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Fluctuations of chromodynamic fields in the collisionless quark-gluon plasma are found as a solution of

the initial value linearized problem. The plasma initial state is on average colorless, stationary, and

homogeneous. When the state is stable, the initial fluctuations decay exponentially and in the long-time

limit a stationary spectrum of fluctuations is established. For the equilibrium plasma it reproduces the

spectrum which is provided by the fluctuation-dissipation relation. Fluctuations in the unstable plasma,

where the memory of initial fluctuations is not lost, are also discussed.
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I. INTRODUCTION

In the quark-gluon plasma (QGP), which is on average
locally colorless, chromodynamic fields, color charges,
and currents experience random fluctuations which appear
to influence dynamics of the whole system. In the equilib-
rium plasmas there are characteristic stationary spectra of
fluctuations which can be found by means of the
fluctuation-dissipation relations. Fluctuation spectra in
nonequilibrium systems evolve in time and their character-
istics usually depend on an initial state of the system. Our
aim is to develop a method to study chromodynamic
fluctuations in equilibrium and nonequilibrium QGP. We
are particularly interested in QGP produced at the early
stage of relativistic heavy-ion collisions. Such a plasma is
presumably unstable with respect to chromomagnetic
modes due to anisotropic momentum distribution of quarks
and gluons (partons), see the review [1]. The instability
growth is associated with the generation of chromomag-
netic fields which in turn influence various plasma proper-
ties. Transport coefficients of such a plasma, which are
controlled by the fluctuation spectrum of chromomagnetic
fields, are then strongly modified [2]. The fluctuation spec-
tra can be obtained from numerical simulations of the
unstable QGP, which have been successfully performed
by several groups [3–9], but the problem has not attracted
much attention yet; there are no analytical studies as well.

Fluctuations can be theoretically described using several
methods reviewed in the classical monographs [10,11].
Field-theory techniques developed for relativistic equilib-
rium plasmas are worked out in [12,13]. The method,
which seems to be physically most appealing, is clearly
exposed in the handbook [14]. The method—applicable to
both equilibrium and nonequilibrium plasmas—provides
the spectrum of fluctuations as a solution of the initial
value (linearized) problem. The initial plasma state is
assumed to be on average charge neutral, stationary, and
homogeneous. When the state is stable, the initial fluctua-

tions are explicitly shown to exponentially decay and in the
long-time limit one finds a stationary spectrum of fluctua-
tions. In this way one obtains for the equilibrium plasma
the spectrum which is alternatively provided by the
fluctuation-dissipation relation. When the initial state is
unstable, the memory of initial fluctuations is not lost, as
the unstable modes, which are present in the initial fluc-
tuation spectrum, exponentially grow. We apply the
method to study chromodynamic fluctuations in the
quark-gluon plasma.
The analysis presented here closely follows our paper

[15] where electromagnetic fluctuations in the electron-ion
plasma are discussed. Since the fluctuation spectra are
found as solutions of linearized equations of motion, our
chromodynamic and electromagnetic considerations are
quite similar to each other. However, some points signifi-
cantly differ. First of all, the starting point is different; the
non-Abelian equations become Abelian only after the lin-
earization. Solutions of linearized non-Abelian equations
are usually gauge noncovariant and should be modified to
comply with the gauge covariance. The correlation func-
tions derived here in the linear approximation appear to be,
as discussed in Sec. VIII A, gauge invariant but the result is
a priori not evident. Color charges are of different nature
than electric ones and need an adequate treatment.
Therefore, the chromodynamic results cannot be trivially
inferred from their electromagnetic counterparts.
An approach to fluctuations similar to the one adopted

here is sometimes called the Klimontovich method. It was
earlier used by Litim and Manuel [16,17] to derive colli-
sion terms of the transport equations of quark-gluon
plasma close to equilibrium. These authors, however,
treated color charges of partons as classical variables while
in our study the color degrees of freedom are of quantum
mechanical nature.
Our paper is organized as follows. In Sec. II we present

the theoretical framework to be used in our further consid-
erations. The linearized kinetic equation are solved to-
gether with Maxwell equations by means of the one-
sided Fourier transformation in Sec. III. Fluctuation spec-*mrow@fuw.edu.pl
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tra of chromodynamic fields are expressed through the
initial fluctuations which are calculated in Sec. IV. The
initial fluctuations are identified with fluctuations in the
systems of free quarks and gluons. Fluctuations of chro-
momagnetic and chromoelectric fields in the stable iso-
tropic plasma are discussed in, respectively, Secs. V and
VI, while longitudinal electric fields in the unstable two-
stream system are studied in Sec. VII. In the last case, the
fluctuation spectrum strongly depends on the initial state.
We close the paper with Sec. VIII where our results are
extensively discussed. In particular, a gauge independence
of the correlation functions of interest is demonstrated. We
also mention how to compute fluctuations of charges and
currents which are not analyzed in the main part of our
paper. The appendix presents a field-theory derivation of
the correlation function of distribution functions of free but
colored partons.

Throughout the article we use the natural units with c ¼
kB ¼ 1 and four types of indices: m; n; . . . and a; b; . . .
label, respectively, color components in the fundamental
and adjoint representation of SUðNcÞ gauge group; the
indices �;�; . . . and i; j; . . . are used to label four- and

three-vectors, respectively. In the appendix the indices i,
j denote internal degrees of freedom of scalar fields.

II. PRELIMINARIES

The transport theory of weakly coupled quark-gluon
plasma, which forms the basis of our analysis, is formu-
lated in terms of particles and classical fields. The
particles—quarks, antiquarks, and gluons—should be
understood as sufficiently hard quasiparticle excitations
of quantum fields of QCD while the classical fields are
highly populated soft gluonic modes. An excitation is
called ‘‘hard’’ when its momentum in the equilibrium
system is of order of temperature T, and it is called
‘‘soft’’ when the momentum is gT with g being the cou-
pling constant which is assumed to be small. In our further
considerations the quasiparticles are treated as classical
particles obeying Boltzmann statistics but, as shown in
Sec. VIII B, the effect of quantum statistics can be easily
taken into account.
The transport equations of quarks, antiquarks, and glu-

ons read

ðD0 þ v �DÞQðt; r;pÞ � g

2
fEðt; rÞ þ v�Bðt; rÞ;rpQðt; r;pÞg ¼ 0;

ðD0 þ v �DÞ �Qðt; r;pÞ þ g

2
fEðt; rÞ þ v�Bðt; rÞ;rp

�Qðt; r;pÞg ¼ 0;

ðD0 þ v �DÞGðt; r;pÞ � g

2
fEðt; rÞ þ v�Bðt; rÞ;rpGðt; r;pÞg ¼ 0:

(1)

The (anti)quark distribution functions Qðt; r;pÞ and
�Qðt; r;pÞ, which are Nc � Nc Hermitian matrices, belong
to the fundamental representation of the SUðNcÞ group,
while the gluon distribution function Gðt; r;pÞ, which is a
ðN2

c � 1Þ � ðN2
c � 1Þ matrix, belongs to the adjoint repre-

sentation. The distribution functions depend on the time
(t), position (r), and momentum (p) variables. There is no
dependence on the 0th component of the four-vector p� as
the distribution functions are assumed to be nonzero only
for momenta obeying the mass-shell constraint p�p� ¼ 0.
Because the partons are assumed to be massless, the ve-
locity v equals p=Ep with Ep ¼ jpj. The covariant deriva-
tive, which in the four-vector notation reads
D� � @� � ig½A�ðxÞ; � � ��, as well as the chromodynamic
fields Eðt; rÞ and Bðt; rÞ, belongs to either the fundamental
or adjoint representation, correspondingly. To simplify the
notation we use the same symbols D0, D, E, and B to
denote a given quantity in the fundamental or adjoint
representation. The symbol f. . . ; . . .g denotes the anticom-
mutator. Since the fluctuations of interest are assumed to be
of the time scale, which is much shorter than that of
interparton collisions, the collision terms are absent in
Eqs. (1). The approximation is further discussed in
Sec. VIII C.

The transport equations are supplemented by the non-
Abelian version of Maxwell equations describing a self-

consistent generation of the chromoelectric and chromo-
magnetic fields. The equations read

D � Eðt; rÞ ¼ �ðt; rÞ;
D � Bðt; rÞ ¼ 0;

D� Eðt; rÞ ¼ �D0Bðt; rÞ;
D� Bðt; rÞ ¼ jðt; rÞ þD0Eðt; rÞ;

(2)

where the color four-current j� ¼ ð�; jÞ in the adjoint
representation equals

j
�
a ðt; rÞ ¼ �g

Z d3p

ð2�Þ3
p�

Ep

Tr½�aðQðt; r;pÞ � �Qðt; r;pÞÞ

þ TaGðt; r;pÞ�; (3)

where �a, Ta with a ¼ 1; . . . ; N2
c � 1 are the SUðNcÞ group

generators in the fundamental and adjoint representations,
normalized as Tr½�a�b� ¼ 1

2�
ab and Tr½TaTb� ¼ Nc�

ab.

The set of transport (1) and Maxwell (2) equations is
covariant with respect to SUðNcÞ gauge transformations.
We are going to consider small deviations from a sta-

tionary homogeneous state described byQ0ðpÞ, �Q0ðpÞ, and
G0ðpÞ. The state is globally and locally colorless; there are
no currents as well. Therefore,
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Q0
nmðpÞ ¼ nðpÞ�nm; �Q0

nmðpÞ ¼ �nðpÞ�nm;

G0
abðpÞ ¼ ngðpÞ�ab:

(4)

The indices n;m; . . . and a; b; . . . refer, as already men-
tioned, to the fundamental and adjoint representation, re-
spectively. Because of the absence of color charges and
currents in the stationary and homogeneous state, the
chromoelectric Eðt; rÞ and chromomagnetic Bðt; rÞ fields
are expected to vanish while the potentials A0ðt; rÞ, Aðt; rÞ
are of pure gauge only. Since the plasma under considera-
tion is assumed to be weakly coupled with the perturbative
vacuum state, the potentials can gauge away to vanish.

We write down the quark distribution function as
Qðt; r;pÞ ¼ Q0ðpÞ þ �Qðt; r;pÞ, and we assume that

jQ0j � j�Qj; jrpQ
0j � jrp�Qj; (5)

with the analogous formulas for antiquarks and gluons. We
linearize the transport (1) and Maxwell (2) equations in the
deviations from the stationary homogeneous state. We
assume that �Q, � �Q, �G, E, B, A0, and A are all of the
same order. Validity of the approximation is further dis-
cussed in Sec. VIII C. The linearized transport equations
are

�
@

@t
þ v � r

�
�Qðt; r;pÞ � gðEðt; rÞ þ v� Bðt; rÞÞrpnðpÞ ¼ 0;

�
@

@t
þ v � r

�
� �Qðt; r;pÞ þ gðEðt; rÞ þ v� Bðt; rÞÞrp �nðpÞ ¼ 0;

�
@

@t
þ v � r

�
�Gðt; r;pÞ � gðEðt; rÞ þ v� Bðt; rÞÞrpngðpÞ ¼ 0;

(6)

while theMaxwell equations get the form familiar from the
electrodynamics (in the so-called Heaviside-Lorentz sys-
tem of units)

r �Eðt; rÞ ¼ �ðt; rÞ;
r �Bðt; rÞ ¼ 0;

r�Eðt; rÞ ¼ �@Bðt; rÞ
@t

;

r�Bðt; rÞ ¼ jðt; rÞ þ @Eðt; rÞ
@t

;

(7)

with

j�a ðt; rÞ ¼ �g
Z d3p

ð2�Þ3
p�

Ep

�Naðt; r;pÞ; (8)

where

�Naðt; r;pÞ � Tr½�að�Qðt; r;pÞ � � �Qðt; r;pÞÞ
þ Ta�Gðt; r;pÞ�: (9)

The linearized equations are Abelian and they corre-
spond to the multicomponent electrodynamics of Nc

charges. It should be noted, however, that the gluon con-
tribution to the color current, which is of obviously non-
Abelian origin, is taken into account. The equations are no
longer covariant with respect to SUðNcÞ gauge transforma-
tions. The gauge independence of our final results will be
demonstrated in Sec. VIII A.

III. INITIAL VALUE PROBLEM

We are going to solve the linearized transport (6) and
Maxwell (7) equations with the initial conditions

�Qðt ¼ 0; r;pÞ ¼ �Q0ðr;pÞ;
� �Qðt ¼ 0; r;pÞ ¼ � �Q0ðr;pÞ;
�Gðt ¼ 0; r;pÞ ¼ �G0ðr;pÞ;

Eðt ¼ 0; rÞ ¼ E0ðrÞ;
Bðt ¼ 0; rÞ ¼ B0ðrÞ:

We apply to the equations the one-sided Fourier trans-
formation defined as

fð!;kÞ ¼
Z 1

0
dt

Z
d3reið!t�k�rÞfðt; rÞ: (10)

The inverse transformation is

fðt; rÞ ¼
Z 1þi�

�1þi�

d!

2�

Z d3k

ð2�Þ3 e
�ið!t�k�rÞfð!;kÞ; (11)

where the real parameter �> 0 is chosen in such a way
that the integral over ! is taken along a straight line in the
complex !-plane, parallel to the real axis, above all singu-
larities of fð!;kÞ.
We note that

Z 1

0
dt
Z

d3reið!t�k�rÞ @fðt;rÞ
@t

¼�i!fð!;kÞ� fðt¼ 0;kÞ:
(12)

The linearized transport (6) and Maxwell equations (7),
which are transformed by means of the one-sided Fourier
transformation, read
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�ið!� k � vÞ�Qð!;k;pÞ � gðEð!;kÞ þ v� Bð!;kÞÞ � rpnðpÞ ¼ �Q0ðk;pÞ;
�ið!� k � vÞ� �Qð!;k;pÞ þ gðEð!;kÞ þ v� Bð!;kÞÞ � rp �nðpÞ ¼ � �Q0ðk;pÞ;
�ið!� k � vÞ�Gð!;k;pÞ � gðEð!;kÞ þ v� Bð!;kÞÞ � rpngðpÞ ¼ �G0ðk;pÞ;

(13)

ik �Eð!;kÞ ¼ �ð!;kÞ; ik �Bð!;kÞ ¼ 0; ik� Eð!;kÞ ¼ i!Bð!;kÞ þ B0ðkÞ;
ik�Bð!;kÞ ¼ jð!;kÞ � i!Eð!;kÞ � E0ðkÞ:

(14)

One solves the transport equation as

�Qð!;k;pÞ ¼ i

!� k � v ðgðEð!;kÞ þ v� Bð!;kÞÞ
� rpnðpÞ þ �Q0ðk;pÞÞ;

� �Qð!;k;pÞ ¼ i

!� k � v ð�gðEð!;kÞ þ v�Bð!;kÞÞ
� rp �nðpÞ þ � �Q0ðk;pÞÞ;

�Gð!;k;pÞ ¼ i

!� k � v ðgðEð!;kÞ þ v� Bð!;kÞÞ
� rpngðpÞ þ �G0ðk;pÞÞ: (15)

A. Chromoelectric field

Substituting the solutions (15) into the Fourier trans-
formed current (8) and using the third Maxwell equa-
tion (14) to express the magnetic field through the
electric one, the current gets the form

jað!;kÞ ¼ �i
g2

2

Z d3p

ð2�Þ3
v

!� v � k
�

��
1� k � v

!

�
Eað!;kÞ þ 1

!
ðv �Eað!;kÞÞk

�

� rpfðpÞ þ g2

2

Z d3p

ð2�Þ3
v

!� v � k
�

�
1

!
v�Ba0ðkÞ

�
� rpfðpÞ

� ig
Z d3p

ð2�Þ3
v

!� k � v�N
a
0 ðk;pÞ; (16)

where fðpÞ � nðpÞ þ �nðpÞ þ 2NcngðpÞ.
Since the chromodielectric tensor "ijð!;kÞ of aniso-

tropic plasma in the collisionless limit equals [18]

"ijð!;kÞ ¼ �ij þ g2

2!

Z d3p

ð2�Þ3
vi

!� v � kþ i0þ

�
��
1� k � v

!

�
�jk þ vjkk

!

�
rk

pfðpÞ; (17)

the current can be written as

jiað!;kÞ ¼ �i!ð"ijð!;kÞ � �ijÞEj
að!;kÞ þ g2

2

Z d3p

ð2�Þ3

� v

!� v � k
�
1

!
v�Ba0ðkÞ

�
� rpfðpÞ

� ig
Z d3p

ð2�Þ3
v

!� k � v�N
a
0 ðk;pÞ: (18)

We note that the chromodielectric tensor (17), which cor-
responds to a colorless state of the plasma, does not carry
any color indices.
Combining the third and fourth Maxwell equations (14),

one finds

½ð!2 � k2Þ�ij þ kikj�Ejð!;kÞ
¼ �i!jið!;kÞ þ i!Ei

0ðkÞ � iðk�B0ðkÞÞi: (19)

Substituting the current (18) into Eq. (19), one obtains

½�k2�ij þ kikj þ!2"ijð!;kÞ�Ej
að!;kÞ

¼ �i
g2

2

Z d3p

ð2�Þ3
vi

!� v � k ðv� Ba0ðkÞÞjrj
pfðpÞ

� g!
Z d3p

ð2�Þ3
vi

!� k � v�N
a
0 ðk;pÞ þ i!Ei

a0ðkÞ
� iðk� Ba0ðkÞÞi: (20)

Denoting the matrix in the left-hand side of Eq. (20) as

�ijð!;kÞ � �k2�ij þ kikj þ!2"ijð!;kÞ; (21)

the electric field given by Eq. (20) can be written down as

Ei
að!;kÞ ¼ �i

g2

2

Z d3p

ð2�Þ3
ð��1Þijð!;kÞvj

!� v � k ðv�Ba0ðkÞÞ

� rpfðpÞ � g!
Z d3p

ð2�Þ3
ð��1Þijð!;kÞvj

!� k � v
� �Na

0 ðk;pÞ þ i!ð��1Þijð!;kÞEj
a0ðkÞ

� ið��1Þijð!;kÞðk� Ba0ðkÞÞj; (22)

which is the main result of this section.
When the plasma stationary state described by fðpÞ is

isotropic, the dielectric tensor can be expressed through its
longitudinal and transverse components
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"ijð!;kÞ ¼ "Lð!;kÞ k
ikj

k2
þ "Tð!;kÞ

�
�ij � kikj

k2

�
; (23)

where "Lð!;kÞ and "Tð!;kÞ are well known to be

"Lð!;kÞ ¼ 1þ g2

2k2

Z d3p

ð2�Þ3
1

!� k � vþ i0þ
k � @fðpÞ

@p
;

(24)

"Tð!;kÞ ¼ 1þ g2

4!

Z d3p

ð2�Þ3
1

!� k � vþ i0þ

�
�
v � @fðpÞ

@p
� k � v

k2
k � @fðpÞ

@p

�
: (25)

The matrix �ijð!;kÞ, which then equals

�ijð!;kÞ ¼ !2"Lð!;kÞ k
ikj

k2
þ ð!2"Tð!;kÞ � k2Þ

�
�
�ij � kikj

k2

�
; (26)

can be inverted as

ð��1Þijð!;kÞ ¼ 1

!2"Lð!;kÞ
kikj

k2
þ 1

!2"Tð!;kÞ � k2

�
�
�ij � kikj

k2

�
: (27)

When the momentum distribution fðpÞ is isotropic,
rpfðpÞ � p, and consequently ðv�B0ðkÞÞ � rpfðpÞ ¼
0. Therefore, the first term in the right-hand side (r.h.s.)
of Eq. (22) vanishes and the electric field is found as

Ei
að!;kÞ ¼ �g!

�
1

!2"Lð!;kÞ
kikj

k2
þ 1

!2"Tð!;kÞ � k2

�
�
�ij � kikj

k2

��Z d3p

ð2�Þ3
vj

!� k � v�N
a
0 ðk;pÞ

þ i!

�
1

!2"Lð!;kÞ
kikj

k2
þ 1

!2"Tð!;kÞ � k2

�
�
�ij � kikj

k2

��
Ej
a0ðkÞ �

iðk� Ba0ðkÞÞi
!2"Tð!;kÞ � k2

:

(28)

If the field is purely longitudinal,

Eð!;kÞ ¼ ðk � Eð!;kÞÞ k
k2

; E0ðkÞ ¼ ðk �E0ðkÞÞ k
k2

;

Eq. (28) gives

k �Eað!;kÞ ¼ � g

!"Lð!;kÞ
Z d3p

ð2�Þ3

� k � v
!� k � v�N

a
0 ðk;pÞ þ

ik �Ea0ðkÞ
!"Lð!;kÞ :

(29)

Taking into account that

ik � Ea0ðkÞ ¼ �a0ðkÞ ¼ �g
Z d3p

ð2�Þ3 �N
a
0 ðk;pÞ;

Eq. (29) can be rewritten as

k �Eað!;kÞ ¼ � g

"Lð!;kÞ
Z d3p

ð2�Þ3

� 1

!� k � v�N
a
0 ðk;pÞ: (30)

Equation (30) can be obtained directly by substituting the
solution of the transport equation (15) (with B ¼ 0) into
the first Maxwell equation. Then, the initial electric field
does not show up.

B. Chromomagnetic field

Using again the third Maxwell equation (14) to express
the magnetic field through the electric one, Eq. (22) im-
mediately provides

Bi
að!;kÞ ¼ 1

!
�ijkkjð��1Þklð!;kÞ

�
�i

g2

2

Z d3p

ð2�Þ3

� vl

!� v � k ðv� Ba0ðkÞÞ � rpfðpÞ

� g!
Z d3p

ð2�Þ3
vl

!� k � v�N
a
0 ðk;pÞ

þ i!El
a0ðkÞ � iðk� Ba0ðkÞÞl

�
þ i

!
Bi
a0ðkÞ:
(31)

When the plasma stationary state is isotropic and
ð��1Þijð!;kÞ is given by Eq. (27), one finds

�ijkkjð��1Þklð!;kÞ ¼ �ijlkj

!2"Tð!;kÞ � k2
: (32)

The first term in the right-hand side of Eq. (31) vanishes
because ðv�B0ðkÞÞ � rpfðpÞ ¼ 0, and thus

Bað!;kÞ ¼ � g

ð!2"Tð!;kÞ � k2Þ
Z d3p

ð2�Þ3
k� v

!� k � v
� �Na

0 ðk;pÞ þ
ik� Ea0ðkÞ

!2"Tð!;kÞ � k2

þ i!"Tð!;kÞ
!2"Tð!;kÞ � k2

Ba0ðkÞ: (33)

IV. INITIAL FLUCTUATIONS

The correlation functions hEi
aðt1; r1ÞEj

bðt2; r2Þi,
hBi

aðt1; r1ÞBj
bðt2; r2Þi, where h. . .i denotes averaging over

statistical ensemble, are determined by the initial correla-

tions such as h�Na
0 ðr1;p1Þ�Nb

0 ðr2;p2Þi, hEi
a0ðr1ÞEj

b0ðr2Þi,
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h�Na
0 ðr1;p1ÞEj

b0ðr2Þi, etc., which are discussed in this

section.
The initial correlation of the distribution functions

h�Qmn
0 ðr1;p1Þ�Qpr

0 ðr1;p1Þi is assumed to be given by the

correlation function h�Qmnðt1; r1;p1Þ�Qprðt2; r2;p2Þifree
taken at t1 ¼ t2 ¼ 0 of the classical system of free quarks
in a stationary homogeneous state described by the distri-
bution function Q0ðpÞ. Such a correlation function of
particles, which obey Boltzmann statistics and have no
internal degrees of freedom, is well known to be [14]

h�fðt1; r1;p1Þ�fðt2; r2;p2Þifree
¼ ð2�Þ3�ð3Þðp1 � p2Þ�ð3Þðr2 � r1 � v1ðt2 � t1ÞÞf0ðp1Þ;

(34)

where f0ðpÞ � hfðt; r;pÞifree. The correlation expressed by
Eq. (34) occurs when the same particle travels from the
space-time point ðt1; r1Þ to ðt2; r2Þ.

A generalization of the formula (34) to the case of
quarks and gluons carrying classical color charges was
discussed in [16,17]. In the appendix we give a quantum
mechanical and relativistic derivation of the correlation
function of the distribution functions of free quarks and
gluons with the matrix color degrees of freedom. The
results are valid for equilibrium and nonequilibrium sys-
tems. In the classical limit the correlation functions equal

h�Qmnðt1; r1;p1Þ�Qprðt2; r2;p2Þifree
¼ �mr�npð2�Þ3�ð3Þðp1 � p2Þ

� �ð3Þðr2 � r1 � v1ðt2 � t1ÞÞnðp1Þ; (35)

h� �Qmnðt1; r1;p1Þ� �Qprðt2; r2;p2Þifree
¼ �mr�npð2�Þ3�ð3Þðp1 � p2Þ

� �ð3Þðr2 � r1 � v1ðt2 � t1ÞÞ �nðp1Þ; (36)

h�Gabðt1; r1;p1Þ�Gcdðt2; r2;p2Þifree
¼ �ad�bcð2�Þ3�ð3Þðp1 � p2Þ

� �ð3Þðr2 � r1 � v1ðt2 � t1ÞÞngðp1Þ; (37)

where, as previously, the color indices m, n, p, r refer to
the fundamental representation while the indices a, b, c, d
to the adjoint one. The correlation functions of the distri-

bution functions of different particles such as
h�Qðt1; r1;p1Þ�Gðt2; r2;p2Þifree vanish.
The initial correlation of the function �Naðt; r;pÞ de-

fined by Eq. (9) is provided by Eqs. (35)–(37) as

h�Na
0 ðr1;p1Þ�Nb

0 ðr1;p1Þi
¼ h�Naðt1 ¼ 0; r1;p1Þ�Nbðt2 ¼ 0; r2;p2Þifree
¼ 1

2�
abð2�Þ3�ð3Þðp1 � p2Þ�ð3Þðr1 � r2Þfðp1Þ; (38)

where, as previously, fðpÞ � nðpÞ þ �nðpÞ þ 2NcngðpÞ.
The Fourier transform with respect to the space variables
equals

h�Na
0 ðk1;p1Þ�Nb

0 ðk2;p2Þi ¼ 1
2�

abð2�Þ3�ð3Þðp1 � p2Þ
� ð2�Þ3�ð3Þðk1 þ k2Þfðp1Þ:

(39)

To compute the correlations functions like

hEi
a0ðr1ÞEj

b0ðr2Þi, h�Qmn
0 ðr1;p1ÞEj

a0ðr2Þi, or

hEi
a0ðr1ÞBj

b0ðr2Þi, we use the Maxwell equations trans-

formed using the Fourier transformation not the one-sided
Fourier transformation. Actually, the Fourier transformed
Maxwell equations are very similar to the one-sided
Fourier transformed Maxwell equations (14). The initial
electric and magnetic fields are simply absent in the former
ones. However, it should be clearly stated that the one-
sided Fourier transformation is not mixed up with the
Fourier transformation. The latter is used to compute
only the initial fluctuations which are independent of !.
Combining the third and the fourth Maxwell equation,

one gets the equation as Eq. (19) but the terms with E0ðkÞ
andB0ðkÞ are absent. Inverting the matrix in the right-hand
side of the equation, we get the electric field expressed
through the current

Eið!;kÞ ¼�i!

�
1

!2

kikj

k2
þ 1

!2 �k2

�
�ij � kikj

k2

��
jjð!;kÞ:

(40)

The magnetic field is given as

B ð!;kÞ ¼ � i

!2 � k2
k� jð!;kÞ: (41)

The correlation function hEi
a0ðk1ÞEj

b0ðk2Þi is derived as
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hEi
a0ðk1ÞEj

b0ðk2Þi ¼
Z d!1

2�

d!2

2�
hEi

að!1;k1ÞEj
bð!2;k2Þi

¼ �
Z d!1

2�

d!2

2�

�
1

!1

ki1k
k
1

k2
1

þ !1

!2
1 � k2

1

�
�ik � ki1k

k
1

k2
1

���
1

!2

kj2k
l
2

k2
2

þ !2

!2
2 � k2

2

�
�jl � kj1k

l
1

k2
1

��

� hjkað!1;k1Þjjbð!2;k2Þi

¼ �g2
Z d!1

2�

d!2

2�

d3p1

ð2�Þ3
d3p2

ð2�Þ3 v
k
1v

l
2

�
1

!1

ki1k
k
1

k2
1

þ !1

!2
1 � k2

1

�
�ik � ki1k

k
1

k2
1

��

�
�
1

!2

kj2k
l
2

k2
2

þ !2

!2
2 � k2

2

�
�jl � kj1k

l
1

k2
1

��
h�Nað!1;k1;p1Þ�Nbð!2;k2;p2Þi: (42)

Using the formulas (35)–(37) one easily finds the
Fourier transform of the correlation function of �Na as

h�Nað!1;k1;p1Þ�Nbð!2;k2;p2Þifree
¼ 1

2
�abð2�Þ3�ð3Þðp2 � p1Þ2��ð!1 þ!2Þ

� ð2�Þ3�ð3Þðk1 þ k2Þ2��
�
!1 �!2

2
� k1 � k2

2
v1

�

� fðp1Þ: (43)

Substituting the formula (43) into Eq. (42) and perform-
ing trivial integrations, one finally obtains

hEi
a0ðk1ÞEj

b0ðk2Þi

¼ �g2

2
�abð2�Þ3�ð3Þðk1 þ k2Þ

�
Z d3p

ð2�Þ3 fðpÞ
ððk1 � vÞvi � ki1Þððk2 � vÞvj � kj2Þ
ððk1 � vÞ2 � k2

1Þððk2 � vÞ2 � k2
2Þ

:

(44)

Analogously to the correlation function

hEi
a0ðk1ÞEj

b0ðk2Þi, one finds

hEi
a0ðk1Þ�Nb0ðk2;p2Þi ¼ i

g

2
�abð2�Þ3�ð3Þðk1 þ k2Þfðp2Þ

� ðk1 � v2Þvi
2 � ki1

ðk1 � v2Þ2 � k2
1

: (45)

Starting with Eq. (41), we obtain

hBi
a0ðk1ÞBj

b0ðk2Þi ¼ �g2

2
�abð2�Þ3�ð3Þðk1 þ k2Þ�ikl

� �jmnkk1k
m
2

Z d3p

ð2�Þ3 fðpÞ

� vlvn

ððk1 � vÞ2 � k2
1Þððk2 � vÞ2 � k2

2Þ
;

(46)

and

hBi
a0ðk1Þ�Nb

0 ðk2;p2Þi ¼ i
g

2
�abð2�Þ3�ð3Þðk1 þ k2Þfðp2Þ

� �ijkkj1v
k
2

ðk1 � v2Þ2 � k2
1

: (47)

Finally, one computes

hEi
a0ðk1ÞBj

b0ðk2Þi

¼ �g2

2
�abð2�Þ3�ð3Þðk1 þ k2Þ

�
Z d3p

ð2�Þ3 fðpÞ
ððk1 � vÞvi � ki1Þ�jklkk2vl

ððk1 � vÞ2 � k2
1Þððk2 � vÞ2 � k2

2Þ
: (48)

V. CHROMOMAGNETIC FIELD
IN ISOTROPIC QGP

As seen in Eq. (33), the magnetic field in isotropic
plasma is given by three terms. Therefore, nine terms enter

the correlation function hBi
að!1;k1ÞBj

bð!2;k2Þi. Sub-

stituting into these terms the initial fluctuations derived
in Sec. IV, one finds after an elementary but lengthy and
tedious analysis the following expression:
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hBi
að!1;k1ÞBj

bð!2;k2Þi ¼ g2

2
�ab ð2�Þ3�ð3Þðk1 þ k2Þ�ikl�jmnkk1k

m
2

ð!2
1"Tð!1;k1Þ � k2

1ÞÞð!2
2"Tð!2;k2Þ � k2

2ÞÞ
Z d3p

ð2�Þ3 fðpÞ

� vlvn

ð!1 � k1 � vÞð!2 � k2 � vÞððk1 � vÞ2 � k2
1Þððk2 � vÞ2 � k2

2Þ
� ½ð!1ðk1 � vÞ � k2

1Þ þ!1"Tð!1;k1Þð!1 � k1 � vÞ�
� ½ð!2ðk2 � vÞ � k2

2Þ þ!2"Tð!2;k2Þð!2 � k2 � vÞ�: (49)

We now compute hBi
aðt1; r1ÞBj

bðt2; r2Þi given by

hBi
aðt1; r1ÞBj

bðt2; r2Þi ¼
Z 1þi�

�1þi�

d!1

2�

Z 1þi�

�1þi�

d!2

2�

Z d3k1
ð2�Þ3

Z d3k2
ð2�Þ3 e

�ið!1t1�k1�r1þ!2t2�k2�r2ÞhBi
að!1;k1ÞBj

bð!2;k2Þi:
(50)

Zeros of (!2
i "Tð!i;kiÞ � k2

i ) and of (!i � ki � vþ i0þ)
with i ¼ 1, 2 contribute to the integrals over !1 and !2.
The equation!2"Tð!;kÞ � k2 ¼ 0 determines the plasma
collective transverse modes, while !� k � v ¼ 0 corre-
sponds to the interaction of plasma particles of velocity v
with the modes of phase velocity v	 � !k=k2. Since the
plasma system under consideration is stable with respect to
transverse modes—the modes are expected to be damped,
all zeros of ð!2

i "Tð!i;kiÞ � k2
i Þ lie in the lower half-plane

of complex !. Consequently, the contributions associated

with these zeros exponentially decay in time and they
vanish in the long-time limit of both t1 and t2. The long-
time limit corresponds to times which are much longer than
the decay time of collective excitations in the plasma [19].
We further consider the long-time limit of

hBi
aðt1; r1ÞBj

bðt2; r2Þi and then, the only nonvanishing con-

tribution is related to the poles at !1 ¼ k1 � v and !2 ¼
k2 � v. This contribution reads

hBi
aðt1; r1ÞBj

bðt2; r2Þi1 ¼ �g2

2
�ab

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3

d3p

ð2�Þ3 fðpÞe
�ið!1t1�k1�r1þ!2t2�k2�r2Þ

� ð2�Þ3�ð3Þðk1 þ k2Þ�ikl�jmnkk1k
m
2

ð!2
1"Tð!1;k1Þ � k2

1ÞÞð!2
2"Tð!2;k2Þ � k2

2ÞÞ
vlvn

ððk1 � vÞ2 � k2
1Þððk2 � vÞ2 � k2

2Þ
� ð!1ðk1 � vÞ � k2

1Þð!2ðk2 � vÞ � k2
2Þ
��������!1¼k1�v;!2¼k2�v

: (51)

It can be easily expressed as

hBi
aðt1; r1ÞBj

bðt2; r2Þi1 ¼
Z d!

2�

d3k

ð2�Þ3 e
�ið!ðt1�t2Þ�k�ðr1�r2ÞÞ

� hBi
aB

j
bi!k; (52)

where the fluctuation spectrum is

hBi
aB

j
bi!k ¼ �g2�ab�ikl�jmnkkkm

ð!2"Tð!;kÞ � k2ÞÞð!2"Tð�!;�kÞ � k2ÞÞ
�

Z d3p

ð2�Þ3 fðpÞ�ð!� k � vÞvlvn: (53)

When both ! and k are real "Tð�!;�kÞ ¼ "�Tð!;kÞ.
Therefore, the fluctuation spectrum can be rewritten as

hBi
aB

j
bi!k ¼ �g2�ab�ikl�jmnkkkm

j!2"Tð!;kÞ � k2j2
Z d3p

ð2�Þ3 fðpÞ

� �ð!� k � vÞvlvn: (54)

One observes that the matrix function

Mijð!;kÞ �
Z d3p

ð2�Þ3 fðpÞ�ð!� k � vÞvivj; (55)

which enters the correlation function (54), can be decom-
posed as

Mijð!;kÞ ¼ MLð!;kÞ k
ikj

k2
þMTð!;kÞ

�
�ij � kikj

k2

�
;

(56)
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because the plasma is assumed to be isotropic. Comparing
Eq. (56) to Eq. (55), one finds

MLð!;kÞ �
Z d3p

ð2�Þ3 fðpÞ�ð!� k � vÞ ðk � vÞ2
k2

; (57)

MTð!;kÞ � 1

2

Z d3p

ð2�Þ3 fðpÞ�ð!� k � vÞ
�
v2 � ðk � vÞ2

k2

�
:

(58)

Using the decomposition (56), the correlation function (54)
can be written down as

hBi
aB

j
bi!k ¼ �g2�abð�ijk2 � kikjÞ

j!2"Tð!;kÞ � k2j2 MTð!;kÞ: (59)

For equilibrium plasma the correlation function

hBi
aB

j
bi!k can be expressed in the form of the fluctuation-

dissipation relation. One first observes that due to the
identity

1

x	 i0þ
¼ P

1

x

 i��ðxÞ; (60)

the imaginary part of "Tð!;kÞ, which is given by Eq. (25),
is

="Tð!;kÞ ¼ ��g2

4!

Z d3p

ð2�Þ3 �ð!� k � vÞ

�
�
v � @fðpÞ

@p
� k � v

k2
k � @fðpÞ

@p

�
: (61)

In equilibrium fðpÞ � e�
Ep and @fðpÞ=@p ¼ �
vfðpÞ.
Therefore, ="T equals

="Tð!;kÞ ¼ �g2

4T!k2

Z d3p

ð2�Þ3
� �ð!� k � vÞðk2v2 � ðk � vÞ2ÞfðpÞ; (62)

where T � 1=
 is the system’s temperature. Consequently,

the functionMT (58) can be expressed through ="T (62) as

MTð!;kÞ ¼ 2T!

�g2
="Tð!;kÞ; (63)

and finally,

hBi
aB

j
bi!k ¼ 2T

!3
�abð�ijk2 � kikjÞ ="Tð!;kÞ

j"Tð!;kÞ � k2

!2 j2
:

(64)

As seen, the fluctuation spectrum has strong peaks corre-
sponding to collective transverse modes determined by the
dispersion equation !2"Tð!;kÞ � k2 ¼ 0. The electro-
magnetic counterpart of Eq. (64), which is derived in
[15], coincides with the formula (11.2.2.7) from [10] ob-
tained there directly from the fluctuation-dissipation theo-
rem. When Eq. (64) is compared to the electromagnetic
formula one should remember that the Gauss units are used
in [10,15] while the units, which are usually applied in
QCD considerations, correspond to the Heaviside-Lorentz
electromagnetic system. The magnetic field in the Gauss
units BGauss is related to the magnetic field in the

Heaviside-Lorentz units BHL as BGauss ¼
ffiffiffiffiffiffiffi
4�

p
BHL. We

also mention that the correlation functions summed over

colors such as hBi
aB

j
ai are gauge independent as shown in

Sec. VIII A. Finally, we note that Eq. (64) remains un-
changed when the effect of quantum statistics of quarks
and gluons is incorporated. However, the equilibrium ex-
pression of ="T , which is given by Eq. (62), needs to be
modified as explained in Sec. VIII B.

VI. CHROMOELECTRIC FIELD
IN ISOTROPIC QGP

The analysis of chromoelectric field fluctuations is much
more complicated than that of the magnetic field. First of
all, there are five terms which enter the formula of electric
field given by Eq. (28), and consequently, the correlation

function hEi
að!1;k1ÞEj

bð!2;k2Þi includes 25 terms. The

magnetic field is purely transverse and some terms auto-
matically drop out but the electric fields have longitudinal
and transverse components. Using the formulas of initial
fluctuations, which are derived in Sec. IV, and patiently
analyzing term by term, one obtains after an elementary
but very lengthy calculation the correlation function of the
form
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hEi
að!1;k1ÞEj

að!2;k2Þi ¼ g2

2
�abð2�Þ3�ð3Þðk1 þ k2Þ

Z d3p

ð2�Þ3 fðpÞ

�
�

ki1
!2

1"Lð!1;k1Þ
kj2

!2
2"Lð!2;k2Þ

!2
1!

2
2

k2
1ð!1 � k1 � vÞk2

2ð!2 � k2 � vÞ

þ ki1
!2

1"Lð!1;k1Þ
vjk2

2 � kj2ðk2 � vÞ
!2

2"Tð!2;k2Þ � k2
2

!2
1½!2ð!2ðk2 � vÞ � k2

2Þ � k2
2ð!2 � k2 � vÞ�

k2
1ð!1 � k1 � vÞk2

2ð!2 � k2 � vÞððk2 � vÞ2 � k2
2Þ

þ vik2
1 � ki1ðk1 � vÞ

!2
1"Tð!1;k1Þ � k2

1

kj2
!2

2"Lð!2;k2Þ
!2

2½!1ð!1ðk1 � vÞ � k2
1Þ � k2

1ð!1 � k1 � vÞ�
k2
1ð!1 � k1 � vÞððk1 � vÞ2 � k2

1Þk2
2ð!2 � k2 � vÞ

þ ki1ðk1 � vÞ � vik2
1

!2
1"Tð!1;k1Þ � k2

1

kj2ðk2 � vÞ � vjk2
2

!2
2"Tð!2;k2Þ � k2

2

!1ð!1ðk1 � vÞ � k2
1Þ � k2

1ð!1 � k1 � vÞ
k2
1ð!1 � k1 � vÞððk1 � vÞ2 � k2

1Þ

�!2ð!2ðk2 � vÞ � k2
2Þ � k2

2ð!2 � k2 � vÞ
k2
2ð!2 � k2 � vÞððk2 � vÞ2 � k2

2Þ
�
: (65)

We now compute hEi
aðt1; r1ÞEj

bðt2; r2Þi given by

hEi
aðt1; r1ÞEj

bðt2; r2Þi ¼
Z 1þi�

�1þi�

d!1

2�

Z 1þi�

�1þi�

d!2

2�

Z d3k1
ð2�Þ3

Z d3k2
ð2�Þ3 e

�ið!1t1�k1�r1þ!2t2�k2�r2ÞhEi
að!1;k1ÞEj

bð!2;k2Þi:
(66)

Zeros of ð!2
i "Tð!i;kiÞ � k2

i Þ, ð!2
i "Lð!i;kiÞ, and of ð!i � ki � vþ i0þÞ with i ¼ 1, 2 contribute to the integrals over !1

and !2. As already mentioned, the equations !2"Tð!;kÞ � k2 ¼ 0 and "Lð!;kÞ ¼ 0 determine, respectively, the
transverse and longitudinal plasma modes, while !� k � v ¼ 0 corresponds to the interaction of plasma particles of
velocity v with the modes of phase velocity v	 � !k=k2. Since the system under consideration is stable—the collective
modes are expected to be damped, all zeros of ð!2

i "Tð!i;kiÞ � k2
i Þ and ð!2

i "Lð!i;kiÞ lie in the lower half-plane of
complex!. Consequently, the contributions associated with these zeros exponentially decay in time and they vanish in the
long-time limit of both t1 and t2.

We further consider the long-time limit of hEi
aðt1; r1ÞEj

bðt2; r2Þi, and then the only nonvanishing contribution corre-

sponds to the poles at !1 ¼ k1 � v and !2 ¼ k2 � v. This contribution reads

hEi
aðt1;r1ÞEj

bðt2;r2Þi1 ¼�g2

2
�ab

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3 ð2�Þ

3�ð3Þðk1 þk2Þ
Z d3p

ð2�Þ3 fðpÞe
�ið!1t1�k1�r1þ!2t2�k2�r2Þ!1!2

k2
1k

2
2

�
�

!1k
i
1

!2
1"Lð!1;k1Þ

þ ki1ðk1 � vÞ�vik2
1

!2
1"Tð!1;k1Þ�k2

1

��
!2k

j
2

!2
2"Lð!2;k2Þ

þ vjk2
2 � kj2ðk2 � vÞ

!2
2"Tð!2;k2Þ�k2

2

���������!1¼k1�v;!2¼k2�v
:

(67)

The correlation function (67) can be rewritten as

hEi
aðt1; r1ÞEj

bðt2; r2Þi1 ¼
Z d!

2�

d3k

ð2�Þ3 e
�ið!ðt1�t2Þ�k�ðr1�r2ÞÞhEi

aE
j
bi!k; (68)

where the fluctuation spectrum is

hEi
aE

j
bi!k ¼ g2

2
�ab

Z d3p

ð2�Þ3 fðpÞ2��ð!� k � vÞ!
2

k4

�
ki

!2"Lð!;kÞ
kj

!2"Lð�!;k2Þ!
2 þ ki

!2"Lð!;kÞ

� vjk2 � kjðk � vÞ
!2"Tð�!;kÞ � k2

!þ vik2 � kiðk � vÞ
!2"Tð!;kÞ � k2

kj

!2"Lð�!;kÞ!þ kiðk � vÞ � vik2

!2"Tð!;kÞ � k2

kjðk � vÞ � vjk2

!2"Tð�!;kÞ � k2

�
:

(69)

One easily proves that the second and third contribution to the fluctuation spectrum (69) vanish due to the plasma isotropy.
Taking into account that for real ! and k, "sð�!;�kÞ ¼ "�sð!;kÞ with s ¼ L, T, the fluctuation spectrum (69) can be
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written as

hEi
aE

j
bi!k ¼ g2

2
�ab

Z d3p

ð2�Þ3 fðpÞ2��ð!� k � vÞ!
2

k4

�
!2kikj

j!2"Lð!;kÞj2 þ
ðkiðk � vÞ � vik2Þðkjðk � vÞ � vjk2Þ

j!2"Tð!;kÞ � k2j2
�
: (70)

Because of the plasma isotropy, the expression, which enters the transverse contribution, can be further rewritten as

Z d3p

ð2�Þ3 fðpÞ2��ð!� k � vÞðkiðk � vÞ � vik2Þðkjðk � vÞ � vjk2Þ

¼ 1

2

�
�ij � kikj

k2

�
k2

Z d3p

ð2�Þ3 fðpÞ2��ð!� k � vÞððk2v2 � ðk � vÞ2Þ: (71)

In the equilibrium plasma, the imaginary part of
"Tð!;kÞ is given by the formula (62) while ="Lð!;kÞ
found from Eq. (24) by means of the identity (60) equals

="Lð!;kÞ ¼ �g2!

2Tk2

Z d3p

ð2�Þ3 �ð!� k � vÞfðpÞ: (72)

The equilibrium fluctuation spectrum (70) expressed
through ="Lð!;kÞ and ="Tð!;kÞ is

hEi
aE

j
bi!k ¼ 2�abT!3

�
kikj

k2

="Lð!;kÞ
j!2"Lð!;kÞj2

þ
�
�ij � kikj

k2

� ="Tð!;kÞ
j!2"Tð!;kÞ � k2j2

�
; (73)

which for the longitudinal fields gives

hEi
aE

i
bi!k ¼ 2�ab T

!

="Lð!;kÞ
j"Lð!;kÞj2 : (74)

The electromagnetic counterpart of Eq. (73), which is
derived in [15], agrees with Eq. (11.2.2.6) from [10] pro-
vided by the fluctuation-dissipation relation. In Sec. VIII B
we show that Eqs. (73) and (74) are still valid when quarks
and gluons obey quantum statistics but the equilibrium
formulas of ="Lð!;kÞ and ="Tð!;kÞ require a
modification.

VII. LONGITUDINAL CHROMOELECTRIC FIELD
IN THE TWO-STREAM SYSTEM

Nonequilibrium calculations are much more difficult
than the equilibrium ones. The first problem is to invert
the matrix �ijð!;kÞ defined by Eq. (21). In the case of the
longitudinal electric field, which is discussed here, it is
solved trivially. We start with Eq. (20) projecting it on k

and assuming that E and E0 are purely longitudinal. Then,
the matrix (21) is replaced by the scalar function.
Further, we neglect the first term in the r.h.s. of Eq. (20).

This term vanishes in isotropic systems; it is of order g2

higher than the second term; it is also expected to be small
in the nonrelativistic regime due to the smallness of parti-
cle velocity. So, there are good reasons to neglect it.
Eliminating E0 by means of the first Maxwell equation
we obtain Eq. (30) which was previously derived for the
case of isotropic plasma. In the following we consider
fluctuations of longitudinal chromoelectric fields in the
two-stream system. A nonrelativistic approximation was
adopted to discuss this unstable system in the paper [15]
where electromagnetic plasmas were studied. Our consid-
erations here are fully relativistic as the nonrelativistic
approximation is usually irrelevant for the quark-gluon
plasma.
The distribution function of the two-stream system is

chosen to be

fðpÞ ¼ ð2�Þ3n½�ð3Þðp� qÞ þ �ð3Þðpþ qÞ�; (75)

where n is the effective parton density in a single stream.
The distribution function (75) should be treated as an
idealization of the two-peak distribution where the parti-
cles have momenta close to q or �q but it is not required
that the momenta are exactly q or �q. There is no Bose
condensation of gluons which would invalidate our deri-
vation of the correlation function of distribution functions
(A17) due to nontrivial bosonic correlations.
To compute "Lð!;kÞ we first perform integration by

parts in Eq. (24) and then, substituting the distribution
function (75) into the resulting formula, we obtain

"Lð!;kÞ ¼ 1��2 k
2 � ðk � uÞ2

k2

�
1

ð!� k � uÞ2 þ
1

ð!þ k � uÞ2
�

¼ ð!�!þðkÞÞð!þ!þðkÞÞð!�!�ðkÞÞð!þ!�ðkÞÞ
ð!2 � ðk � uÞ2Þ2 ; (76)

where u � q=Eq is the stream velocity, �2 � g2n=2Eq and 	!	ðkÞ are the four roots of the dispersion equation
"Lð!;kÞ ¼ 0, which read
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!2	ðkÞ ¼
1

k2
½k2ðk � uÞ2 þ�2ðk2 � ðk � uÞ2Þ 	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � ðk � uÞ2Þð4k2ðk � uÞ2 þ�2ðk2 � ðk � uÞ2ÞÞ

q
�: (77)

One shows that 0<!þðkÞ 2 R for any k while !�ðkÞ is imaginary for k2ðk � uÞ2 < 2�2ðk2 � ðk � uÞ2Þ when it
represents the well-known two-stream electrostatic instability generated due to the mechanism analogous to the Landau
damping. For k2ðk � uÞ2 � 2�2ðk2 � ðk � uÞ2Þ, the mode is stable, 0<!�ðkÞ 2 R.

When the chromoelectric fields are purely longitudinal and the first term in the r.h.s. of Eq. (20) is neglected, the
correlation function hEi

að!1;k1ÞEi
bð!2;k2Þi is given by the first term of Eq. (65) as

hEi
að!1;k1ÞEi

bð!2;k2Þi ¼ g2

2
�abð2�Þ3�ð3Þðk1 þ k2Þk1 � k2

k2
1k

2
2

1

"Lð!1;k1Þ
1

"Lð!2;k2Þ
Z d3p

ð2�Þ3
fðpÞ

ð!1 � k1 � vÞð!2 � k2 � vÞ :

(78)

Substituting the distribution function (75) and the dielectric function (76) into Eq. (78), one finds

hEi
að!1;k1ÞEi

bð!2;k2Þi ¼ �g2�abn
ð2�Þ3�ð3Þðk1 þ k2Þ

k2
1

½!1!2 þ ðk1 � uÞðk2 � uÞ�

� !2
1 � ðk1 � uÞ2

ð!1 �!�ðk1ÞÞð!1 þ!�ðk1ÞÞð!1 �!þðk1ÞÞð!1 þ!þðk1ÞÞ

� !2
2 � ðk2 � uÞ2

ð!2 �!�ðk2ÞÞð!2 þ!�ðk2ÞÞð!2 �!þðk2ÞÞð!2 þ!þðk2ÞÞ : (79)

One observes that the poles of the correlation function hEi
að!1;k1ÞEi

bð!2;k2Þi at!1 ¼ k1v and!2 ¼ k2v, which give the
stationary contribution to the equilibrium fluctuation spectrum, have disappeared in Eq. (79) as the inverse dielectric
functions vanish at these points.

The correlation function hEi
aðt1; r1ÞEi

bðt2; r2Þi is given by Eq. (66) with hEi
að!1;k1ÞEi

bð!2;k2Þi defined by Eq. (79).

Performing the trivial integration over k2 and taking into account that !	ð�kÞ ¼ !	ðkÞ, one finds

hEi
aðt1; r1ÞEi

bðt2; r2Þi ¼ g2�abn
Z 1þi�

�1þi�

d!1

2�i

Z 1þi�

�1þi�

d!2

2�i

Z d3k

ð2�Þ3
e�ið!1t1þ!2t2�kðr1�r2ÞÞ

k2
½!1!2 � ðk � uÞ2�

� !2
1 � ðk � uÞ2

ð!1 �!�ðkÞÞð!1 þ!�ðkÞÞð!1 �!þðkÞÞð!1 þ!þðkÞÞ

� !2
2 � ðk � uÞ2

ð!2 �!�ðkÞÞð!2 þ!�ðkÞÞð!2 �!þðkÞÞð!2 þ!þðkÞÞ : (80)

There are 16 contributions to the integrals over !1 and !2 in Eq. (80) related to the poles at 	!	. Summing up the
contributions, we get after lengthy calculation

hEi
aðt1; r1ÞEi

bðt2; r2Þi

¼ g2

2
�abn

Z d3k

ð2�Þ3
eikðr1�r2Þ

k2

1

ð!2þ �!2�Þ2

�
�ð!2þ � ðk � uÞ2Þ2

!2þ
½ð!2þ � ðk � uÞ2Þ cosð!þðt1 þ t2ÞÞ þ ð!2þ þ ðk � uÞ2Þ cosð!þðt1 � t2ÞÞ�

� ð!2þ � ðk � uÞ2Þð!2� � ðk � uÞ2Þ
!þ!�

½ð!þ!� � ðk � uÞ2Þ cosð!þt1 þ!�t2Þ þ ð!þ!� þ ðk � uÞ2Þ cosð!þt1 �!�t2Þ
þ ð!þ!� � ðk � uÞ2Þ cosð!�t1 þ!þt2Þ þ ð!þ!� þ ðk � uÞ2Þ cosð!�t1 �!þt2Þ�

þ ð!2� � ðk � uÞ2Þ2
!2�

½ð!2� � ðk � uÞ2Þ cosð!�ðt1 þ t2ÞÞ þ ð!2� þ ðk � uÞ2Þ cosð!�ðt1 � t2ÞÞ�
�
: (81)

Let us now consider the domain of wave vectors obeying k2ðk � uÞ2 < 2�2ðk2 � ðk � uÞ2Þ when !�ðkÞ is imaginary
and it represents the unstable electrostatic mode. We write down!�ðkÞ given by Eq. (77) as i�k with 0< �k 2 R. We are
interested in the contributions to the correlation function coming from the unstable modes. The contributions, which are
the fastest growing functions of (t1 þ t2) and (t1 � t2), correspond to the last term in Eq. (81). The contributions provide
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hEi
aðt1; r1ÞEi

bðt2; r2Þiunstable ¼
g2

2
�abn

Z d3k

ð2�Þ3
eikðr1�r2Þ

k2

1

ð!2þ �!2�Þ2
ð�2

k þ ðk � uÞ2Þ2
�2
k

� ½ð�2
k þ ðk � uÞ2Þ coshð�kðt1 þ t2ÞÞ þ ð�2

k � ðk � uÞ2Þ coshð�kðt1 � t2ÞÞ�: (82)

As seen, the correlation function (82) is invariant with
respect to space translations—it depends on the difference
(r1 � r2) only. The initial plasma state is on average ho-
mogeneous and it remains like this in course of the sys-
tem’s temporal evolution. The time dependence of the
correlation function (82) is very different from the space
dependence. The electric fields exponentially grow and so
does the correlation function both in (t1 þ t2) and (t1 � t2).
The fluctuation spectrum also evolves in time as the growth
rate of unstable modes is wave-vector dependent. After a
sufficiently long time the fluctuation spectrum is domi-
nated by the fastest growing modes.

VIII. DISCUSSION AND OUTLOOK

We discuss here validity of the results obtained in the
previous sections and their possible applications. We also
briefly consider fluctuations of color charges and currents,
and finally we summarize our study. We start with the
important problem of gauge dependence of the correlation
functions.

A. Gauge dependence of the correlation functions

The linearized transport and Yang-Mills equations,
which are solved in Sec. III, are not gauge covariant, and
thus the question arises how the correlation functions
derived in Secs. V and VI depend on a gauge. We consider
the functions like hHaðx1ÞKbðx2Þi where x1 � ðt1; r1Þ and
x2 � ðt2; r2Þ are four-positions andHaðxÞ andKbðxÞ are the
fields belonging to the adjoint representation of the SUðNcÞ
group which transform under infinitesimal gauge trans-
formations as

HaðxÞ ! HaðxÞ þ fabc�bðxÞHcðxÞ; (83)

where fabc is the structure constant of SUðNcÞ and �aðxÞ is
the infinitesimal gauge parameter. The correlation function
hHaðx1ÞKbðx2Þi transforms under the gauge transformation
(83) as

hHaðx1ÞKbðx2Þi ! hHaðx1ÞKbðx2Þi
þ facd�cðx1ÞhHdðx1ÞKbðx2Þi
þ fbef�eðx2ÞhHaðx1ÞKfðx2Þi: (84)

We consider in this paper the fluctuations around a
colorless state, and consequently the correlation functions
derived in Secs. V and VI have a very simple color struc-
ture. Namely,

hHaðx1ÞKbðx2Þi ¼ �abLðx1; x2Þ: (85)

Then, the transformation law (84) gives

�abLðx1; x2Þ ! ð�ab þ facb�cðx1Þ þ fbea�eðx2ÞÞLðx1; x2Þ:
(86)

One observes that with the transformation (86), the corre-
lation function hHaðx1ÞKaðx2Þi ¼ ðN2

c � 1ÞLðx1; x2Þ is
gauge invariant (due to the antisymmetry of the structure
constants), even so the function is not local in coordinate
space.
We conclude this section by saying that the correlation

functions, which are discussed in this paper, are gauge
invariant after the trivial sum over colors is taken. This
happens because only small fluctuations around the color-
less state are considered.

B. Effect of quantum statistics

Deriving the correlation functions, we have assumed
that quarks and gluons obey Boltzmann statistics but the
effect of quantum statistics can be easily taken into ac-
count. Instead of Eqs. (35)–(37), the free correlation func-
tion (A17), which is obtained in the appendix, suggests

h�Qmnðt1; r1;p1Þ�Qprðt2; r2;p2Þifree
¼ �mr�npð2�Þ3�ð3Þðp1 � p2Þ�ð3Þðr2 � r1 � v1ðt2 � t1ÞÞ

� nðp1Þð1� nðp1ÞÞ; (87)

h� �Qmnðt1; r1;p1Þ� �Qprðt2; r2;p2Þifree
¼ �mr�npð2�Þ3�ð3Þðp1 � p2Þ�ð3Þðr2 � r1 � v1ðt2 � t1ÞÞ

� �nðp1Þð1� �nðp1ÞÞ; (88)

h�Gabðt1; r1;p1Þ�Gcdðt2; r2;p2Þifree
¼ �ad�bcð2�Þ3�ð3Þðp1 � p2Þ�ð3Þðr2 � r1 � v1ðt2 � t1ÞÞ

� ngðp1Þð1þ ngðp1ÞÞ: (89)

With the initial correlations given by Eqs. (87)–(89) the
correlation functions derived in Secs. V, VI, and VII are
somewhat modified. Instead of the effective distribution
function fðpÞ, there are two different effective distribution

functions fðpÞ and ~fðpÞ. The function, which enters the
dielectric tensor (except Eqs. (62) and (72)) is, as previ-
ously, fðpÞ � nðpÞ þ �nðpÞ þ 2NcngðpÞ but the function

originating from the initial correlation functions equals
~fðpÞ � nðpÞð1� nðpÞÞ þ �nðpÞð1� �nðpÞÞ þ 2NcngðpÞð1þ
ngðpÞÞ. The equilibrium formulas of ="T (62) and ="L
(72) are expressed through ~fðpÞ not fðpÞ, and consequently
the final fluctuation-dissipation relations (64), (73), and
(74) remain unchanged.

CHROMODYNAMIC FLUCTUATIONS IN QUARK-GLUON PLASMA PHYSICAL REVIEW D 77, 105022 (2008)

105022-13



C. Validity of the linear collisionless approach

We first note that the approach adopted here is dynami-
cally equivalent to the hard loop approximation which is
commonly applied to equilibrium quark-gluon plasma (for
a review see [20]) but has been extended to nonequilibrium
systems as well [18,21]. The approximation, which can be
formulated in terms of resumed diagrams or transport
theory, allows one to study soft Abelian or non-Abelian
fields of small amplitude in the background of hard parti-
cles. Below we discuss in more detail specific steps of our
derivation of the fluctuation spectra.

We have started with the Yang-Mills and collisionless
transport equations. The collisionless approximation is
justified for the time scales which are much shorter than
those of collisional processes. As discussed in [22], the
characteristic inverse time of the system’s evolution due to
interparton collisions is t�1

hard � g4 lnð1=gÞT or t�1
soft �

g2 lnð1=gÞT, depending whether the momentum transfer
in a collision is of order T or gT with T being a typical
parton momentum (T is the temperature in the equilibrium
plasma). Since an evolution of color degrees of freedom is
due to the soft collisions [22], the correlation functions
derived in this paper are valid for time intervals shorter
than tsoft.

Another time scale limitation comes from the fact that
performing the linearization of equations of motion, the
state, that small fluctuations around it are considered, is
assumed to be stationary. Except the equilibrium state or a
state kept stationary by external conditions, nonequilib-
rium states evolve in time. Therefore our approach is valid
for the time scales which are much shorter than a character-
istic time of evolution of the whole system. In equilibrium,
the latter time is infinite and there is no limitation.
Performing the linearization procedure, we have assumed
that jQ0j � j�Qj and the quadratic terms in �Q or A�

have been neglected. Estimating �Q, which is given by
Eq. (6), in the following way

�Qðt; r;pÞ � g
Z t

0
dt0ðEðt0; rÞ þ v� Bðt0; rÞÞrpnðpÞ

� gtH
n

T
; (90)

where H is the magnitude of E or B, the condition n �
j�Qj provides T � gtH.

The assumptions discussed above can be quantitatively
checked only for a well-defined plasma state under con-
sideration. Qualitatively, the method presented here is
limited to small amplitude fluctuations which are observed
for a sufficiently short interval of time.

D. Fluctuations of other chromodynamic quantities

We have studied in the previous sections fluctuations of
chromoelectric and chromomagnetic fields but fluctuations
of other quantities can be inferred from the presented
formulas. For example, let us consider fluctuations of

color charges as given by the correlation function
h�að!1;k1Þ�bð!2;k2Þi [23]. Using the first Maxwell equa-
tions (14), one immediately finds

h�að!1;k1Þ�bð!2;k2Þi ¼ �ki1k
j
2hEi

að!1;k1ÞEj
bð!2;k2Þi:

(91)

Then, Eq. (70) provides the spectrum of color charge
fluctuations in the isotropic plasma

h�a�bi!k ¼ g2

2
�ab

Z d3p

ð2�Þ3 fðpÞ
2��ð!� k � vÞ
j"Lð!;kÞj2

¼ 2�ab k
2T

!

="Lð!;kÞ
j"Lð!;kÞj2 : (92)

The last equality holds for the equilibrium plasma.

Fluctuations of color currents hjiað!1;k1Þjjbð!2;k2Þi can
be obtained in a way similar to that hEi

að!1;k1ÞEj
bð!2;k2Þi

has been obtained. In the case of the stable system, when
the initial fluctuations are forgotten, the spectrum of color
current fluctuations can be found as

hjiajjbi!;k ¼ 1

!2
½ð!2 � k2Þ�ik þ kikk�

� ½ð!2 � k2Þ�jl þ kjkl�hEk
aE

l
bi!;k: (93)

Substituting Eq. (73) into the formula (93), one obtains the
equilibrium spectrum of color current fluctuations

hjiajjbi!;k ¼ 2�abT!

�
kikj

k2

="Lð!;kÞ
j"Lð!;kÞj2 þ

ð!2 � k2Þ2
!4

�
�
�ij � kikj

k2

� ="Tð!;kÞ
j"Tð!;kÞ � k2=!2j2

�
: (94)

As seen, the equilibrium spectra (92) and (94) obey the

relation !2h�a�bi!k ¼ kikjhjiajjbi!;k which follows from

the (linearized) color charge conservation.

E. Summary and outlook

The calculations presented here show how to obtain
spectra of chromodynamic fluctuations in equilibrium or
nonequilibrium QGP as a solution of the initial value
problem. We first linearize the transport equations around
the state which is on average colorless, stationary, and
homogenous. The linearized transport equations are solved
together with the Maxwell equations by means of the one-
sided Fourier transformation. The time dependent fluctua-
tion spectrum is expressed through the fluctuations in the
initial state. The chromodynamic initial fluctuations are
determined by the initial fluctuations of the distribution
function. The latter are identified with the fluctuations in a
classical system of noninteracting partons. We compute
fluctuation spectra of chromomagnetic and chromoelectric
fields in isotropic plasma. Our equilibrium results can be
interpreted as the fluctuation-dissipation relations.
However, the method adopted here clearly shows how the
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system loses its memory and how the stationary equilib-
rium spectrum of fluctuations emerges. As an example of
unstable systems, the fluctuations of longitudinal electric
field in the two-stream system are considered. The fluctua-
tion spectrum appears to be qualitatively different than that
of the equilibrium plasma—the collective unstable mode
does not exponentially decay but it grows and dominates
the spectrum.

The scheme of calculation, which is worked out here in
detail, can be applied to a variety of plasma nonequilibrium
states. We plan to compute a spectrum of chromomaga-
netic fluctuations in QGP produced at the early stage of
relativistic heavy-ion collisions. The spectrum is of par-
ticular interest as it controls transport properties of QGP
[2]. It should be remembered, however, that our approach,
which is based on the linearized equations of motion, deals
with the quasicolorless plasma—the color perturbations
are assumed to be small. The fluctuation spectrum of
chromomagnetic fields in the plasma at later stages of
instability development, when the chromodynamic fields
are sizeable, needs another treatment. At present such a
spectrum is accessible only through numerical simulations
[3–9].
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APPENDIX A

We compute here correlations of the distribution func-
tions of free quarks or gluons using an apparatus of quan-
tum field theory in the Keldysh-Schwinger framework
which is applicable to equilibrium and nonequilibrium
systems. Actually, we do not need a whole machinery of
the formalism but we mostly refer to it to carefully perform
the Wick decomposition of an expectation value of the
product of field operators. For simplicity, we consider not
the quark and gluon fields of QCD but the scalar complex
field 	iðxÞ with an internal degree of freedom labeled by
the index i which is further identified with color.

As discussed in detail in e.g. [24], the average distribu-
tion functions of particles and antiparticles described by
the field 	iðxÞ are obtained from the Green’s functions

i�>
ij ðx1; x2Þ � h	iðx1Þ	�

j ðx2Þi; (A1)

i�<
ij ðx1; x2Þ � h	�

j ðx2Þ	iðx1Þi: (A2)

After performing the Wigner transformation

�ðX; pÞ ¼
Z

d4ueipu�

�
X þ u

2
; X� u

2

�
; (A3)

one defines the average distribution function of particles
fijðX;pÞ and of antiparticles �fijðX;pÞ, which are on mass

shell, as

i�<
ij ðX; pÞ �

�

Ep

�ðEp � p0ÞfijðX;pÞ; (A4)

i�>
ij ðX; pÞ �

�

Ep

�ðEp þ p0Þ �fijðX;�pÞ: (A5)

Taking into account the commutation relations obeyed by
the field operators, one finds that

i�<
ij ðX; pÞ ¼

�

Ep

�ðEp � p0ÞfijðX;pÞ

þ �

Ep

�ðEp þ p0Þ½ �fijðX;�pÞ þ �ij�; (A6)

i�>
ij ðX; pÞ ¼

�

Ep

�ðEp � p0Þ½fijðX;pÞ þ �ij�

þ �

Ep

�ðEp þ p0Þ �fijðX;�pÞ: (A7)

We define

�F ijðX;pÞ � F ijðX;pÞ � hF ijðX;pÞi; (A8)

where F ijðX;pÞ is a microscopic (nonaveraged)

distribution function and hF ijðX;pÞi ¼ fijðX;pÞ. We are

interested in the correlation function h�F ijðX1;p1Þ�
�F klðX2;p2Þi which is expressed through the fields opera-
tors as

h�F ijðX1;p1Þ�F klðX2;p2Þi ¼ 4Ep1
Ep2

Z dp0
1

2�
�ðp0

1Þ
Z dp0

1

2�
�ðp0

2Þ
Z

d4u1

�
Z

d4u1e
iðp1u1þp2u2ÞWijkl

�
X1 þ u1

2
; X1 � u1

2
; X2 þ u2

2
; X2 � u2

2

�
; (A9)

CHROMODYNAMIC FLUCTUATIONS IN QUARK-GLUON PLASMA PHYSICAL REVIEW D 77, 105022 (2008)

105022-15



where

Wijklðx1; x01; x2; x02Þ � h	�
j ðx01Þ	iðx1Þ	�

l ðx02Þ	kðx2Þi
� h	�

j ðx01Þ	iðx1Þih	�
l ðx02Þ	kðx2Þi:

(A10)

The Wick theorem allows one to express an expectation
value of the product of field operators as a sum of the
products of expectation values of the products of two
operators. However, the theorem deals with chronologi-
cally ordered products of field operators. To compute
the expectation value of any order of operators in the
product irrespective of the values of times as in
h	�

j ðx01Þ	iðx1Þ	�
l ðx02Þ	kðx2Þi, one may use contours (in

the space of complex time) which run many times forward
and backward in time as discussed in [25]. We compute the
expectation value h	�

j ðx01Þ	iðx1Þ	�
l ðx02Þ	kðx2Þi, using the

contour shown in Fig. 1, where the four branches of
the contour are infinitely close to the axis of real time
and tmin ! �1 and tmax ! 1. Locating the time
arguments on the contour as shown in Fig. 1, we can
formally replace h	�

j ðx01Þ	iðx1Þ	�
l ðx02Þ	kðx2Þi by

hTcð	�
j ðx01Þ	iðx1Þ	�

l ðx02Þ	kðx2ÞÞi with Tc being the opera-
tor which orders the field operators along the contour.
Then, the Wick theorem tells us that

hTcð	�
j ðx01Þ	iðx1Þ	�

l ðx02Þ	kðx2ÞÞi
¼ hTcð	�

j ðx01Þ	iðx1ÞÞihTcð	�
l ðx02Þ	kðx2ÞÞi

þ hTcð	�
j ðx01Þ	kðx2ÞÞihTcð	�

l ðx02Þ	jðx1ÞÞi; (A11)

when the field 	iðxÞ is free. The Wick decomposition of

the expectation value of the path ordered product of field
operators is carefully discussed in Appendix A in [26]. We
only mention here that there are some limitations on the
decomposition if there are nontrivial correlations in the
initial state of interest. However, we are not going to
consider such states.
Keeping in mind how the time arguments of x1, x

0
1, x2, x

0
2

are located on the contour in Fig. 1, the result (A11) is
rewritten as

h	�
j ðx01Þ	iðx1Þ	�

l ðx02Þ	kðx2ÞÞi
¼ h	�

j ðx01Þ	iðx1Þih	�
l ðx02Þ	kðx2Þi

þ h	�
j ðx01Þ	kðx2Þih	jðx1Þ	�

l ðx02Þi; (A12)

and consequently,

Wijklðx1; x01; x2; x02Þ ¼ h	�
j ðx01Þ	kðx2Þih	jðx1Þ	�

l ðx02Þi
¼ i�<

kjðx2; x01Þi�>
jl ðx1; x02Þ: (A13)

Substituting the result (A13) into Eq. (A9), one finds

h�F ijðX1;p1Þ�F klðX2;p2Þi ¼ 4Ep1
Ep2

Z dp0
1

2�
�ðp0

1Þ
Z dp0

1

2�
�ðp0

2Þ
Z

d4u1
Z

d4u1e
iðp1u1þp2u2Þi�<

kj

�
X2 þ u2

2
; X1 � u1

2

�

� i�>
il

�
X1 þ u1

2
; X2 � u2

2

�

¼ 4Ep1
Ep2

Z dp0
1

2�
�ðp0

1Þ
Z dp0

1

2�
�ðp0

2Þ
Z

d4u1
Z

d4u1
Z d4k1

ð2�Þ4
Z d4k2

ð2�Þ4
� eiðp1u1þp2u2�k1 ~u1�k2 ~u2Þi�<

kjð ~X1; k1Þi�>
il ð ~X2; k2Þ; (A14)

where

~X1 � 1
2ðX1 þ X2Þ � 1

4ðu1 þ u2Þ;
~u1 � X2 � X1 þ 1

2ðu1 þ u2Þ;
~X2 � 1

2ðX1 þ X2Þ þ 1
4ðu1 þ u2Þ;

~u2 � X1 � X2 þ 1
2ðu1 þ u2Þ:

And now we adopt the assumption which is crucial for
our further considerations. Namely, we assume that the
system under consideration is on average homogeneous
and stationary. Therefore, the Wigner transformed Green’s

functions and the average distribution functions are inde-
pendent of the space-time variable X, X1, X2, ~X1, or ~X2,
respectively. We also assume that the average distribution
function has the structure hF ijðX;pÞi ¼ �ijnðpÞ. Then, the
formulas (A6) and (A7) get the form

i�<
ij ðX; pÞ ¼

�

Ep

�ðEp � p0Þ�ijnðpÞ

þ �

Ep

�ðEp þ p0Þ�ij½ �nð�pÞ þ 1�; (A15)

FIG. 1. The contour in the complex time which is used to
calculate correlations of distribution functions.
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i�>
ij ðX; pÞ ¼

�

Ep

�ðEp � p0Þ�ij½nðpÞ þ 1�

þ �

Ep

�ðEp þ p0Þ�ij �nð�pÞ: (A16)

Substituting the Green’s functions (A15) and (A16) into
Eq. (A14), the integrals over p0

1, p
0
2, u1, and u2 can be

trivially performed and one finds

h�F ijðX1;p1Þ�F klðX2;p2Þi ¼ �il�jk
Z d4k1

ð2�Þ4
Z d4k2

ð2�Þ4
Ep1

Ep2

Ek1
Ek2

eiðk1�k2ÞðX1�X2Þð2�Þ4�ð4Þ
�
p1 � k1

2
� k2

2

�

� ð2�Þ4�ð4Þ
�
p2 � k1

2
� k2

2

�
nðk1Þ½1þ nðk2Þ�:

Using the variables Q � ðk1 þ k2Þ=2 and q � k1 � k2, we finally obtain the main result of the appendix

h�F ijðX1;p1Þ�F klðX2;p2Þi ¼ �il�jkð2�Þ3�ð3Þðp1 �p2Þ
Z d3q

ð2�Þ3
Ep1

Ep2

Ep1þq=2Ep1�q=2

eiqðX1�X2Þnðp1 þq=2Þ½1þnðp1 �q=2Þ�;

(A17)

where q0 � Ep1þq=2 � Ep1�q=2. Another derivation of the
formula analogous to (A17) for particles with no internal
degrees of freedom or for particles with spin can be found
in [27]. In our opinion, however, the decomposition, which
corresponds to our Eq. (A12), is not very convincing as
obtained in [27]. Just to justify this step of derivation, we
have referred to the Keldysh-Schwinger technique.

One observes that the main contribution to the integral
over q in Eq. (A17) comes from such q that jqj � 1=jX1 �
X2j. If the characteristic (momentum) scale at which the
distribution function nðpÞ changes sizably [for the equilib-
rium gas of massless particles the scale is given by the gas
temperature (T)] is much bigger than 1=jX1 �X2j (for the
equilibrium gas we require 1 
 jX1 �X2jT), the function

under the integral can be approximated assuming that
jqj 
 jp1j. Then, q0 ¼ v1q and one finds the classical
correlation function

h�F ijðX1;p1Þ�F klðX2;p2Þi
¼ �il�jkð2�Þ3�ð3Þðp1 � p2Þ�ð3ÞðX1 �X2 � v1ðt1 � t2ÞÞ

� nðp1Þ; (A18)

where we have additionally assumed that populations of
the system’s modes are small (nðp1Þ 
 1). Equa-
tion (A18), as well as Eq. (A17), is valid for both equilib-
rium and nonequilibrium systems.
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[18] St. Mrówczyński and M.H. Thoma, Phys. Rev. D 62,

036011 (2000).
[19] The collective modes, which are obtained with the dielec-

tric functions (24) and (25) are actually not damped, see
e.g. [20]. The damping appears to be a higher order effect.

[20] M.H. Thoma, in Quark-Gluon Plasma 2, edited by R. C.
Hwa (World Scientific, Singapore, 1995).
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