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To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler

setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-

nonsinglet chiral symmetries analogous to the taste-nonsinglet Uð1ÞA symmetry of staggered fermions.

Creutz’s objections to the rooting trick apply just as much in this setting. To counter them we show that the

formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these

manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece

of the pseudoscalar meson propagator as required to solve the U(1) problem. Also, our rooted theory is

heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed

fermion action theory.
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I. INTRODUCTION

The use of dynamical staggered fermions in lattice QCD
simulations has made it possible to obtain results with
unprecedented high precision [1–3]. However, this ap-
proach is controversial due to the use of the ‘‘4th root
trick’’: A staggered lattice fermion corresponds to four
continuum fermion flavors (nowadays called tastes to dis-
tinguish them from the actual quark flavors), so the fermion
determinant for each dynamical quark flavor is represented
by the 4th root of the corresponding staggered fermion
determinant. Since this formulation is not manifestly a
local lattice field theory there is a danger that it might
not be in the right universality class for QCD. (In fact it has
been argued [4] that this lattice theory is necessarily non-
local but with locality being restored in the continuum
limit [5].1 Because of the high stakes, this has become a
prominent, hotly debated issue in the lattice community.
For example, it has been the topic of five plenary talks at
the last four annual lattice field theory conferences; the
corresponding proceedings papers [8–12] can be consulted
for reviews from various perspectives.

While the results to date are in excellent, unprecedented
agreement with experiment, a major question regarding the
4th root trick for staggered fermions is whether it can work
in situations where chirality is important. This includes, in
particular, producing the large mass of the �0 meson where
existence of fermionic zero modes with definite chirality
and their connection with topological charge of lattice
gauge fields via the Index Theorem plays an essential

role [13].2 Creutz has argued against this in a series of
papers [17–21] based on the fact that the taste-nonsinglet U
(1) chiral symmetry of staggered fermions implies proper-
ties of the rooted staggered fermion determinant that do not
hold for a genuine single-flavor fermion determinant. The
subsequent rebuttals of these arguments [22,23] rely to a
large extent on invoking full taste symmetry restoration on
the continuum limit. However, Creutz challenges whether
this can actually occur in a way that correctly reproduces
nonperturbative effects connected with chirality. In this
situation it is desirable to have a simpler setting where
the same issues arise and where they can be studied more
explicitly. We provide and study such a setting in the
present paper.
The paper is organized as follows. In Sec. II we contrast

a general mixed fermion formulation with a rooted formu-
lation based on a 2-taste lattice Dirac operator without taste
mixing, showing heuristically that if the former is in the
right universality class for QCD then so is the latter. In
Sec. III we introduce the specific 2-taste lattice Dirac
operator with exact taste-nonsinglet chiral symmetries on
which the rooted formulation studied in this paper is based.
In Sec. IV we study the properties of the single-flavor
fermion formulations based on the 1-taste lattice Dirac
operators making up our 2-taste operator, and use this to
derive properties of the rooted formulation based on the
latter. In Sec. V we discuss the pseudoscalar propagator in
the rooted formulation, and conclude with a discussion in
Sec. VI. A relation between, and differences between, our
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1In the free field case (at least for m � 0) the rooted staggered

formulation corresponds to a local field theory already at non-
vanishing lattice spacing [6], as was also confirmed numerically
[7].

2Efforts to calculate the �0 mass to high precision with
dynamical staggered fermions are currently underway [14,15].
In the meantime, encouraging evidence that this formulation is
able to correctly reproduce topological aspects of QCD has been
given in Ref. [16] where results for the topological susceptibility
were presented.
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2-taste formulation and the 2-flavor Wilson fermion theory
with twisted mass is discussed in the Appendix.

II. PRELUDE: MIXED FERMION ACTION VERSUS
A ROOTED FORMULATION

We begin with some general remarks on generating
functionals for lattice fermions (in a fixed gauge field
background, in Euclidean spacetime). For a single quark
flavor described by a lattice Dirac operatorD1 the generat-
ing functional is

Zfð�; ��Þ ¼
Z
d d � e� � D1 þ � ��þ �� ¼ detD1e

��D�1
1
�:

(1)

For a ‘‘mixed fermion action’’ where the sea quark is
described by D1 and the valence quark by another lattice
Dirac operator D2 the generating functional becomes

Zf;mixedð�; ��Þ ¼ detD1e
��D�1

2 �: (2)

Writing this as

Zf;mixedð�; ��Þ ¼ e�S detD2e
��D�1

2
�; (3)

where

�S ¼ tr logD1 � tr logD2; (4)

we see that the full lattice QCD theory with mixed fermion
action is equivalent to the lattice fermion being described
solely byD2 and the lattice gauge field action being shifted
by

Sgauge ! Sgauge þ�S: (5)

If the shift (5) does not change the universality class, i.e.,
leaves the lattice theory in the right universality class for
QCD, then surely the same is true for the smaller shift

Sgauge ! Sgauge þ 1
2�S: (6)

But this shift is equivalent to leaving Sgauge unchanged and

changing the fermion determinant in the mixed fermion
generating functional (2) by

detD1 ! ðdetD1 detD2Þ1=2: (7)

We conclude that if the lattice QCD theory with mixed
fermion action is in the right universality class for QCD
then so is the theory where a dynamical quark is described
by the 2nd taste (flavor) of the 2-taste lattice Dirac operator

D ¼ D1 0
0 D2

� �
(8)

and with rooted fermion determinant ðdetDÞ1=2.
Normally there would be no reason to consider such a

formulation in practice rather then just using D1 or D2 or
the mixed fermion formulation. But it is useful to consider
this formulation for theoretical investigation of lattice
QCD with rooted fermion determinants—it is simpler

than the relevant case of staggered fermions since the taste
(flavor) interpretation is manifest from the beginning and
there is no mixing between the different tastes. In the next
section we will exhibit a 2-taste lattice Dirac operator of
the form (8) with properties analogous to the staggered
Dirac operator and for which Creutz’s objections also
apply. The preceding considerations have already shown
(at least heuristically) that the viability of using the rooted
determinant of such an operator is assured if the related
unrooted mixed fermion theory is in the right universality
class for QCD.

III. A 2-TASTE LATTICE DIRAC OPERATORWITH
EXACT CHIRAL SYMMETRIES

The specific 2-taste lattice Dirac operator we will study
is given in the massless case by

D ¼ Dþ 0
0 D�

� �
; D� ¼ ��r� � i�5

�
a
1

2
�þm5

�
;

(9)

where a ¼ lattice spacing, r� is the usual symmetrized

lattice covariant derivative and � the usual lattice Laplace
operator. For reasons discussed below we have included a
mass parameter m5 in the operator. It should not be con-
fused with the usual mass; we introduce the latter in the
usual way: the massive 2-taste Dirac operator is Dþm.
Note that D�, and hence D, are anti-Hermitian, and that in
the free field case (link variables set to unity)

½Dy
�D��free ¼ ½r6 yr6 þ ða12�þm5Þ2�free (10)

which shows that D� is free of fermion doubling so D
describes two lattice fermion tastes as claimed. Writing D
as

D ¼ ð�� � 1Þr� þ ið�5 � �3Þða12�þm5Þ; (11)

we see that it has the taste-nonsinglet chiral symmetries

fD;�jg ¼ 0; �j ¼ �5 � �j; j ¼ 1; 2; (12)

where �1, �2, �3 are the Pauli matrices acting on taste
space. On the other hand, D breaks the symmetry of the
chiral transformation generated by �5 � �3 (and also �5 �
1 as it should to produce the axial anomaly). Consequently
the pion spectrum will not be SU(2) symmetric, so the
fermion theory described byD is not equivalent at nonzero
lattice spacing to a 2-flavor theory with both flavors de-
scribed by the same single-taste lattice Dirac operator.3

Thus D shares key properties with the massless stag-
gered lattice Dirac operator: it is anti-Hermitian and has
taste-nonsinglet chiral symmetries which protect against
additive mass renormalization and are expected to be
spontaneously broken just like the taste-nonsinglet U(1)

3This is the same reasoning that was used in Ref. [4] to draw
the analogous conclusion for the staggered fermion theory.

DAVID H. ADAMS PHYSICAL REVIEW D 77, 105024 (2008)

105024-2



chiral symmetry of staggered fermions, while other chiral
symmetries are explicitly broken at nonvanishing lattice
spacing. In fact the expression (11) has clear similarities
with the massless staggered Dirac operator in the flavor
(taste) representation [24,25].

However, there is also a significant difference: Our
operator breaks the parity and time reversal symmetries,
since the ‘‘Wilson-like’’ term in D� gives a pseudoscalar
term in the fermion action. Consequently, radiative correc-
tions will generate a pseudoscalar mass term. Therefore we
have included a bare pseudoscalar mass term with massm5

in (9); it should be tuned to a critical negative value as the
continuum limit is approached so as to cancel the pseudo-
scalar mass term generated by radiative corrections and
thereby restore the P and T symmetries in the continuum
limit. (This is analogous to the tuning of the bare scalar
mass to a critical negative value to reach the chiral limit
with usual Wilson fermions.) Through this we also expect
the chiral transformation generated by �5 � �3 to become
a symmetry of the 2-taste theory in the continuum limit.
Usually we will suppress the m5-dependence of D in the
notation, although sometimes we will indicate it explicitly
as Dðm5Þ.

The 2-flavor theory described by Dðm5Þ þm can be
obtained from the 2-flavor Wilson fermion theory with
twisted mass [26] by a flavored chiral rotation of the fields.
We show this in the Appendix. However, as shown there,
the symmetries of the theories have different interpreta-
tions: the chiral symmetries (12) correspond to vector
symmetries in the Wilson case.

A major advantage that our setting has over the stag-
gered one for investigating the viability of rooting is that
there is a single-flavor fermion theory that our rooted
theory can be explicitly compared with, namely, the theory
described by Dþ þm (or D� þm). Comparison of the
rooted theory based onDþmwith the single-flavor theory
described by Dþ þm will be our main focus in this paper.
Through this we will be able to counter Creutz’s objections
to the rooting trick quite explicitly.

The starting point for much of Creutz’s argumentation
against the rooted staggered fermion determinant is the
observation that, as a consequence of its exact U(1) chiral
symmetry, the staggered fermion theory with mass m is
equivalent to the one with mass term changed by

m �  ! m �  cosð2�Þ þ im � �5 sinð2�Þ (13)

for any �, where �5 is the operator on staggered fermion
fields corresponding to �5 in the naive lattice fermion
theory from which the staggered theory originates. See
Eq. (4) of Ref. [19]. In particular, m, �m and �i�5m are
all physically equivalent. Therefore, the rooted staggered
fermion determinant is invariant under these changes in the
mass term, unlike the determinant of a genuine 1-flavor
lattice Dirac operator. Exactly the same is true in the
present 2-taste theory when �5 in (13) is replaced by our

�1 or �2 in light of (12). Therefore, all Creutz’s objections
against rooting based on (13) apply just as much in our
case. In the following sections we derive explicit relations
between the rooted determinant formulation and single-
taste theories in the present case which show that, despite
Creutz’s concerns, the rooted formulation does appear to
be viable, or at least a good approximation when the quark
masses are not too small.

IV. PROPERTIES OF THE SINGLE-TASTE
THEORYAND IMPLICATIONS FORTHE ROOTED

FORMULATION

In this section we derive general properties of the single-
taste theories described byD� þm and use them to obtain
significant indications of the viability of the rooted deter-

minant detðDþmÞ1=2. Throughout the following we as-
sume that the lattice is finite; then the vector space of lattice
spinor fields is finite dimensional and the fermion deter-
minants are all finite.

A. Fermion determinants and would-be zero modes

D� in (9) satisfies

D��5 ¼ ��5D� (14)

implying an equivalence between the eigenvalue equations
for Dþ and D�:

Dþ � ¼ i� � , D�ð�5 �Þ ¼ �i�ð�5 �Þ: (15)

Using this, we find that the rooted determinant ofDþm is
given in terms of the eigenvalues fi�g of Dþ by

detðDþmÞ1=2 ¼ Y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
: (16)

Comparing this with the determinant of the single-taste
Dirac operator Dþ

detðDþ þmÞ ¼ Y
�

ði�þmÞ; (17)

we see that

detðDþmÞ1=2 ¼ j detðDþ þmÞj: (18)

This shows that using the rooted determinant is the same as
removing the complex phase of the single-taste determi-
nant detðDþ þmÞ. We will show further below that the
single-taste determinant is indeed complex valued, calcu-
late its complex phase when m is in a ‘‘chiral region,’’ and
discuss how the complex phase can be removed to arrive at
the rooted determinant via (18). The would-be zero modes
of the 1-taste and 2-taste theories play an important role in
this, and we begin by considering them in the following.
An exact zero mode would give rise to a factor jmj in

(18) rather than the factor m which would appear in a
genuine 1-flavor fermion determinant. This difference is
expected (see, e.g., [10,11]) and is inconsequential as long
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as considerations are restricted to positive m. In practice
though we do not expect exact zero modes for this opera-
tor; the most one can hope for is approximate, would-be
zero modes that become exact in the continuum limit. To
produce expected nonperturbative effects it is crucial that
there are robust would-be zero modes in topologically
nontrivial gauge field backgrounds in accordance with
the Index Theorem. These are indeed present in this case,
as we will now show.

It is useful to introduce the new gamma matrices

~�� ¼ �i�5��: (19)

These form another representation of the Dirac algebra:
f~��; ~��g ¼ 2���, continue to be Hermitian (~�y

� ¼ ~��)

and have the same chirality matrix as before: ~�5 ¼ �5.
Then Dþ in (9) can be expressed as

Dþ ¼ i�5

�
~��r� þ a

2
�þm5

�
¼ i~�5ðD ~W þm5Þ; (20)

where D ~W is the massless Wilson-Dirac operator con-
structed with the new gamma matrices. Introducing the
Hermitian operator

HðmÞ ¼ ~�5ðD ~W �mÞ; (21)

we have

Dþ ¼ iHð�m5Þ; (22)

so the solutions to the eigenvalue equation

HðmÞ �ðmÞ ¼ �ðmÞ �ðmÞ (23)

give back the eigenvalues and eigenvectors ofDþ in (15) as
a special case: � ¼ �ð�m5Þ,  � ¼  �ð�m5Þ.

From (21) we see that

�ðm0Þ ¼ 0 , D ~W �ðm0Þ ¼ m0 �ðm0Þ; (24)

i.e., vanishing of an eigenvalue �ðmÞ atm0 corresponds to a
real eigenvalue m0 of the Wilson-Dirac operator with
eigenvector  �ðm0Þ. It is well known that the would-be
zero modes of the Wilson-Dirac operator are precisely the
low-lying real (necessarily positive) eigenvalue modes. As
(24) shows, these correspond to crossings of the origin
close to zero (i.e., at some small positive value m0) by
eigenvalues �ðmÞ ofHðmÞ. Furthermore, the low-lying real
modes of D ~W have approximate � chirality under ~�5, and
from (21) it is clear that the sign of the chirality is minus
the sign of the slope of �ðmÞ where it crosses the origin at
m0. This is all well known and was discussed a long time
ago by Itoh, Iwasaki and Yoshié [27]. It allows a robust,
integer-valued index to be defined for the Wilson-Dirac
operator in terms of the spectral flow of HðmÞ in the small
m region: it is the difference between the number of
negative and positive slope eigenvalue crossings. In fact
this coincides with the index of the overlap Dirac operator
[28]. It has been studied numerically in [27,29], and ana-
lytically in [30,31] where it was shown to coincide with the

topological charge of the (smooth) lattice gauge field in the
continuum limit in accordance with the Index Theorem.4

By (22)–(24) a real mode of D ~W with eigenvalue m0 is
an exact zero mode of Dþðm5Þ when we set m5 ¼ �m0.
For an ensemble of lattice gauge fields generated at suffi-
ciently small bare coupling (or with a sufficiently improved
lattice gauge action) the low-lying real eigenvalues of D ~W

cluster around a critical (positive) value mc, see, e.g., [27].
We henceforth tune m5 so that

m5 ¼ �mc: (25)

Consequently the eigenvalues and eigenvectors of Dþ are
i�ðmcÞ and  �ðmcÞ, respectively. Then the would-be chiral
zero modes of D ~W are in one-to-one correspondence with
would-be chiral zero modes ofDþ. This is seen as follows.
A low-lying real mode of D ~W with eigenvalue m0 is a zero
mode  �ðm0Þ for Hðm0Þ with approximately definite chi-
rality. Since �ðm0Þ ¼ 0 and m0 is very close to mc it
follows that �ðmcÞ is very small, and the corresponding
eigenvector  ðmcÞ is very close to  ðm0Þ and therefore has
the same approximate chirality. Recall that the sign of the
chirality is the opposite of the sign of the slope of �ðmÞ at
m ¼ m0. Therefore, � chirality corresponds to the sign of
�ðmcÞ being � if mc < m0 and � if mc > m0.
Thus, with m5 tuned as dictated by (25), the low-lying

modes of Dþ are generically would-be chiral zero modes;
they are robust since they are tied to the would-be chiral
zero modes (i.e., the low-lying real modes) of the Wilson-
Dirac operator D ~W . By (15) the same is true for D�. Note
that a would-be chiral zero mode for the Wilson-Dirac
operator corresponds to would-be chiral zero modes for
each ofDþ andD� with the same chirality; consequently it
corresponds to two would-be chiral zero modes for D with
the same chirality. Thus we have established that Dþ, D�,
and D all have robust would-be chiral zero modes in
sufficiently smooth gauge backgrounds, and that the index
defined from these equals the topological charge Q of the
gauge background (or 2Q in the case of the 2-taste operator
D) in accordance with the Index Theorem, since this holds
for the Wilson-Dirac operator.
The tuning of m5 dictated by (25) is also the appropriate

one for restoring in the continuum limit the P and T
symmetries and the chiral symmetry of the 2-taste theory
generated by �5 � �3. Restoring these symmetries means
tuning m5 so that the effective pseudoscalar mass term
vanishes. The usual signal for the vanishing of an effective

4The robustness of low-lying real eigenvalue modes and index
of the Wilson-Dirac operator is ensured by the property that in
sufficiently smooth backgrounds the eigenvalues cannot vary
arbitrarily under deformations of the background but are con-
strained to be close to zero. An upper bound can be analytically
derived when the plaquette variables satisfy a bound jj1�
U�� � 1jj< 	 [32,33]. More generally, a bound constraining
the real eigenvalues to lie in neighborhoods of
0; 2=a; 4=a; 6=a; 8=a can be derived in this case [34].
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mass term (scalar or pseudoscalar) is divergence of the
propagator, and from the discussion leading to (25) it is
clear that this tuning produces the desired divergence in the
present case. (It is analogous to the tuning of the bare mass
to a critical negative value to reach the chiral limit with
Wilson fermions.)

Returning now to the fermion determinants, we first note
that in approaching the chiral limit the scalar mass m
should be tuned such that

j�lowj � jmj � j�nonlowj; (26)

where �low refers to the eigenvalues of the would-be zero
modes and �nonlow refers to all the other eigenvalues. The
reason is to achieve appropriate near-chiral limit mass
dependence in the fermion determinants: from (16) and
(17) we see that (26) is necessary and sufficient to get

detðDþ þmÞ � Y
�low

m
Y
�nonlow

i�nonlow; (27)

detðDþmÞ1=2 � Y
�low

jmj Y
�nonlow

j�nonlowj: (28)

To compare the rooted determinant with the single-taste
determinant detðDþ þmÞ we need to determine the com-
plex phase of the latter. We now calculate it for m in the
chiral region (26), starting from

detðDþ þmÞ
j detðDþ þmÞj �

Y
�low

m

jmj
Y
�nonlow

i
�nonlow

j�nonlowj ; (29)

where negligible terms � �low
m and � m

�nonlow
have been

dropped. To evaluate this we will use
Y
�nonlow

i ¼ Y
�low

ð�iÞ; (30)

which follows from
Q
�i ¼ 1, a consequence of the fact

that the dimension of the vector space of lattice spinor
fields is a multiple of 4. Now recall that the eigenvalues
�nonlow are the values atm ¼ mc of �nonlowðmÞ. Generically
these do not cross zero in the small m region; in particular,
they do not cross zero as m varies from 0 to mc. Therefore,

Y
�nonlow

�nonlowðmcÞ
j�nonlowðmcÞj ¼

Y
�nonlow

�nonlowð0Þ
j�nonlowð0Þj ¼

Y
�low

�lowð0Þ
j�lowð0Þj ;

(31)

where the last equality follows from
Q
�
�ð0Þ
j�ð0Þj ¼ 1, a con-

sequence of the known fact that Tr Hð0Þ
jHð0Þj ¼ 0; see, e.g., [34].

On the other hand, the eigenvalues �lowðmÞ do cross zero in
the small positivem region. If �lowð0Þ> 0 then �lowðmÞ has
negative crossing slope, corresponding to a positive chi-
rality would-be zero mode by our previous discussion.
Similarly, �lowð0Þ< 0 implies a would-be zero mode
with negative chirality. It follows that

Y
�low

�lowð0Þ
j�lowð0Þj ¼ ð�1Þn� ; (32)

where n� denotes the number of� chirality would-be zero
modes. This together with (30) and (31) leads to

Y
�nonlow

i
�nonlow

j�nonlowj ¼ i�Q; (33)

where

Q ¼ nþ � n� (34)

is the index of the would-be chiral zero modes and coin-
cides with the topological charge in sufficiently smooth
gauge backgrounds as discussed earlier. Using this in (29)
we finally obtain

detðDþ þmÞ
j detðDþ þmÞj � i�ðm=jmjÞQ ¼ e�iðm=jmjÞð
=2ÞQ (35)

The equality becomes exact in the limit �lowm ! 0, m
�nonlow

!
0, which should be regarded as the chiral limit in this
setting. The prospects for the possibility of being able to
take this limit (in principle) are discussed in the concluding
section.
Thus for m in the chiral region (26) the effect of the

complex phase of detðDþ þmÞ is to shift the QCD theta-
vacuum angle by �! �� m

jmj


2 . Since the physical theta-

vacuum angle must be zero (or extremely close to zero)
[35], the bare theta-vacuum angle in the lattice QCD theory
must be chosen such that the shifted one vanishes. This is
equivalent to having a trivial theta vacuum and replacing
the fermion determinant (with m> 0) by

detðDþ þmÞ ! eið
=2ÞQ detðDþ þmÞ; (36)

which is essentially the same as

detðDþ þmÞ ! j detðDþ þmÞj ¼ detðDþmÞ1=2 (37)

in the chiral region. This strongly indicates the viability of
using the rooted determinant to represent the determinant
for a single quark flavor in the present case.
As a further indication of the viability of the rooted

determinant we see from (20) with (25) that

detDþ ¼ detðDW �mcÞ: (38)

Since the Wilson fermion determinant is real and positive,

this shows that detðDþmÞ1=2 coincides at m ¼ 0 with the
Wilson fermion determinant with bare mass tuned to pre-
cisely the negative critical value which it should have in the
chiral limit. Therefore, for very smallm in the chiral region
(26), the rooted determinant is very close to the chiral limit
of the Wilson fermion determinant.
Flipping the sign of m has the effect of complex con-

jugation on the phase factor in (35). We note in passing that
this is a general property of the single-taste fermion deter-
minant: From (15) and (17) we easily find
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detðDþ �mÞ ¼ detðDþ þmÞ	 ¼ detðD� þmÞ: (39)

B. Origin of the complex phase

For the rooted formulation to be viable, the low energy
physics it describes should be the same as when the fer-
mion is described by Dþ þm with a bare theta term
included in the lattice QCD action to cancel the one
produced by detðDþ þmÞ. For this to hold, the complex
phase should originate from the ultraviolet part of the
spectrum of Dþ þm, so that it is not a manifestation of
low energy aspects of the fermion formulation described
by Dþ þm. We show this to be the case in the following.

In sufficiently smooth gauge backgrounds where the
Index Theorem relation between chirality of would-be
zero modes and topological charge holds, it is known that
for each would-be chiral zero mode of the Wilson-Dirac
operator there are 15 ‘‘doubler’’ modes [27,34]. These are
eigenvectors of DW with approximately definite chirality
and with large (positive) real eigenvalues clustered around
specific values: If the approximate chirality of the zero
mode is � then the associated real eigenmodes consist of
four eigenvectors with eigenvalues� 2=a and chirality�;
six eigenvectors with eigenvalues � 4=a and chirality �;
four eigenvectors with eigenvalues� 6=a and chirality�;
and one eigenvector with eigenvalue � 8=a and chirality
� [34]. By (24) this implies a corresponding family
f jðmÞgj¼0;1;...;15 of eigenvectors, HðmÞ jðmÞ ¼
�jðmÞ jðmÞ, with each �jðmÞ vanishing at a valuemj close

to 2p=a for some p 2 f0; 1; 2; 3; 4g. There are 4!
p!ð4�pÞ! j’s

for each p, and  jðmjÞ has the approximate chirality

�ð�1Þp under �5.
Noting that HðmcÞ can be written for each j as HðmcÞ ¼

HðmjÞ þ ðmj �mcÞ�5 we see that each  jðmjÞ is an ap-

proximate eigenvector for HðmcÞ, and therefor also for
Dþ ¼ iHðmcÞ:

HðmcÞ jðmjÞ � �ð�1Þpðmj �mcÞ jðmjÞ: (40)

Sincemc � 0 it follows that, generically, the spectrum fi�g
of Dþ contains 15 doubler eigenvalues associated with
each would-be zero eigenvalue; four of them are �
�i2=a; six of them are � �i4=a; four of them are �
�i6=a; and the final one is � �i8=a where � is the
chirality of the would-be zero mode. The contribution of
these to the phase factor in (29) is

Y15
j¼1

i
�j
j�jj ¼ ð�iÞ4ð�iÞ6ð�iÞ4ð�iÞ ¼ �i: (41)

It follows that the total contribution to the phase factor
from the doubler modes of all the would-be zero modes is
ð�iÞnþin� ¼ i�Q. This reproduces precisely the phase fac-
tor in (33), which form> 0 gives the complex phase of the
determinant in (35). Thus we have found that, at least when
m is in the chiral region, the complex phase of detðDþ þ

mÞ originates entirely from the would-be doubler modes
associated with the would-be zero modes ofDþ. An analo-
gous result holds for detðD� þmÞ. The doubler mode
eigenvalues are �1=a, so we conclude that the complex
phases of the determinants are not connected with the low
energy physics of the fermion tastes described by Dþ þm
and D� þm.

C. Determinant phase factor and axial anomaly in the
classical continuum limit

A classical continuum limit version of our determinant
phase factor result (35) arises as a special case of a pre-
vious result of Seiler and Stamatescu (SS) [36]. They
considered the m5 ¼ 0 case of the lattice Dirac operator

D� ¼ ��r� þ ei��5

�
a
r

2
�þm5

�
; (42)

which coincides with our D� for � ¼ �
=2. SS showed
that the fermion determinant detðD� þmÞ produces a
theta-vacuum term e�i�Q in the classical continuum limit
(with m> 0). A simple consequence of their specific re-
sult, Eq. (19) of [36], is5

lim
a!0

detðDA
� þmÞ

j detðDA
� þmÞj ¼ e�i�Q; (43)

where the gauge background is the lattice transcript of a
smooth continuum gauge field A (satisfying certain tech-
nical conditions) with topological charge Q. For � ¼ 
=2
this is obviously a classical continuum limit version of our
result (35) with m> 0.
The result (43) is obtained as a straightforward conse-

quence of another result of SS, namely that D� þm re-
produces the correct axial anomaly in the classical
continuum limit for all values of �. This implies, in par-
ticular, that fermions described by Dþ þm and D� þm
both reproduce the correct axial anomaly, so the same is
true for the 2-flavor theory described by our Dþm. We
emphasize that both tastes reproduce the correct anomaly
with the right sign; they do not have opposite signs and so
Creutz’s concern about cancellation of anomalies [19] is
not realized here. Although the considerations of SS were
without m5, their results extend almost immediately to
m5 � 0. This is because m5, just like m, appear in the final
axial anomaly expression through the dimensionless quan-
tities am5 and am and hence drop out in the a! 0 limit.
(However, m plays the role of infrared regulator in inter-
mediate stages of the evaluation and must therefore be
nonvanishing and positive.) Here m5 and m may either be
constant or tuned as a function of the lattice spacing as long
as am5 ! 0, am! 0 for a! 0.

5The minus sign in the exponent of e�i�Q is erroneously absent
in Eq. (19) of [36]; it should be present due to the minus sign in
their Eq. (22).
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V. PSEUDOSCALAR MESON PROPAGATOR IN
THE ROOTED FORMULATION

We now consider the pseudoscalar meson propagator,
more specifically its disconnected piece GDCðx; yÞ, which
is supposed to solve the U(1) problem by being nonvanish-
ing in the chiral limit in topologically nontrivial gauge field
backgrounds and thereby partially canceling the connected
piece, resulting in quicker decay, and hence a large mass.
This cancellation, which was already verified a long time
ago in the chiral limit with Wilson fermions [27], requires
that GDCðx; yÞ in a fixed topologically nontrivial gauge
background develops a singularity �1=m2 in the chiral
limit, produced by the (would-be) zero modes of the (lat-
tice) Dirac operator.

For simplicity we restrict to the 1-flavor case; then, with
our 2-taste D we have

GDCðx; yÞ ¼ 1
2 tr½ðDþmÞ�1ðx; xÞð�5 � 1Þ�12 tr½ðDþmÞ�1


 ðy; yÞð�5 � 1Þ�: (44)

We have replaced tr ! 1
2 tr compared to the usual expres-

sion to take account of the two tastes of D. It suffices to
consider just one of the factors 1

2 tr½� � ��. A simple calcu-

lation using (14) and (15) gives

1

2
tr½ðDþmÞ�1ðx; xÞð�5 � 1Þ� ¼X

�

m

�2 þm2
 y
�ðxÞ�5 �ðxÞ:

(45)

Exactly the same expression can be (formally) derived in
the continuum from @6  � ¼ i� � using the fact that
@6 ð�5 �Þ ¼ �i�ð�5 �Þ. However, in the present lattice
setting we do not have exact zero modes in general so
(45) and hence GDCðx; yÞ vanish at m ¼ 0. [(This can also
be seen directly from the chiral symmetries in (12) since �j
(j ¼ 1; 2) commutes with �5 � 1. The situation is the same
for staggered fermions—see Sec. VIII.F of Ref. [27].]
Clearly the m! 0 limit should not be taken before the
continuum limit here.6 The situation is different from
Wilson fermions where the chiral limit can be reached by
tuning the mass to a critical negative value [27]. In the
present case, reaching the chiral limit requires being able to
choose m in the same way as in our discussion of the
fermion determinants in the previous section, namely, it
should be in the chiral region (26). Then (45) becomes

1

2
tr½ðDþmÞ�1ðx; xÞð�5 � 1Þ� � X

�low

1

m
 y
�low

ðxÞ�5 �lowðxÞ;

(46)

which gives the correct chiral limit behavior of (45) and
hence also GDCðx; yÞ. The fact that only the would-be zero
modes contribute in (46) fits well with the observation from
previous numerical studies thatGDC is essentially given by

the contribution from low-lying modes—this was seen for
staggered fermions in [40] and for Wilson fermions using
the Hermitian Wilson-Dirac operator in [41].
From (28) and (46) we see that in the chiral region (26)

with positive m the weighted propagator in the rooted

theory, detðDþmÞ1=2GDCðx; yÞ, has the same form and
mass dependence as obtained from the ’t Hooft vertex in
the continuum setting. (This is clear, e.g., from the descrip-
tion of the latter given in [21].) This is clearly not the case
for values of m which are smaller than specified in (26)
though.

VI. DISCUSSION AND CONCLUSIONS

In the rooted fermion formulation based on Dþm one
would expect that any problem connected with chirality
would show up most clearly in the ‘‘chiral limit’’ of small
bare massm. We have found no sign of this, having derived
quite explicit indications of the viability of the rooted
formulation when the bare mass is positive and in the chiral
region (26):

j�lowj � m� j�nonlowj (47)

and, in particular, in the chiral limit

�low

m
! 0;

m

�nonlow

! 0: (48)

The existence of the chiral region and limit requires a gap
in the eigenvalue spectrum of D between the eigenvalues
fi�lowg of the would-be zero modes and the other eigen-
values fi�nonlowg. It is plausible that such a gap will open up
as the continuum limit (bare coupling g! 0) is ap-
proached: In this limit the fluctuations of the low-lying
real eigenvalues of the Wilson-Dirac operator around a
critical value mc should become smaller and smaller;
then the same is true for the fluctuations of f�lowg around
zero when m5 is tuned to �mcðgÞ (cf. Sec. IV). Setting
f1ðgÞ :¼ maxfj�lowjg; f2ðgÞ :¼ minfj�nonlowjg; (49)

we expect
f1ðgÞ
f2ðgÞ

! 0 for g! 0: (50)

Then, tuning m as a function of the bare coupling by, e.g.,

mðgÞ ¼ ðf1ðgÞf2ðgÞÞ1=2; (51)

the chiral limit (48) is reached as the continuum limit g!
0 is taken. This implies that a chiral region (47) exists for
sufficiently small g (and also at larger g for highly im-
proved versions of the lattice actions).
While the requirementm> 0 for the bare mass has been

widely recognized (e.g., in the reviews [10,11]),7 we have

6The necessity of taking the continuum limit before the chiral
limit is well known for staggered fermions [37–39].

7There is however a possibility of extending the rooted for-
mulation with positive m to general complex-valued m via the
introduction of a theta term, as discussed in the staggered
fermion case in Ref. [42].
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found here that a more stringent condition is required:8

m� maxfj�lowjg: (52)

In a lattice formulation of QCD with the fermion determi-
nant for each dynamical quark represented by a rooted
determinant the dependence of each bare mass mq on g

is fixed by renormalization conditions, e.g., by requiring
that the lattice QCD theory gives specified values for a
selection of hadronic mass ratios. In connection with this,
Creutz has argued [43] that the notion of the chiral limit for
a single light quark (in practice the up quark) is physically
meaningless when the other quarks remain massive: He
argues that nonperturbative instanton effects will produce
renormalization scheme-dependent additive corrections to
the light quark mass. If this is the case then mq ¼ 0 is a

scheme-dependent statement for the bare mass of the light
quark. Then there is no physical reason why the bare mass
must remain positive in a given scheme (i.e., for a given
choice of renormalization conditions) as the continuum
limit is approached, hence the requirement (52) may be
violated, in which case the rooted formulation may fail. On
the other hand, if the u and d quarks are taken to have
degenerate bare mass then the pion spectrum is degenerate
and the chiral limit is physically well defined as the limit
where the pions become massless. In this case we can
expect to be able to approach this limit from within the
chiral region (47). This applies not only for the present
formulation [where the product of the degenerate u and d
determinants are safely represented by the 2-flavor fermion
determinant detðDþmÞ] but also for the staggered for-
mulation where the determinant product is represented by
the square root of the staggered fermion determinant.

Expressions analogous to (17) for the rooted determi-
nant and (45) for GDCðx; yÞ hold for staggered fermions
since the eigenvalues of the massless staggered Dirac
operator come in pairs �i�. The present case is more
explicit, since the eigenvalues fi�g are those of a
bona fide single-taste lattice Dirac operator Dþ, whereas
no such origin is known for the eigenvalues of the stag-
gered Dirac operator. Nevertheless, the chiral limit issues
discussed here are the same for staggered fermions. So
achieving (47) and (48) in the staggered fermion case is
also required for taking the chiral limit there. It is encour-
aging with regard to this that numerical studies with im-
proved staggered fermions find a clear gap in the spectrum
between the low-lying would-be zero eigenvalues and the
remainder of the spectrum [44–46].

Having seen in Sec. IV that the 2-taste lattice Dirac
operator D has robust would-be chiral zero modes in
topologically nontrivial gauge backgrounds in accordance
with the Index Theorem, a natural question is whether the

same is true in the case of staggered fermions. The nu-
merical studies in [44,45] strongly indicate that this is the
case. In fact, a version of the techniques used in this paper,
supplemented with further calculations, enables the robust
would-be zero-mode result here to also be established for
staggered fermions, thereby providing a theoretical basis
for the numerical results of [44,45]. This will be presented
in a forthcoming paper.
The 2-flavor fermion formulation specified by the lattice

operatorD introduced here is mathematically equivalent to
twisted mass Wilson fermions, but the interpretation of the
symmetries is different: Two of the flavored vector sym-
metries in the Wilson case correspond to the chiral sym-
metries (12) in our case. Other 2-flavor fermion
formulations with flavored chiral symmetry have recently
appeared [47,48], inspired by graphene structure. Their
properties were studied in [49] where a general argument
was made that 2-flavor (‘‘minimally doubled’’) fermion
formulations with an exact chiral symmetry must neces-
sarily violate parity or time reversal symmetry. The for-
mulation based on D in this paper is another example of
this: it has two exact (flavored) chiral symmetries and
violates P and T symmetry due to a pseudoscalar term in
the action.
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APPENDIX: RELATION TO TWISTED MASS
WILSON FERMIONS

The twisted mass Wilson formulation for two lattice
fermion flavors has the action [26]

Stm ¼ ��

�
��r� þ a

r

2
�þmþ i��5�3

�
�: (A1)

Noting that

i��5�3 ¼ ��e�i��5�3 ; � ¼ 
=2 (A2)

we see that the flavored chiral rotation of the fields

� ¼ ei��5�3=2 ; �� ¼ � ei��5�3=2 (A3)

leads to

Stm ¼ � 

�
��r� þ i�5�3

�
a
r

2
�þm

�
��

�
 : (A4)

This coincides with the action for our 2-flavor theory,

8This condition is not at all surprising, and in fact the necessity
of it could already be inferred in the staggered fermion case from
the remarks in Sec. VIII.F of [27].
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S ¼ � ðDðm5Þ þmÞ (A5)

with

m5 ! m; m! ��: (A6)

At m ¼ 0 our formulation has the exact flavored chiral
symmetries generated by �j ¼ �5�j j ¼ 1, 2 [recall (12)].

By (A4)–(A6) m ¼ 0 in our theory corresponds to � ¼ 0
in the twisted mass theory. But from (A1) we see that this is
just the usual 2-flavorWilson theory with massm. Thus the
symmetries which in our theory are flavored chiral sym-
metries correspond in the twisted mass setting to nonchiral

symmetries of the usual 2-flavor massive Wilson theory
with vanishing twisted mass. Specifically, these symme-
tries, which leave ��ðDW þmÞ� invariant, are the vector
symmetries

�� ¼ �i�j�3�; � �� ¼ ��i�j�3 (A7)

for j ¼ 1, 2 and any �. Note that these transformations do
not form a group when acting on the �, �� fields. It is only
after changing field variables to  , � via (A3) (with � ¼

=2) that a symmetry group is obtained for each j ¼ 1, 2;
it is precisely the group generated by �j ¼ �5�j.
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