� w

�
;

�Unm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
fðwÞ
fðzÞ

�
1

1þ zw
� w

w� z

�
� z2

w

1

z� w

�
: (A15)

In this way the ambiguities are eliminated. The �n;m in (A15) is for n;m � 0.
In a similar way one can compute the dual vertex, the right one. One gets

123h!jRðI 	 cðzÞI 	 bðwÞÞjV3i ¼ 123h!jX
n;k

ð�1Þkþnþ1: cðrÞn bðsÞk : znþ1wk�2 þ z3

w3

�rs

z� w
jV3i

¼ K
�X
n;k

Vsr
knð�1Þnþmþ1znþ1wk�2 þ z3

w3

�rs

z� w

�
: (A16)

Equating now to (A2) and repeating the same procedure as above we finally obtain

ð�1ÞnþmVrs
nm ¼ 1

3ðE0
nm þ ��r�sU0

nm þ �r�s �U0
nmÞ; (A17)

where

E0
nm ¼

I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
1

1þ zw
� w

w� z
� w2

z

1

z� w

�
;

U0
nm ¼

I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
fðzÞ
fðwÞ

�
1

1þ zw
� w

w� z

�
� w2

z

1

z� w

�
;

�U0
nm ¼

I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
fðwÞ
fðzÞ

�
1

1þ zw
� w

w� z

�
� w2

z

1

z� w

�
:

(A18)

As we see, we have

ð�1ÞnþmVrs
nm ¼ V̂rs

nm (A19)

except perhaps for the values of the labels both involving
zero modes. That the relation (13) should hold for the full
range of the labels is instead a basic requirement. We will
use also this, besides cyclicity and commutativity, in order
to guess the final form of the vertex.

Motivated by these requirements we introduce minor
modifications in the previous definitions. We start from
the basic (A15) without the last term (the ordering term)

Enm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
1

1þ zw
� w

w� z

�
;

(A20)

Unm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

fðzÞ
fðwÞ

�
1

1þ zw

� w

w� z

�
; (A21)

�U nm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

fðwÞ
fðzÞ

�
1

1þ zw

� w

w� z

�
: (A22)

Then we define the ordering term

Znm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
w

w� z
� 1

zw

�
: (A23)

Next we define the matrices

E ¼ Eþ Z; U ¼ Uþ Z; �U ¼ �Uþ Z;

(A24)

which will be our basic ingredients. The choice of Z is

made in such a way that E ¼ Ĉ. In fact
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Enm ¼
I dz

2�i

I dw

2�i

1

znþ1

1

wmþ1

�
1

1þ zw
� 1

zw

�
¼ ð�1Þn�nm (A25)

for n;m � �1.
The double integrals in (A20)–(A22) are ambiguous in

the range �1 � n, m � 1, [37]. However, after the addi-
tion of the ordering term (A23) all ambiguities disappear.

In conclusion, we define the three strings ghost vertex as
follows. With reference to (4) and (5) we set

V̂ rs
nm ¼ 1

3ðEnm þ ��r�sUnm þ �r�s �UnmÞ (A26)

and

Vrs
nm ¼ ð�1ÞnþmV̂rs

nm; Vrs ¼ ĈV̂rsĈ: (A27)

From the definition of U and �U it is easy to verify that

ĈU ¼ �U Ĉ , where Ĉ denotes the twist matrix. We have

seen above that E � Ĉ.
Now using the method of [37] it is possible to show that

U2 ¼ 1 for n;m � �1. This implies that, besides

X þ Xþ þ X� ¼ 1;

where X ¼ ĈVrr, Xþ ¼ ĈV12, X� ¼ ĈV21, we have the
commutativity property

XrsXr0s0 ¼ Xr0s0Xrs

and

XþX� ¼ X2 � X; X2 þ ðXþÞ2 þ ðX�Þ2 ¼ 1:

It should be stressed that all the Xrs matrices are ðllÞ.

APPENDIX B: WHY WE CAN USE LONG SQUARE
MATRICES

Let us return to Eqs. (23)–(25), applied to wedge states,
that is let us suppose S1 ¼ Sn and S2 ¼ Sm. Let us con-
centrate on Eq. (23): the RHS can be understood in terms of
a series expansion in which each monomial is the product
of alternating lame matrices X, X�, Tn, Tm, the rightmost
and leftmost ones being ðlsÞ. These matrices cannot be
assumed to satisfy the identities of Sec. II A, in particular,
they cannot be assumed to commute. However, let us apply
any such monomial from the left to the above introduced

weight 2 basis vector Vð2Þ
s :

. . .YslZlsV
ð2Þ
s : (B1)

Since the rightmost matrix Z in the monomial is ðlsÞ,
whatever matrix it is it is obvious that we can simply
replace it with corresponding long square matrices and

replace Vð2Þ
s by Vð2Þ

l . According to the discussion in

Sec. III, the result of the application is the same extended
vector multiplied by the matrix eigenvalue. This is obvious
if the matrix in question is X, Tn, or Tm, as has been
discussed above. If the rightmost matrix in the monomial

is X� the same conclusion requires some comment. Since
X�
ls can be trivially replaced by a long square matrice

applied to Vð2Þ
l , we are entitled to apply to X�

ll the identities

of subsection II A. Therefore, using a well-known result,
X�
ll can be expressed in terms of Xll, and the result of the

application of X�
ll to Vð2Þ

l is Vð2Þ
l multiplied by the matrix

eigenvalue.
The next to the rightmost matrix in the monomial we

have picked up is of the type Ysl. If Y is X, Tn, or Tm we can
apply to it the argument used in Sec. III for �ðtÞ: we can
replace them with Yll since, due to (43) and the consequen-

ces thereof, the initial three elements of YllV
ð2Þ
l are zero.

The result once again is the product of the eigenvalues of

Yll and of Zll multiplying Vð2Þ
l .

If, on the other hand, Ysl is X
�
sl , we can argue as follows.

The result of replacing X�
sl by X

�
ll in front of V

ð2Þ
l is a vector

with three more entries (corresponding as always to n ¼
�1, 0, 1, if n is the left label of X�). However, we can use
the same argument as above, remarking that X�

ll can be

expressed in terms of Xll. Therefore, due to (43) and its
consequences, we can conclude that these three additional

entries are 0. Therefore writing X�
slV

ð2Þ
l is tantamount to

writing X�
ll V

ð2Þ
l , and the result is once again Vð2Þ

l multiplied

by the product of the eigenvalues of Yll and of Zll.
From this point on the argument is recursive and there is

no need to repeat it again. Resumming the series we can
conclude that in Eq. (23) we can everywhere replace the
matrices by the corresponding long square ones.
Analogous things can be repeated for Eq. (25). This is
our justification for enlarging the Fock space at the begin-
ning of this section.

APPENDIX C: PROOF OF EQ. (3.5)

We want to show that

X ¼ X1
n¼2

~A�1;nV
ð2Þ
n ð
Þ ¼ 0: (C1)

Set n ¼ 2lþ 1. Then

~A�1;2lþ1 ¼ 2ð�1Þl
2lþ 1

are the only nonvanishing matrix elements. Define

FðzÞ ¼ X1
l¼1

2ð�1Þl
2lþ 1

Vð2Þ
2lþ1z

2lþ1 (C2)

so that X ¼ Fð1Þ and Fð0Þ ¼ 0. We get
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dF

dz
¼ X1

l¼1

2ð�1ÞlVð2Þ
2lþ1z

2l ¼ izðfð2Þk ðizÞ � fð2Þk ð�izÞÞ

¼ iz

ð1� z2Þ2
��
1þ z

1� z

�
� �

�
1þ z

1� z

���
�
;

� ¼ i


2
:

Therefore

Fð1Þ ¼
Z 1

0
dzðizÞðð1þ zÞ��2ð1� zÞ���2

� ð1þ zÞ���2ð1� zÞ��2Þ
¼ i

�ð1þ �ÞFð2� �; 2; 1� �;�1Þ

þ i

�ð1� �ÞFð2þ �; 2; 1þ �;�1Þ:

Using Eq. (C.2) one gets

Fð2� �; 2; 1� �;�1Þ ¼ 1

4

�

�� 1
:

Therefore one can easily show that

i

�ð1þ �ÞFð2� �; 2; 1� �;�1Þ ¼ � i

4ð1� �2Þ ;
i

�ð1� �ÞFð2þ �; 2; 1þ �;�1Þ ¼ i

4ð1� �2Þ ;

and Fð1Þ ¼ 0.
Next we want to show

Y ¼ X1
n¼2

~A0;nV
ð2Þ
n ðkÞ ¼ 0: (C3)

This time put n ¼ 2l

~A 0;2l ¼ ð�1Þlþ1

�
1

2lþ 1
þ 1

2l� 1

�
:

Define

FðzÞ ¼ X1
l¼1

ð�1Þlþ1

2lþ 1
Vð2Þ
2l z

2lþ1; (C4)

GðzÞ ¼ X1
l¼1

ð�1Þlþ1

2l� 1
Vð2Þ
2l z

2l�1; (C5)

so that Fð1Þ þGð1Þ ¼ Y and Fð0Þ þGð0Þ ¼ 0. We get

dF

dz
¼ X1

l¼1

ð�1Þlþ1Vð2Þ
2l z

2l ¼ z2

2
ðfð2Þk ðizÞ þ fð2Þk ð�izÞÞ

¼ z2

2ð1� z2Þ2
��
1þ z

1� z

�
� þ

�
1þ z

1� z

���
�

and

dG

dz
¼ X1

l¼1

ð�1Þlþ1Vð2Þ
2l z

2l�2 ¼ 1

2
ðfð2Þk ðizÞ þ fð2Þk ð�izÞÞ

¼ 1

2ð1� z2Þ2
��

1þ z

1� z

�
� þ

�
1þ z

1� z

���
�
;

which give

Fð1Þ ¼
Z 1

0
dz

z2

2
ðð1þ zÞ��2ð1� zÞ���2

þ ð1þ zÞ���2ð1� zÞ��2Þ
¼ 1

�ð1þ �Þð1� �ÞFð2� �; 3; 2� �;�1Þ

� 1

�ð1� �Þð1þ �ÞFð2þ �; 3; 2þ �;�1Þ ¼ 0

(C6)

and

Gð1Þ ¼
Z 1

0
dz

1

2
ðð1þ zÞ��2ð1� zÞ���2

þ ð1þ zÞ���2ð1� zÞ��2Þ
¼ � 1

ð1þ �ÞFð2� �; 1;��;�1Þ

� 1

ð1� �ÞFð2þ �; 1; �;�1Þ ¼ 0: (C7)

These identities can be obtained by means of well-known
relations valid for the hypergeometric functions, such as
those in Appendix C of [1].
Lastly, we want to show that

Z ¼ X1
n¼2

~A1;nV
ð2Þ
n ðkÞ ¼ 0: (C8)

Setting n ¼ 2lþ 1 one realizes that

~A 1;2lþ1 ¼ 2ð�1Þlþ1

2lþ 1
¼ � ~A�1;2lþ1: (C9)

So Z ¼ �X ¼ 0.
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