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Attempts to construct chromodyons—objects with both magnetic charge and non-Abelian electric

charge—in the context of spontaneously broken gauge theories have been thwarted in the past by

topological obstructions to globally defining the unbroken non-Abelian ‘‘color’’ subgroup. In this paper

we consider the possibility of chromodyons in a theory with SO(5) broken to SUð2Þ � Uð1Þ, where the

topological obstructions are absent. We start by constructing a monopole with only magnetic charge. By

exciting a global gauge zero mode about this monopole, we obtain a chromodyonic configuration that is an

approximate solution of the field equations. We then numerically simulate the time evolution of this initial

state, to see if it settles down in a stationary solution. Instead, we find that chromoelectric charge is

continually radiated away, with every indication that this process will continue until this charge has been

completely lost. We argue that this presents strong evidence against the existence of stable chromodyons.
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I. INTRODUCTION

The magnetic monopoles that arise in spontaneously
broken gauge theories can easily be generalized to dyons
that have a U(1) electric charge in addition to their mag-
netic charge. It then is natural to ask whether, in cases
where the unbroken symmetry is non-Abelian, it is pos-
sible to have monopoles carrying non-Abelian electric
charge. Such objects, referred to as chromodyons, were
first considered in the context of an SU(5) grand unified
theory. After attempts to construct such chromodyons
failed [1], it was shown that the non-Abelian magnetic
charge of the SU(5) monopole creates a topological ob-
struction to the existence of non-Abelian ‘‘color’’ electric
charge [2–7], and the issue was abandoned for a number of
years. Since then, however, it has been realized that, with
other choices of gauge group, there can be monopoles with
purely Abelian magnetic charge, even though the unbroken
gauge group is non-Abelian [8]. Because there is then no
topological barrier to a color electric charge, it is natural to
revisit the subject and consider whether chromodyons can
exist.

Let us first recall how ordinary U(1) dyons arise. When
there is an unbroken U(1) symmetry, any soliton with a
nonvanishing charged field has a zero mode corresponding
to a shift in the phases of the complex charged fields.
Exciting this mode in a time-dependent fashion produces
a U(1) charge. If the U(1) symmetry is gauged, it may be
possible to gauge transform away the time dependence of
the phase, but the gauge-invariant electric charge remains.
The simplest example of this occurs with SU(2) broken to
U(1), where the Julia-Zee dyon [9] arises from rotation of
the phase of the massive vector boson fields in the core of
the ’t Hooft-Polyakov monopole [10,11].

Similarly, if there is an unbroken non-Abelian symme-
try, excitation of the gauge orientation zero modes of a
soliton gives rise to a non-Abelian electric charge. In the
theory with SU(5) broken to SUð3Þcolor � Uð1ÞEM, the unit
monopoles have nontrivial fields that are not invariant
under the unbroken SU(3). Hence, one would expect to
be able to generate dyons that were charged under the color
SU(3) (hence the term ‘‘chromodyon’’) by exciting the
resulting global gauge zero modes. However,
Abouelsaood [1] found that, because the gauge potential
has a 1=r tail in the unbroken subgroup, some of the
expected zero modes are non-normalizable, and the pro-
posed construction does not go through. A deeper expla-
nation for this was given by Nelson and Manohar [2], and
by Balachandran et al. [3–5], who showed that the non-
Abelian Coulomb magnetic field creates a topological
obstruction that prevents one from globally defining a basis
for the unbroken color subgroup. This inability to define
‘‘global color’’ is the fundamental reason for the nonexis-
tence of the SU(5) chromodyons.1

These barriers to the existence of a chromodyon would
both be absent if the total magnetic charge were purely
Abelian. This can certainly be achieved by assembling a
collection of magnetic monopoles such that the non-
Abelian components of their charges sum to zero; a two-
monopole example of this was studied by Coleman and
Nelson [13]. However, what we need to produce a chro-
modyon is a single monopole with purely Abelian mag-
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1The SU(5) monopoles do have dyonic counterparts with an
electric charge in the U(1) subgroup defined by the magnetic
charge, which lies partly in the unbroken SU(3) [12]. However,
because the electric charge is restricted to this subgroup, imply-
ing that one cannot generate full color multiplets of states, and
because the color electric charge is strictly proportional to the
Abelian electric charge, these are chromodyons only in a limited
sense.
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netic charge. While there are no such monopoles in the
SU(5) theory, they do exist in a theory with SO(5) broken
to Uð1Þ � SUð2Þ. These were first discovered [8] in the
BPS limit, where they appear as spherically symmetric
classical solutions that are characterized by a ‘‘cloud
size’’ b that can take on any positive value. These can be
interpreted as being composed of a massive monopole,
carrying both Abelian and non-Abelian magnetic charge,
and a massless monopole, with only non-Abelian magnetic
charge. At the semiclassical level, the latter is manifested
as a cloud of non-Abelian field, of radius b, that surrounds
the core of the massive monopole and completely shields
the non-Abelian part of its magnetic charge. In the BPS
limit the energy is independent of b. However, if the
Lagrangian includes a nonvanishing potential, the cloud
size is no longer arbitrary, but rather is fixed. This then
gives a magnetic monopole whose long-range field lies
only in the U(1) sector, but whose core transforms under
the unbroken SU(2) and thus gives rise to the gauge zero
modes from which we might hope to construct a chro-
modyon. It is this system that we will study.

We start, in Sec. II, by constructing the static SO(5)
monopole. An analytic solution exists for the BPS case.
However, as we explain later on, the possibility of varying
the cloud size makes these unsuitable for our purposes.
Instead, we must take for our starting point a non-BPS
monopole, for which the field equations must be solved
numerically. Then, in Sec. III, we construct a chromo-
dyonic configuration from this monopole by applying an
SU(2) gauge rotation and solving for the A0 field that is
required by Gauss’s law. Although this is not an exact static
solution of the field equations, one might expect it to be
close to the desired chromodyon. We test this by numeri-
cally simulating the time evolution with this as the initial
configuration. We describe the details of this simulation in
Sec. IV. The results are described in Sec. V. We find that,
rather than evolving toward a stable chromodyon, the
chromodyonic configuration continually radiates non-
Abelian charge. Although we are not able to continue the
simulation long enough to verify that this charge is com-
pletely radiated away, every evidence indicates that this
will be the case. Our conclusions are summarized in
Sec. VI. There are two Appendices containing some tech-
nical details.

II. SO(5) MONOPOLES

We are interested in theories with Lagrangian densities
of the form

L ¼ �1
4 TrF

��F�� � 1
2 TrD

��D��� Vð�Þ: (2.1)

Here the gauge field A� and the adjoint representation

Higgs field� are both written as imaginary antisymmetric
5� 5 matrices.

To describe the components of these and other adjoint
representation fields, we will adopt the following conven-

tions. In the defining representation, the generators of
SO(5) are the ten 5� 5 matrices

ðJmnÞij ¼ �ið�im�jn � �in�jmÞ; 1 � m< n � 5:

(2.2)

From these we can define six matrices

ha ¼ 1
2ð12�abcJbc þ Ja4Þ; ka ¼ 1

2ð12�abcJbc � Ja4Þ
(2.3)

that generate SOð4Þ ¼ SUð2Þ � SUð2Þ. We can then de-
compose any adjoint representation field P in terms of two
triplets, Pað1Þ and P

a
ð2Þ, and P

�
ð3Þ (� ¼ 1, 2, 3, 4) via

P ¼ Pð1Þ � hþ Pð2Þ � kþ P
�
ð3ÞJ

�5: (2.4)

Wewill refer to Pð1Þ, Pð2Þ, and Pð3Þ as the first-, second-, and
third-sector components, respectively.
SO(5) can be broken to SUð2Þ � Uð1Þ in two inequiva-

lent ways. In the first, corresponding to the decomposition
SOð5Þ � SOð3Þ � SOð2Þ, the SU(2) is the subgroup, with
the generators Jab ¼ �abcðhc þ kcÞ, that rotates the first
three components of a five-vector among themselves. We
will be concerned with the second possibility, in which the
unbroken SU(2) is one of the factors of the SOð4Þ ¼
SUð2Þ � SUð2Þ subgroup that mixes the first four compo-
nents of a five-vector among themselves; we will choose it
to be the subgroup generated by the ka.
We will be seeking spherically symmetric monopole

solutions. If we also require that the fields have positive
parity, the most general spherically symmetric ansatz can
be written as2

Aaið1Þ ¼ �aimr̂mAðrÞ; �a
ð1Þ ¼ r̂aHðrÞ;

Aaið2Þ ¼ �aimr̂mGðrÞ; �a
ð2Þ ¼ r̂aKðrÞ;

A�ið3Þ ¼
ffiffiffi
2

p ½�i�FðrÞ þ ��ar̂ir̂aSðrÞ�;
�
�
ð3Þ ¼ � ffiffiffi

2
p
�4�JðrÞ;

(2.5)

where Latin indices run from 1 to 3 and� runs from 1 to 4.
Actually, there is some redundancy in this ansatz. A

gauge transformation of the form

�S ¼ ei ðrÞr̂aJa5 (2.6)

preserves the ansatz, but with new coefficient functions,
which we indicate with a tilde, given by

2In Ref. [8], the third-sector fields were written in a somewhat
different manner than here. The normalizations in the present
ansatz have been chosen so that the coefficient functions are,
nevertheless, the same as those that appear in that paper.
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~Hþ ~K¼HþK;

~H� ~K¼ ðH�KÞcos þ 2
ffiffiffi
2

p
J sin ;

2
ffiffiffi
2

p
~J¼�ðH�KÞ sin þ 2

ffiffiffi
2

p
J cos ;

~A� ~G¼ A�G;

~Aþ ~Gþ 2

er
¼

�
AþGþ 2

er

�
cos þ 2

ffiffiffi
2

p
F sin ;

2
ffiffiffi
2

p
~F¼�

�
AþGþ 2

er

�
sin þ 2

ffiffiffi
2

p
F cos ;

~S¼ SþFð1� cos Þþ 1

2
ffiffiffi
2

p
�
AþGþ 2

er

�
sin 

� 1ffiffiffi
2

p
e

d 

dr
: (2.7)

From the last of these equations, we see that SðrÞ can
always be gauged away with a suitable choice of  ðrÞ.
We will henceforth assume that this has been done, so that
SðrÞ vanishes identically.

Requiring that the fields be nonsingular at the origin
gives the boundary conditions

Að0Þ ¼ Gð0Þ ¼ Hð0Þ ¼ Kð0Þ ¼ 0: (2.8)

The functions F and J can be nonzero at the origin.
However, examination of the field equations, which we
will display below, shows that nonsingular solutions must
have

F0ð0Þ ¼ J0ð0Þ ¼ 0; (2.9)

where a prime denotes differentiation with respect to r.
To obtain the symmetry breaking that we want, the

asymptotic value of the Higgs field must lie in the subgroup
generated by the ha, giving the boundary conditions

Hð1Þ ¼ v; Kð1Þ ¼ Jð1Þ ¼ 0: (2.10)

With this choice, the third-sector gauge fields are massive,
so FðrÞ falls exponentially fast at large distance. The
behavior of the other, massless, gauge fields depends on
the magnetic charge. If the latter is a purely Abelian unit
charge, then at large distance

AðrÞ ��1=er; GðrÞ& const=r2; FðrÞ � e�evr=2:
(2.11)

In Ref. [8] it was shown that in the BPS limit of vanish-
ing scalar potential there is a solution given by

AðrÞ ¼ v

sinh evr
� 1

er
;

HðrÞ ¼ v coth evr� 1

er
;

GðrÞ ¼ KðrÞ ¼
�

v

sinh evr
� 1

er

�
Lðr; bÞ;

FðrÞ ¼ �JðrÞ ¼ vffiffiffi
8

p
coshðevr=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðr; bÞp

;

SðrÞ ¼ 0;

(2.12)

where b is any positive real number and

Lðr; bÞ ¼ b

bþ r cothðevr=2Þ : (2.13)

This solution can be interpreted as being composed of
two distinct fundamental monopoles. One is a massive
monopole, with core radius �1=ev, whose magnetic
charge has both non-Abelian and Abelian components.
The other is a massless monopole that is manifested at
the semiclassical level as a cloud of radius b whose mag-
netic charge cancels the non-Abelian part of the massive
monopole’s charge. This can be seen by computing the
large distance behavior of the magnetic field. For 1=ev�
r� b, both AðrÞ and GðrÞ fall as 1=r, and so

Baið1Þ ¼
r̂ar̂i
er2

þOð1=r3Þ; (2.14)

Baið2Þ ¼
r̂ar̂i
er2

þOð1=r3Þ: (2.15)

(The third-sector fields fall exponentially outside the mas-
sive monopole core and play no role here.) Outside the
massless cloud, r	 b, GðrÞ � �b=er2. As a result, Baið2Þ
falls faster than 1=r2, while Baið1Þ is unchanged. Hence, the
long-range magnetic field, and thus the total magnetic
charge, have only first-sector components and are purely
Abelian.
One might think that the knowledge of the explicit

analytic form of this monopole solution would make it
an ideal case for constructing chromodyons. As we will
see in the next section, this turns out not to be so. The
difficulty arises from the fact that the energy of the BPS
monopole is independent of the cloud size b, so that a small
perturbation can cause the cloud to expand without bound.
To avoid this problem, we will add a potential term that
effectively fixes the cloud size. With this term included, the
BPS limit no longer applies, so we will have to solve the
full set of second-order field equations. Because this can-
not be done analytically, we will resort to numerical
solution.
Thus, let us add a potential of the form

Vð�Þ ¼ ��2

2
Tr�2 þ aðTr�2Þ2 þ bTr�4; (2.16)
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where �, a, and b are constants. In order to obtain the
desired symmetry breaking, b must be positive, while the
requirement that the potential be bounded from below
gives the condition 4aþ b > 0. At the minimum of the
potential,

Tr �2 
 v2 ¼ �2

4aþ b
: (2.17)

There is an SU(2) singlet Higgs scalar with mass

ms ¼
ffiffiffi
2

p
� (2.18)

and an SU(2) triplet with mass

mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cÞp

�; (2.19)

where

c 
 4a

4aþ b
: (2.20)

The positivity of b implies that �1< c< 1, with the two
limits corresponding to ms � mt and mt � ms,
respectively.

Substitution of our spherically symmetric ansatz,
Eq. (2.5), into the Euler-Lagrange equations,

DjF
ji ¼ ie½�; Di��;

DjD
j� ¼ @V

@�
;

(2.21)

yields seven ordinary differential equations (ODEs), cor-
responding to the seven coefficient functions in our ansatz.
Note that even though we can use the gauge freedom
described by Eqs. (2.6) and (2.7) to make SðrÞ identically
zero, there is still a corresponding ODE. However, while
the other six ODEs are second order, this last is a constraint
equation relating the coefficient functions and their first
derivatives. If we set S ¼ 0, this equation, which we will
refer to as the S constraint, takes the form

0 ¼
�
AþGþ 2

er

�
F0 �

�
A0 þG0 � 2

er2

�
F

þ 1

2
ðH � KÞJ0 � 1

2
ðH0 � K0ÞJ � e

�
1

2

�
AþGþ 2

er

�
2

þ 1

4
ðH � KÞ2 þ 2J2 þ 4F2

�
F (2.22)

while the other six ODEs become

A00 ¼ � 2

r
A0 þ 2

r2
Aþ 6eFF0 þ 3e

r
A2 þ e

r
H2 þ e2ðA3 þ AH2 þ AJ2 þ 5AF2 �GF2 �GJ2 þ 3HFJ þ KFJÞ;

G00 ¼ � 2

r
G0 þ 2

r2
G� 6eFF0 þ 3e

r
G2 þ e

r
K2 þ e2ðG3 þGK2 þGJ2 þ 5GF2 � AF2 � AJ2 � 3KFJ �HFJÞ;

F00 ¼ � 1

r
F0 þ e

2
ðAþGÞF0 þ eðA0 þG0ÞFþ 2e

r
ðAþGÞFþ e

2r
ðH � KÞJ

þ e2
�
4F2 þ A2 þG2 þ 1

4
H2 þ 1

4
K2 þ 2J2 þ 1

2
HK � AG

�
Fþ e2

4
ð3AH � 3GK �GH þ AKÞJ;

H00 ¼ � 2

r
H0 þ 2

r2
H � 4eFJ0 � 2eF0J þ 4e

r
AH þ e2ð3F2H þ F2K þ 2A2H þ 6AFJ � 2FGJÞ

þ�2

v2
½HðH2 þ 3K2 � v2Þ þ 4J2ðH � KÞ þ cð4J2K � 2HK2Þ�;

K00 ¼ � 2

r
K0 þ 2

r2
K þ 4eFJ0 þ 2eF0J þ 4e

r
GK þ e2ð2G2K þ 3F2K þ F2H þ 2AFJ � 6GFJÞ

þ�2

v2
½KðK2 þ 3H2 � v2Þ þ 4J2ðK �HÞ � cð2H2K � 4J2HÞ�;

J00 ¼ � 2

r
J0 þ e

2
HF0 � e

2
KF0 þ eH0F� eK0Fþ 2e

r
HF� 2e

r
KFþ e2

2
ðA2 þG2 þ 12F2 � 2AGÞJ

þ e2

2
ð3AH � 3GK þ AK �GHÞFþ�2

v2
½8J2 þ ðH � KÞ2 � v2 þ cð2HK � 4J2Þ�J: (2.23)

These equations are not all independent. For example,
the F00 equation can be derived from the S constraint and
the other five ODEs. The converse is not quite true, be-
cause there are solutions of the six second-order equations
that do not satisfy the S constraint. However, if the S
constraint holds at one value of r, the remaining ODEs
imply that it holds for all r. In particular, the S constraint is

satisfied for all r if the fields at spatial infinity obey
Eqs. (2.10) and (2.11).
In the BPS case, the exponential approach of the coef-

ficient functions to their asymptotic behavior is governed
by a single mass scale, ev. With the potential added, three
different mass scales— ev, ms, and mt—come into play.
To simplify our numerical simulations of the time evolu-
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tion and to avoid the well-known stiffness problem, we
want these characteristic lengths to be close to each other.

To that end we set� ¼ ev and c ¼ 0:5, so that ev ¼ mt ¼
ms=

ffiffiffi
2

p
.

We choose to numerically solve the six ODEs in
Eq. (2.23) and then check the solution against the S con-
straint. We use a MATLAB package—SBVP 1.0 [14]—to
solve this boundary value problem. By using the colloca-
tion method, the SBVP numerical package can handle the
singular terms in Eq. (2.23) with high accuracy near the
origin, where r! 0. Our numerical solution is shown in
Fig. 1. The S constraint has been checked to be automati-
cally satisfied within the numerical error.

It should be noted that this solution is not unique. Setting
G ¼ F ¼ J ¼ K ¼ 0 reduces the field equations to two
coupled equations for A andH that are identical to those of
the SU(2) theory. This then yields a solution that is simply
an embedding of the SU(2) unit monopole via the subgroup
generated by the ha. For our choice of parameters, the mass
of this pure SU(2) solution is 1:287MBPS, where MBPS ¼
4�v=e is the mass of the unit BPS monopole. By contrast,
the nonembedding solution shown in Fig. 1 has a mass of
1:253MBPS. Note that the mass difference is numerically
significant, well above the numerical errors.

III. CONSTRUCTING A CHROMODYONIC
CONFIGURATION

In a U(1) dyonic soliton, the electric charge results from
a time-dependent phase of a complex field. In a similar
fashion, a magnetically charged configuration with a time-
dependent orientation with respect to a non-Abelian group
carries non-Abelian electric charge and is a chromodyon.
In this section we will show how such chromodyons can be
constructed from time-independent solutions such as those
obtained in the previous section. We start with a static
solution fðAiÞstaticðrÞ; ð�ÞstaticðrÞg. As our first step, we ex-
cite one of the zero modes of the static solution and
uniformly rotate its SU(2) orientation to obtain

ðAiÞI ¼ RðtÞðAiÞstaticR�1ðtÞ;
ð�ÞI ¼ RðtÞð�ÞstaticR�1ðtÞ; (3.1)

where

RðtÞ ¼ eik3!0t (3.2)

and the generator k3 is defined in Eq. (2.3). It is critical to
realize that this is not a gauge transformation, because the
latter would have required that we also add a spatially
constant A0 ¼ �ð!0=eÞk3. However, we do need a non-
zero A0 in order to satisfy the Gauss’s law constraint

DjF
j0 ¼ ie½�; D0��: (3.3)

Solving this equation, given ðAiÞI and ð�ÞI and the bound-
ary condition

A0ð1Þ ¼ 0; (3.4)

yields a solution that we denote by ðA0ÞII. This gives us a
time-dependent configuration fðA0ÞII; ðAiÞI; ð�ÞIg.
It is often more convenient to work instead with the

stationary configuration obtained by applying a gauge
transformation with gauge function � ¼ R�1. This gives
us fðA0ÞIII; ðAiÞstatic; ð�Þstaticg, where

ðA0ÞIII ¼ !0

e
k3 þ R�1ðA0ÞIIR: (3.5)

It is not hard to see that we could have obtained this final
configuration by directly solving Gauss’s law with ðAiÞstatic
and ð�Þstatic given and A0 obeying a different boundary
condition,

A0ð1Þ ¼ !0

e
k3: (3.6)

We denote the solution of this equation as ðA0Þstatic.
Even when working in this static gauge, it is convenient

to describe the extra energy associated with this configu-
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)
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−0.4

  −0.2

0

r

J(
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0 2 4 6 8
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  −0.2

0

r

A
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)

FIG. 1. Monopole solution in the non-BPS SO(5) gauge the-
ory. The radial distance r is given in units of 1=ev, and the
coefficient functions in units of v.
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ration in rotational terms. The relevant ‘‘moment of iner-
tia’’ is given by the spatial integral of the sum of the
squares of the field components that undergo the phase
rotation. Since the characteristic length scale is �ðevÞ�1,
while the natural scale of the fields is v, we have

Ech � I!2
0 �

�
1

ev

�
3
v2!2

0 �
v

e

�
!0

ev

�
2
: (3.7)

Similarly, the SU(2) electric charge has a magnitude

qE � eI!0 � 1

e

�
!0

ev

�
(3.8)

with the extra factor of e arising because the electric charge
is e times the momentum conjugate to the phase rotation.

The configuration fðA0Þstatic; ðAiÞstatic; ð�Þstaticg has both a
U(1) magnetic charge and an SU(2) electric charge, and so
is a chromodyon. The question that we need to address is
whether it is a solution of the field equations. It is easy to
see that it cannot be, because the rotation in group space
induces a deformation of the field profiles, just as the
spatial rotation of a solid object induces a deformation of
its shape. However, this deformation is3 of order!2

0, and so

should require only a small modification of the configura-
tion if !0 is sufficiently small. If this is the only correction
needed, then the theory does indeed have a stable static
chromodyon solution. On the other hand, it may be that
there is no such static solution. We will test for this
possibility by taking fðA0Þstatic; ðAiÞstatic; ð�Þstaticg as an ini-
tial condition and then letting the fields evolve in time
according to the field equations. If the deformation result-
ing from the rotation in SU(2) space is the only impedi-
ment to its being a static solution, the fields should
oscillate, with an initial amplitude proportional to !2

0,

and eventually settle down in the true static solution.
In order to do this, we need to determine ðA0Þstatic. Thus,

our immediate task is to solve Eq. (3.3) subject to the
boundary condition that A0ð1Þ ¼ ð!0=eÞk3. The fields
ðAiÞstatic and ð�Þstatic are both spherically symmetric.
However, the boundary condition on A0 breaks this sym-
metry, so we can only assume that A0 has an axial sym-
metry. The most general ansatz for A0 is then

Aa0ð1Þ ¼ r̂auð�; zÞ;
A3
0ð1Þ ¼ wð�; zÞ;
Aa0ð2Þ ¼ r̂abð�; zÞ;
A3
0ð2Þ ¼ Qð�; zÞ;
Aa0ð3Þ ¼

ffiffiffi
2

p
�abr̂

bqð�; zÞ;
A3
0ð3Þ ¼ 0;

A4
0ð3Þ ¼ � ffiffiffi

2
p
tð�; zÞ;

(3.10)

where a and b are either 1 or 2 and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The

boundary conditions at spatial infinity require that Q ap-
proach!0=e and that the other coefficient functions tend to
zero.
Substituting this ansatz into Gauss’s law, Eq. (3.3),

yields the set of second-order partial differential equations
that are displayed in Appendix A. These rather compli-
cated equations experience a remarkable simplification if
ðAiÞstatic and ð�Þstatic are taken to be the BPS solution of
Eq. (2.12). In this case, they can be satisfied by setting all
the coefficient functions exceptQ to zero, takingQð�; zÞ ¼
QðrÞ, and requiring that

dQðrÞ
dr

þ eGðrÞQðrÞ ¼ 0; (3.11)

where GðrÞ is the second-sector gauge field function given
in Eq. (2.12). The solution to Eq. (3.11) is4

QðrÞ ¼ !0b

eLðr; bÞ
@Lðr; bÞ
@b

¼
�
!0

e

�
r cothðevr=2Þ

bþ r cothðevr=2Þ :
(3.12)

Unfortunately, this simple solution turns out not to be
useful. To see this, recall that for small velocities the
dominant time dependence of a soliton arises entirely
through excitation of its zero modes, whose dynamics is
governed by the moduli space Lagrangian. For the generic
case, with a nonzero scalar field potential, there are seven
zero modes about fðAiÞstatic; ð�Þstaticg. Four of these—three
translation modes and one U(1) phase mode—are irrele-
vant for our purposes. The remaining three are SU(2)
orientation modes, one of which has been excited by the
transformation in Eq. (3.1). Within the moduli space ap-
proximation (MSA), there would be uniform motion in the
corresponding collective coordinate. In the gauge where
A0ð1Þ ¼ 0, the soliton would rotate uniformly in SU(2)
space, as described by Eq. (3.1).
In the BPS case there is an additional zero mode, corre-

sponding to the freedom to vary the cloud radius b. The
moduli space Lagrangian governing the eight zero modes
is given by

3This can be seen easily from the field equations

D0F
0i þDjF

ji ¼ ie½�; Di��;
D0D0��DjDj� ¼ 0;

(3.9)

where the nonstatic terms, D0F
0i and D0D0�, are of order

Oð!2
0Þ. If these terms are omitted, the equations reduce to the

static equations satisfied by ðAiÞstatic and ð�Þstatic.
4This result was also obtained, by a different method, in

Ref. [15].
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LMS ¼ 1

2
M _X2 þ 1

2M
_�2 þ 1

2

� _b2
b
þ b½ _�2 þ sin2� _	2

þ ð _
þ cos� _	Þ2�
�
; (3.13)

where M is the BPS monopole mass, X is the location of
the center of the system, � is the U(1) phase, and �, 	, and

 are SU(2) Euler angles. We are interested in the part
within the curly braces, Lrel

MS, that describes the zero modes

corresponding to the non-Abelian cloud size and the SU(2)
orientation of the non-Abelian cloud. By transforming to
coordinates

x1 ¼ 2
ffiffiffi
b

p
sin
�

2
cos

	� 


2
;

x2 ¼ 2
ffiffiffi
b

p
cos

�

2
cos

	þ 


2
;

x3 ¼ 2
ffiffiffi
b

p
sin
�

2
sin
	� 


2
;

x4 ¼ 2
ffiffiffi
b

p
cos

�

2
sin
	þ 


2
;

(3.14)

we see that this is actually the Lagrangian for a free particle
in four-dimensional Euclidean space,

Lrel
MS ¼ 1

2
_x21 þ 1

2
_x22 þ 1

2
_x23 þ 1

2
_x24: (3.15)

The solutions of this Lagrangian are uniform straight
line motion. Without loss of generality, we focus on solu-
tions in the x1-x2 plane. The SU(2) rotating configurations
we are studying then correspond to taking initial values

� ¼ 	 ¼ 
 ¼ 0, b ¼ b0, _� ¼ !0, and _	 ¼ _
 ¼ _b ¼ 0.
This leads to

x1ðtÞ ¼ v0t;

x2ðtÞ ¼ �0;
(3.16)

or, equivalently,

bðtÞ ¼ b0 þ b0

�
!0t

2

�
2
;

�ðtÞ ¼ 2tan�1!0t

2
:

(3.17)

We see that the SU(2) phase does not even go through a full
rotation, so this is hardly a good approximation to a uni-
formly rotating configuration of fixed color electric charge.
This is clearly attributable to the fact that the cloud size can
grow without limit.5

To avoid this difficulty, we turn to the case with a non-
zero potential, where the b mode is no longer a zero mode
and the MSA predicts uniform rotation of the SU(2) ori-
entation. Because analytic results are no longer possible,

we must resort to numerical solution of the field equations,
both to obtain the static monopole solution, as described in
the previous section, and to find the A0 that solves the
Gauss’s law constraint, the topic to which we now turn.
The ansatz for A0 was given in Eq. (3.10), and the

coupled field equations that follow from this ansatz are
given in Appendix A. The outer boundary conditions are
found by noticing that well outside the core [i.e., when r is
much greater than ðevÞ�1, m�1

s , and m�1
t ] the third-sector

components are all exponentially small and we have

uð�; zÞ ! c1�z

r4
;

wð�; zÞ ! c1z
2

r4
;

bð�; zÞ ! d1�z

r4
;

Qð�; zÞ ! !0 þ c2
r
þ d2
r2

þ d1z
2

r4
:

(3.18)

Here c1 and c2 are free constants, to be determined from
the numerical simulation, while d1 and d2 can be derived in
terms of these by analysis of the asymptotic expansion. We
use the successive over-relaxation method with red-black
ordering as our numerical method. Our results are shown in
Fig. 2.
In contrast with the BPS case, we see that all of the

coefficient functions are nonzero, although Q remains
dominant, and that all of these functions, including Q,
have only axial symmetry, with separate dependence on
� and z.

IV. EVOLVING THE CHROMODYON

In the previous two sections we obtained a static mono-
pole solution and then determined the A0 that is required by
Gauss’s law when this solution rotates uniformly in SU(2)
space. We now take this configuration as the initial condi-
tion and let the system evolve as dictated by the equations
of motion. We work in the gauge where the uniform
rotation has been gauged away, so that the initial configu-
ration fðA0Þstatic; ðAiÞstatic; ð�Þstaticg would be a static solu-
tion if the MSA were exact. In this gauge, any time
dependence arises from corrections to the MSA.
To proceed, we need to specify !0. It cannot be too big

(e.g., so large that the energy arising from the gauge
rotation is comparable to the monopole mass) if the origi-
nal configuration is to be even an approximate solution. A
more stringent condition is suggested by the existence of
the embedded pure SU(2) monopole described at the end of
Sec. II. In order to make sure that our configuration does
not evolve toward this other monopole solution, we want
the energy associated with the gauge rotation to be less
than the mass difference between the two types of static
monopoles. On the other hand, taking !0 to be too small
will impose increased computational burdens, because we

5Equation (3.17) implies that _b increases linearly with time. In
actual fact, the MSA breaks down when _b approaches the speed
of light [16].
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will have to simulate the evolution for a much longer time
in order to see any effect.

We choose !0 ¼ 0:04ev. The gauge rotation energy
corresponding to this is of order ð!0=evÞ2MBPS �
10�3MBPS, smaller than the mass difference between the
two monopole solutions. Because the A0 obtained in the
previous section is linearly proportional to !0, the initial
data can be obtained by a simple rescaling of the solution
shown in Fig. 2.

The Euler-Lagrange equations consist of the evolution
equations

D0F
0i þDjF

ji ¼ ie½�; Di��; (4.1)

D0D
0�þDjD

j� ¼ @Vð�Þ
@�

; (4.2)

and the Gauss’s law constraint

DjF
j0 ¼ ie½�; D0��: (4.3)

Wewill use the so-called free evolution scheme to simulate
this constrained system. In this scheme, we numerically
solve the evolution equations, and use the constraints to
monitor the accuracy of the evolution. It is well known that
direct numerical implementation can have problems with
numerical instability. To avoid this, we choose to use the
technique in Ref. [17] to first rewrite the evolution equa-
tions in hyperbolic form. To do this, we take a covariant
time derivative of Eq. (4.1) and subtract a covariant spatial
derivative of the Gauss’s law constraint, obtaining

D0D0F
0i þD0DjF

ji �DiDjF
j0

¼ ieD0½�; Di�� � ieDi½�; D0��: (4.4)

Switching the two covariant derivatives on the left-hand
side gives

D0D0F
0i þDjD0F

ij þDjDiFj0 þ 2ie½Fij; Fj0�
¼ ieD0½�; Di�� � ieDi½�; D0��: (4.5)
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FIG. 2. Numerical solution for ðA0Þstatic in the non-BPS SO(5) theory, with !0 ¼ 0:1ev. The coordinates z and � are given in units
of 1=ev and the component fields u, w, b, Q, q, and t, defined in Eq. (3.10), in units of v.
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Next, we take a covariant spatial derivative of the Bianchi
identity,

D0Fij þDiFj0 þDjF0i ¼ 0; (4.6)

to give

DjD0Fij þDjDiFj0 ¼ DjDjFi0: (4.7)

We substitute this into Eq. (4.5) and obtain

D0D0Fi0 þDjDjFi0 þ 2ie½Fij; Fj0�
¼ ieD0½�; Di�� � ieDi½�; D0��: (4.8)

The full set of equations now consists of the definition of
F�� and two wave equations, Eqs. (4.2) and (4.8).

Equation (4.1) becomes a second constraint.
One advantage of this hyperbolic formulation is that it

does not depend on the gauge condition. Therefore, by
assuming an appropriate time-dependent gauge transfor-
mation, we can choose A0 to be anything we want. In
particular, we will set

A0ðr; t > 0Þ ¼ ðA0ðrÞÞstatic; (4.9)

where ðA0Þstatic is the solution shown in Fig. 2. The chro-
modyon configuration constructed previously is an ap-
proximate stationary solution with this choice of A0. If it
were exact, Eq. (4.9) would correspond to choosing a
gauge in which the SU(2) rotation was gauged away.
Any time dependence that we observe will correspond to
corrections to this approximation.

Once A0 has been fixed in this manner, the time-
dependent variables in this formulation are Ai,�, and Ei 

Fi0. Their initial values at t ¼ 0 are chosen to be ðAiÞstatic,
ð�Þstatic, and DiðA0Þstatic. The time derivatives of Ai and �
at t ¼ 0 are set equal to zero, while @0Eiðt ¼ 0Þ is obtained
from the constraint equation (4.1). Note that Eiðt ¼ 0Þ is
Oð!0Þ and @0Eiðt ¼ 0Þ is Oð!2

0Þ.
The system has axial symmetry at t ¼ 0 and this sym-

metry will be preserved by the evolution. Usually, a two-
dimension grid structure in the �-z plane is used to dis-
cretize an axially symmetric system. However, using cy-
lindrical coordinates to simulate time-dependent systems
can easily cause numerical instabilities [18]. In our imple-
mentation, we use the method proposed in Ref. [19]. The
idea is to discretize the system using three slabs in the
three-dimension Cartesian coordinates, as shown in Fig. 3
(a). Each slab is a two-dimensional grid structure with step
size h. The central slab lies in the x-z plane. The other two
slabs are obtained by shifting the central one by þh and
�h along the y axis, respectively. At each grid point, any
so(5)-valued element is represented by ten real numbers.
For each time step, the two wave equations are solved first
on the central slab using the finite difference method. Then
the axial symmetry is used to update the grid points on the
other two slabs. To be precise, we plot the grid structure in
Fig. 3(b). The axial symmetry tells us that the system will

be invariant if we rotate it through the same angle both in
real spatial space and in isospin space. For the� field, this
means that

�ðrD; tÞ ¼ e�ih3�e�ik3��ðrE; tÞeik3�eih3�; (4.10)

where � is the angle between rE and rD. For the Ai field, it
means that

AiðrD; tÞ ¼ e�ih3�e�ik3�Rijð�ÞAjðrE; tÞeik3�eih3�; (4.11)

with Rijð�Þ being the matrix corresponding to a spatial

rotation by angle � about the z-axis. Interpolation is used
to calculate �ðrE; tÞ and AiðrE; tÞ from the values at the
neighboring grid points, A, B, and C.
In our simulation, the grid with three slabs covers a

space of size 60 (in units of 1=ev). The open boundary
condition is used because of its simplicity. The radius of
the monopole is roughly 1 and we focus on studying a
region with a radius of 10. This implies that we can only
simulate our system up to t ¼ 50.
Because the system is approximately stationary at t ¼ 0,

the time-dependent parts are very small. In the hyperbolic
formulation, we have four fields, A0, Ai, Ei 
 Fi0, and �.
Since we have already prescribed A0 to be time indepen-
dent by Eq. (4.9), only Ai, Ei, and � have time-dependent
parts. In our implementation, we separate out the time-
dependent parts via

Aiðr; tÞ ¼ �AiðrÞ þ ~Aiðr; tÞ;
Eiðr; tÞ ¼ �EiðrÞ þ ~Eiðr; tÞ;
�ðr; tÞ ¼ ��ðrÞ þ ~�ðr; tÞ;

(4.12)

where ~Aiðr; t¼0Þ¼ ~Eiðr;t¼0Þ¼ ~�ðr;t¼0Þ¼0. During
the evolution, we check how well these time-dependent
parts satisfy the Gauss’s law constraint. Theoretically, this
constraint should be satisfied at t ¼ 0 because of the way
we construct the initial gauge-rotating system, and should
remain satisfied for all t. Numerically, however, it is only
satisfied up to some finite accuracy. To check how well the

y

z

x

x

A B C

D

E

y

(a) (b)

FIG. 3. (a) Using three slabs in the three-dimensional
Cartesian coordinates. (b) Axial symmetry is used to update
grid points on the off-center slabs.
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Gauss’s law constraint is satisfied, we write the right-hand
side of the constraint as a sum of nine terms, and then treat
each of these terms as a vector in a ten-dimensional space.6

We then define the sum of all these vectors (which theo-
retically should vanish) to be the defect. This defect should
remain small as long as our numerical scheme is stable. If
the scheme is not stable, the defect will grow exponen-
tially. We calculate the ratio between the maximum norm
of the defect and the maximum norm among all of its
component vectors. (For both norms we take the maximum
over the entire computational domain.) We use this ratio to
measure the accuracy to which the Gauss’s law constraint
is satisfied. At t ¼ 0 this ratio is 0:5� 10�2, while during
the evolution the ratio for the time-dependent parts never
exceeds 3� 10�2. More details about this can be found in
Appendix B.

V. GLOBAL GAUGE ROTATION SLOW-DOWN

Our initial configuration satisfies the equations of mo-
tion to first order in !0. If this first-order approximation
were exact, the solution would be time independent, so the
time-dependent parts in Eq. (4.12) tell us how the real
evolution deviates from this first-order approximation. By
analyzing the result of our simulation, we find that we can
best fit this deviation in terms of a global gauge rotation.
Recall that our initial configuration corresponds to a mono-
pole rotating in SU(2) space about the k3 axis with an
angular velocity !0. We made it static by going to a gauge

with A0ð1Þ ¼ ð!0=eÞk3, effectively transforming to a ro-
tating frame. By fixing A0ðr; tÞ as in Eq. (4.9) we stay
within that rotating frame during the evolution. Any slow-
ing of the gauge rotation would appear in this frame as a
rotation about the k3 axis, but in the opposite direction.
Thus, it would correspond to a global gauge rotation
generated by

�sð�Þ ¼ e�ik3�ðtÞ (5.1)

with positive �ðtÞ. The effect would be as if the initial
angular velocity !0 were replaced by

!eff ¼ !0 � d�

dt
; (5.2)

leading to a configuration with smaller color charge and a
smaller energy.
The fields Ai and � can be expanded in SO(5) compo-

nents, as in Eq. (2.4). The first-sector components are
unchanged by the rotation generated by �sð�Þ. The
second-sector components transform as

P̂1
ð2Þ
P̂2
ð2Þ
P̂3
ð2Þ

0
BB@

1
CCA ¼

cos� � sin� 0
sin� cos� 0
0 0 1

0
@

1
A P1

ð2Þ
P2
ð2Þ
P3
ð2Þ

0
BB@

1
CCA (5.3)

while the third-sector components decompose into two
doublets transforming according to

P̂1
ð3Þ
P̂2
ð3Þ
P̂3
ð3Þ
P̂4
ð3Þ

0
BBBBBBB@

1
CCCCCCCA
¼

cosð�=2Þ �sinð�=2Þ 0 0

sinð�=2Þ cosð�=2Þ 0 0

0 0 cosð�=2Þ �sinð�=2Þ
0 0 sinð�=2Þ cosð�=2Þ

0
BBBBB@

1
CCCCCA

P1
ð3Þ
P2
ð3Þ
P3
ð3Þ
P4
ð3Þ

0
BBBBBBB@

1
CCCCCCCA
: (5.4)

Let us define

��ðr; t;�Þ ¼ ½�sð�Þ ��ðrÞ��1
s ð�Þ � ��ðrÞ� � ~�ðr; tÞ;

�Aiðr; t;�Þ ¼ ½�sð�Þ �AiðrÞ��1
s ð�Þ � �AiðrÞ� � ~Aiðr; tÞ;

(5.5)

where ~�ðr; tÞ and ~Aiðr; tÞ are from our numerical simula-
tion. If the time evolution of our configuration were com-
pletely due to a slowing of the global gauge rotation, then
for any given time t there would be a single �ðtÞ that would
make ��ðr; t;�Þ and �Aiðr; t; �Þ both vanish for all values
of r. To see how close we are to this situation, we can
extract a value for � by several different methods and then
compare these values. First, we obtain � from the second-
sector components of � by minimizing

Tr ½��ð2Þðr; t; �Þ�2 (5.6)

at various points. In Fig. 4(a) we show the � obtained in this
manner for a series of points along the x-axis. As can be
seen, the �’s thus obtained are only weakly position de-
pendent. We can also define a spatially averaged � by
finding the value that minimizes quantities such as

N ðt; �Þ ¼
ZZZ

r�Re
fTr½�Aiðr; t;�Þ�2

þ Tr½��ðr; t;�Þ�2gdxdydz; (5.7)

where Re is the size of the physical region of interest.7 In
Fig. 4(b), we compare the results for d�=dt that are ob-
tained by restricting N in several different ways: using
only� or only Ai, or using just the second-sector or just the

6This is because every term in the Gauss’s law constraint is in
the ten-dimensional SO(5) adjoint representation.

7The numbers we present are obtained using Re ¼ 6ðevÞ�1,
but these results are not very sensitive to the exact value of Re.
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third-sector components of Ai. [The first-sector compo-
nents are invariant under �sð�Þ, and so cannot affect the
fitting of �.] We see that all of these methods give essen-
tially the same results, again consistent with the interpre-
tation in terms of a spatially uniform global gauge rotation.
In order to indicate the convergence of our simulations, in
Fig. 4(c) we show three curves for !0 ¼ 0:04ev, using
successively finer grid structures.

We can also ask how much of the time dependence can
be accounted for by this uniform rotation. To this end, we
divide the residual norm after fitting � by the norm of all
the component fields in the time-dependent parts, and
define

�ðtÞ ¼ N ðt; �ðtÞÞ
N ðt; 0Þ : (5.8)

We plot � for our simulation in Fig. 4(d). We see that,
although initially the global gauge rotation accounts for
only a small part of the time dependence, at large times it is
clearly the dominant component.

We see from the data in Fig. 4 that d�=dt increases with
time (although not uniformly), with a corresponding de-
crease in !eff . This can be interpreted as the sum of two
effects, as shown in Fig. 5. One is an overall oscillation
pattern that appears to be a transient effect caused by the

relaxation of the system after the initial excitation. The
other effect is a linearly increasing d�=dt. By the end of
our simulation, at t ¼ 52ðevÞ�1, about 5% of the initial
angular velocity has been lost. We do not see any indica-
tion that this slowing down process will stop, and expect
that !eff would eventually tend to zero if the simulation
could be carried out for long enough.
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FIG. 5. Decomposition of d�=dt (solid line) into linear and
oscillating components. Time is in units of 1=ev, and !0 ¼
0:04ev.
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FIG. 4. (a) Fitted values of � at grid points along the positive x-axis. (b) Values of d�=dt obtained by fitting with various sets of
component fields. Circles indicate fits using �, squares fits using Ai, the solid line fits using Aið3Þ, and the dashed line fits using Aið2Þ.
(c) Comparison of results using different grid sizes. The long dashed curve, the dashed curve, and the solid line curve are calculated
using �h ¼ 0:18ðevÞ�1, �h ¼ 0:12ðevÞ�1, and �h ¼ 0:08ðevÞ�1 grid sizes, respectively. (d) Plot of �ðtÞ, defined by Eq. (5.8),
which indicates the fraction of the time dependence that cannot be accounted for by the global gauge rotation. In all four figures
distances and times are given in units of 1=ev and !0 ¼ 0:04ev.
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The energy that the chromodyon loses through the slow-
ing of the gauge rotation must be carried away by radiation
of the massless gauge fields in the unbroken non-Abelian
subgroup. (Indeed, much of the nonrotational contribution
to � at early times can presumably be attributed to the
creation of the radiation field.) It is of interest to know how
this radiation depends on !0. We can use the slope of the
constant part in Fig. 5 to approximate d2�=dt2 for !0 ¼
0:04ev. In Table I we show the results for this as well as the
corresponding results for simulations with two other values
of !0. Recalling from Eq. (3.7) that the energy associated
with the phase rotation is proportional to !2, we see that
this data is consistent with

dEch

dt
�!eff

d!eff

dt
�!4

eff : (5.9)

We can understand this dependence by considering the
energy flux carried by the radiation of the massless non-
Abelian gauge fields in the unbroken subgroup. This
should be given by the analogue of the electromagnetic
Poynting vector,

Ti � �ijk TrÊjB̂k; (5.10)

where the hats indicate theOð1=rÞ radiation components of
the field strengths. Because the initial chromodyon con-
figurations that we constructed satisfied the static field
equations to first order in !0, these radiation fields must
be each at least second order in !0, so that Ti �!4

0.

VI. CONCLUDING REMARKS

Magnetic monopoles can be promoted to dyons by time-
dependent excitation of their U(1) global gauge zero
modes. In this paper we have addressed the question of
whether monopoles in theories with non-Abelian unbroken
symmetries can be promoted to chromodyons—monopoles
with non-Abelian electric charge—by a similar excitation
of their non-Abelian global gauge zero modes. It has long
been known that the answer is negative if the magnetic
charge has a non-Abelian component, because there are
then topological obstructions that preclude the existence of
a chromodyon. However, there are also monopoles with
purely Abelian asymptotic magnetic charge, for which
there is no such obstruction, that could potentially have
chromodyonic counterparts. We have examined one such
case here, using a constructive approach. We started with a
configuration with a globally rotating non-Abelian phase,

and thus a nonzero chromoelectric charge, and then nu-
merically evolved it to see whether it would settle down in
a stable static solution. In our simulations we found instead
that the effective rate of gauge rotation slows down, so that
the chromodyon continually loses energy and chromoelec-
tric charge. Although we were not able to continue the
simulation until this charge was completely lost, every
indication suggests that this would be the final state of
the system.
It is instructive to compare our results with those that

would have been obtained by applying our methods in the
theory with SU(2) broken to U(1), where we know that
there is a dyon with Abelian electric charge. Because there
is no analogue of the cloud radius zero mode, with its
associated complications, we can work in the BPS limit,
where analytic expressions are available.
Our approach would start with the static monopole

solution

Aai ¼ �aimr̂mAðrÞ;
�a ¼ r̂aHðrÞ; (6.1)

with

AðrÞ ¼ v

sinh evr
� 1

er
;

HðrÞ ¼ v coth evr� 1

er
:

(6.2)

Applying a global U(1) phase rotation and then gauge
transforming back to a static gauge would yield

ðAa0Þstatic ¼ r̂aQðrÞ; (6.3)

where

QðrÞ ¼ !0

ev

�
v coth evr� 1

er

�
: (6.4)

From the 1=r term in this expression, we see that the
asymptotic electric field is

Eai ¼ r̂ar̂i
qE
r2
; (6.5)

where

qE ¼ 1

e

�
!0

ev

�
: (6.6)

The energy of this configuration is

E ¼ 4�v

e

�
1þ e2q2E

2

�
; (6.7)

where the first term represents the mass of the original
monopole and the second is the additional energy due to
the phase rotation.
As in the chromodyon case, this initial configuration is

only an approximate solution of the equations of motion.
The exact dyon solution with charge qE is given by [20,21]

TABLE I. Dependence of the deceleration of the initial global
gauge rotation on the initial angular velocity !0.

!0 d2�=dt2 (ev=!3
0) d2�=dt2

0:01ev 8:0� 10�7ðevÞ2 0.80

0:02ev 6:2� 10�6ðevÞ2 0.78

0:04ev 4:6� 10�5ðevÞ2 0.72
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AðrÞ ¼ v0

sinh ev0r
� 1

er
;

HðrÞ ¼ cosh


�
v0 coth ev0r� 1

er

�
;

QðrÞ ¼ sinh


�
v0 coth ev0r� 1

er

�
;

(6.8)

where 
 is determined by the ratio of electric and magnetic
charges and is given by

sinh
 ¼ eqE (6.9)

and v0 ¼ v= cosh
. It has an energy

E ¼ 4�v

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðeqEÞ2

q
(6.10)

and corresponds to phase rotating with an angular velocity

! ¼ ev0 sinh
 ¼ e2vqEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðeqEÞ2

p : (6.11)

Thus, our construction would start with a configuration

that has a core radius that is a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðeqEÞ2

p
smaller

than that of the exact solution, and an angular velocity that
is larger by the same factor. (The smaller core radius
produces an decrease in the phase rotation moment of
inertia that exactly compensates for the increase in angular
velocity, thus yielding the same electric charge.) The en-
ergy of this initial configuration exceeds that of the exact
dyon solution by an amount of order q4E.

It is easy to see what will happen if the initial configu-
ration of Eqs. (6.2) and (6.4) is allowed to evolve. Because
radiation of the massive charged gauge field is energeti-
cally suppressed, the electric charge of the dyonic configu-
ration will be conserved. Hence, as the initial system
relaxes it will tend toward the static dyon solution of the
same charge. It will shed energy by radiating massless
photons, but the amount of this energy loss is constrained
by the fact that exact dyon mass places a lower bound on
the energy. As the dyon radiates its phase rotation will slow
down and its core will expand. For small electric charge
(i.e., eqE � 1), this slowing and expansion will both be
small, and the system will quickly approach its final state.
In particular, the slowing of the phase rotation will be far
less than that which we found in our non-Abelian
simulation.

Thus, our numerical simulations provide strong evi-
dence against the existence of static chromodyons in a
theory with SO(5) broken to SUð2Þ � Uð1Þ. Because it is
hard to see how enlarging the unbroken symmetry to a
different non-Abelian group would stabilize the chro-
modyon, we expect that similar results would hold for
other choices of gauge group and symmetry breaking. Of
course, numerical simulations cannot provide a rigorous
proof. Even apart from issues related to numerical accu-
racy, there is always the possibility that the specific choice
of initial configuration played a crucial role. For example,
it is logically conceivable (although we think it quite
implausible) that there is some special choice or range of
!0 that would have led to a stable chromodyon. Another
possibility is that there are chromodyon solutions, but that
these exist only for some minimum value of the chromo-
electric charge. In this case, the solutions would not be
continuously related to the purely magnetic monopole, and
so might not be found by our method. Although we cannot
exclude this possibility, it seems to us to be rather unlikely.
Hence, subject to these caveats, we conclude that static
chromodyon solutions do not exist.
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APPENDIX A: GAUSS’S LAW EQUATION WITH
AXIAL SYMMETRY

As discussed in Sec. III, when we gauge rotate the
spherically symmetric static non-BPS monopole solution,
the resulting Gauss’s law equation has only axial symmetry
and consists of six coupled partial differential equations for
the six coefficient functions u, w, b, Q, q, and t appearing
in the A0 ansatz of Eq. (3.10). We write out the detailed
forms of these equations below. Here, A,H, G, K, F, and J
are the functions, defined by Eq. (2.5), that specify the
static non-BPS monopole solution and that are shown in
Fig. 1. To simplify the equations, we have set e ¼ 1
throughout; the explicit factors of e can be recovered by
simple dimensional analysis.
The two equations corresponding to first-sector compo-

nents are

@��uþ 1

�
@�u� u

�2
þ @zzu� 2

�

r
A@zwþ 2

z

r
A@�w� 4F@zqþ 4F@�tþ 2

�

r
ð@rFÞt� 2

z

r
ð@rFÞq� 6

�

r
AFt

þ 2
�

r
FGt� �

r
KJtþ �

r
HJtþ 2

z

r
AFq� 2

z

r
FGqþ z

r
KJqþ 3

z

r
HJq� 2

�2

r2
A2u� z�

r2
A2wþ z�

r2
H2w

� z2

r2
A2u� z2

r2
H2u� F2bþ J2b� 3F2u� J2u� 2

1

r
Au ¼ 0; (A1)
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@��wþ 1

�
@�wþ @zzwþ 4F@ztþ 4F@�qþ 2

�

r
A@zu� 2

z

r
A@�uþ 2

z

r
ð@rFÞtþ 2

�

r
ð@rFÞqþ 4

1

�
Fq� 2

z

�

1

r
Au

� �2

r2
A2w� �2

r2
H2w� 2

z2

r2
A2w� 2

�

r
AFqþ 2

�

r
FGq� �

r
KJq� 3

�

r
HJq� 6

z

r
AFtþ 2

z

r
FGt� z

r
KJt

þ z

r
HJt� �z

r2
A2uþ �z

r2
H2u� F2Qþ J2Q� 3F2w� J2w ¼ 0: (A2)

The two second-sector equations can be obtained from these simply by making the substitutions

u! b; w! Q; A! G; H ! K: (A3)

Finally, the third-sector equations are

@��qþ 1

�
@�q� q

�2
þ @zzqþ �

r
A@zt� �

r
G@ztþ F@zbþ F@zu� z

r
A@�tþ z

r
G@�t� F@�Q� F@�w� 2

�

r
ð@rFÞQ

� 1

2

�

r
ð@rFÞwþ 1

2

z

r
ð@rFÞbþ 1

2

z

r
ð@rFÞuþ �

r

�
1

2
AFQ� 1

2
FGQþ 1

4
HJQþ 3

4
JKQ� 1

2
AFwþ 1

2
FGw

� 3

4
HJw� 1

4
JKw

�
þ z

r

�
� 1

2
AFbþ 1

2
FGb� 1

4
HJb� 3

4
JKbþ 1

2
AFu� 1

2
FGuþ 3

4
HJuþ 1

4
JKu

�

� 1

2
A2q� 1

2
G2q� 1

4
H2q� 1

2
HKq� 1

4
K2q� 4F2q� 2J2q� 1

r
Aq� 1

r
Gq ¼ 0; (A4)

@��tþ 1

�
@�tþ @zztþ F@zQ� F@zwþ F@�b� F@�u� �

r
A@zqþ �

r
G@zqþ z

r
A@�q� z

r
G@�qþ 1

2

z

r
ð@rFÞQ

� 1

2

z

r
ð@rFÞwþ 1

2

�

r
ð@rFÞb� 1

2

�

r
ð@rFÞuþ 1

�
Fb� 1

�
Fuþ z

�

1

r
Aq� z

�

1

r
Gqþ �

r

�
� 1

2
AFbþ 3

2
FGb

� 1

4
HJbþ 1

4
JKb� 3

2
AFuþ 1

2
FGuþ 1

4
HJu� 1

4
JKu

�
þ z

r

�
� 1

2
AFQþ 3

2
FGQ� 1

4
HJQþ 1

4
JKQ

� 3

2
AFwþ 1

2
FGwþ 1

4
HJw� 1

4
JKw

�
� 6F2t� 1

2
A2tþ AGt� 1

2
G2t� 1

4
H2tþ 1

2
HKt� 1

4
K2t ¼ 0: (A5)

APPENDIX B: MONITORING THE GAUSS’S LAW
CONSTRAINT

Analytically, the Gauss’s law constraint should remain
satisfied throughout the evolution if it is satisfied by the
initial data. In our numerical calculation, we keep moni-

toring how well the constraint is satisfied and use this as a
way to check the accuracy of our numerical methods.
The Gauss’s law constraint is

DjF
j0 ¼ ie½�; D0��: (B1)
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FIG. 6 (color online). The norm of the defect of the Gauss’s
law constraint at t ¼ 34:2ðevÞ�1. Since the system has an axial
symmetry along the z axis, we plot the results on the x-z plane.
Distances are given in units of 1=ev, and the defect is in units of
v.
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FIG. 7 (color online). The norm of the first term in Eq. (B2) at
t ¼ 34:2ðevÞ�1. Since the system has an axial symmetry along
the z axis, we plot the results on the x-z plane. Distances are
given in units of 1=ev, and the defect is in units of v.
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We can use Eq. (4.12) to expand this into time-dependent
and time-independent parts. Focusing on the time-
dependent part, we have the requirement that

0 ¼ @j ~Ej þ ie½ ~Aj; �Ej� þ ie½ �Aj; ~Ej� þ ie½ ~Aj; ~Ej�
� ie½ ��; @0 ~�� � ie½ ~�; @0 ~�� � ie2½ ��; i½A0; ~���
� ie2½ ~�; i½A0; ���� � ie2½ ~�; i½A0; ~���: (B2)

To demonstrate that the Gauss’s law constraint is satis-
fied in our numerical calculation, we calculate these nine
terms using our numerical results and then define their sum
to be the defect. Since the defect is an so(5) element, we

can define its norm to be the square root of the trace of its
square. In Figs. 6 and 7 we plot on the x-z plane the norm of
the defect and, for comparison, the norm of the first term,
both at t ¼ 34:2ðevÞ�1. As we can see, the defect is about
two orders of magnitude smaller than the first term, in-
dicating that the Gauss’s law constraint is satisfied very
well. We define the defect level to be the ratio of the
maximum norm of the defect and the maximum norm
among all terms. (Both maxima are found over the entire
computation domain.) For example, at t ¼ 34:2ðevÞ�1, the
maximum norm of the defect is about 8� 10�6, while the
maximum norm of the first term (which is larger than that
of any of the other terms) is about 4� 10�4. This give a
defect level of about 0.02.
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