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We find new non-Abelian flux tube solutions in a model of Nf scalar fields in the fundamental

representation of SUðNÞ �Uð1Þ with N � Nf (the ‘‘extended non-Abelian Higgs model’’), and study

their main properties. Among the solutions there are spinning strings as well as superconducting ones. The

solutions exist only in a nontrivial domain of the parameter space defined by the ratio between the SUðNÞ
and Uð1Þ coupling constants, the scalar self-interaction coupling constants, the magnetic fluxes (Abelian

as well as non-Abelian) and the ‘‘twist parameter’’ which is a nontrivial relative phase of the Higgs fields.

DOI: 10.1103/PhysRevD.77.105019 PACS numbers: 11.27.+d, 11.15.�q, 11.15.Kc

I. INTRODUCTION

Non-Abelian stringlike solutions have a long history
which starts already in 1973 with the Nielsen-Olesen semi-
nal paper [1]. Several general discussions were published
[1–4] and explicit solutions (numerical of course) were
obtained [5–11] for an SUðNÞ gauge theory with Higgs
fields in the adjoint representation which completely break
the symmetry. However, the major part of the activity in the
field of cosmic strings [12] was concentrated on their
Abelian counterparts. One reason for this is that these
non-Abelian string solutions have their flux directed in a
fixed direction in the corresponding algebra so they are
essentially Abelian.

In recent years, new kinds of non-Abelian strings were
discovered during attempts to understand the phenomenon
of confinement in QCD [13–17], and their properties were
studied extensively [18–20]. These new solutions appear in
models with a global (flavor) SUðNfÞ symmetry in addition

to the SUðNÞ local (color) symmetry based on scalar fields
in the fundamental representation. They allow rotation of
the non-Abelian flux in the Lie algebra, which makes them
genuinely non-Abelian. When Nf > N these consist a

generalization [21,22] of the semilocal strings introduced
originally within the extended Abelian Higgs model
[23,24] which is the Higgs system with a global SUð2Þ
symmetry in addition to the local Uð1Þ. We therefore term
the model discussed here the ‘‘extended non-Abelian
Higgs model.’’

Most of the studies of these non-Abelian string solutions
up to now have been limited to the Bogomol’nyi-Prasad-
Sommerfield (BPS) self-dual limit. However, it is natural
to go further and look for more general solutions as has just
been done very recently [25,26]. This is the direction
which we will take in this work, namely, going beyond

the BPS case and it will be done together with allowing
also for the possibility of rotation (i.e. spinning solutions)
and of currents along the string axis. Spinning and super-
conducting cosmic strings have been found recently
[27,28] in the extended Abelian Higgs model which gives
rise also to the (embedded) Nielsen-Olesen solutions.
These new semilocal solutions, known as twisted, occur
mainly outside the very peculiar (self-dual) limit of the
coupling constants where the equations of the theory admit
Bogomol’nyi conditions. Another outstanding feature of
twisted semilocal strings is that, when they exist, there is a
continuous family of them, labeled by the ‘‘twist,’’ a
parameter entering through a space-time dependent rela-
tive phase of the Higgs field components. Note however the
existence of the electroweak superconducting strings [29]
which exist without a twist.
In the Abelian case, the local string is characterized by a

magnetic field concentrated in a tube along the symmetry
axis. Outside the core the magnetic field strength decays
exponentially. The Higgs field vanishes on the axis and
reaches asymptotically its symmetry-breaking value.
For the twisted semilocal string the geometry is more

involved. The magnetic and Higgs fields behave roughly as
for local string but the configuration supports in addition an
azimuthal (‘‘tangential’’) component of the magnetic field.
The source of this current is the additional Higgs compo-
nent; its modulus is nonzero on the axis (forming a con-
densate) and vanishes outside the core and its phase is
twisted. The effect of the nontrivial phase can be appreci-
ated once computing the gauge invariant Noether currents
and the magnetic field. Figure 1 gives a pictorial represen-
tation of the effect of the twist.
In this work we will present the non-Abelian analogues

of the Abelian semilocal twisted strings and study their
properties like current and angular momentum. Untwisted
purely magnetic local non-Abelian strings will be dis-
cussed briefly as a special case. The field equations corre-
sponding to the models presented here are nonlinear and
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coupled and do not admit explicit solutions. We therefore
rely on numerical techniques to construct the solutions and
calculate the physical quantities. Several figures are neces-
sary to illustrate the extreme richness of the solutions.

The existence of these new kinds of strings raises the
question of the nature of the gravitational fields of these
strings and the possibility of new features in this respect.
Some initial work has been already done in this area [30]—
still for the BPS case only and we will turn to that question
in a future publication. Another issue which is beyond the
scope of this work is the effect of spin on the reconnection
probability [31,32] of non-Abelian strings.

This paper has the following plan. In Sec. II we present
the extended non-Abelian Higgs model and discuss its
relation with its Abelian counterpart. In Sec. III we derive
the field equations and obtain the physical quantities which
are used to characterize the solutions: energy, angular
momentum, currents and charges. In Sec. IV we present
the various string solutions and discuss their properties
across their parameter space. Section V contains our
conclusions.

II. THE EXTENDED NON-ABELIAN HIGGS
MODEL

Our general framework is based on a Lagrangian de-
scribing a multiplet ofNf scalar fields with local invariance

under SUðNÞ �Uð1Þ and a global invariance under
SUðNfÞ. The local symmetry further requires N2 � 1

non-Abelian gauge fields and one Abelian field. The scalar
fields can be written in term of a matrix with elements�as

where 1 � a � N and 1 � s � Nf transforming accord-

ing to

�0
br ¼ UbaðxÞ�asS

y
sr; (2.1)

where U and S are matrices in the fundamental represen-
tations of SUðNÞ and SUðNfÞ respectively. The Lagrangian
is:

L ¼ ðD��asÞ�ðD��asÞ � Vð�asÞ � 1
4F

a
��F

a��

� 1
4F��F

��: (2.2)

The standard definitions are used for the covariant deriva-
tive and gauge field strengths :

D��s ¼ ð@� � ie1A� � ie2 ~A
a
��

aÞ�s (2.3)

F�� ¼ @�A� � @�A�;

Fa�� ¼ @� ~Aa� � @� ~A
a
� þ 2e2f

abc ~Ab� ~Ac�;
(2.4)

where fabc are the structure constants of the gauge group
and 1

2 �
a are the (Hermitian) generators in the fundamental

representation. We use the normalization Trð�a�bÞ ¼
2�ab.
The most general renormalizable symmetry-breaking

potential is

V ¼ �e21ðTrð�y�Þ � Nv2Þ2

þ �e21
2

Trð�y�a�ÞTrð�y�a�Þ; (2.5)

where �, � and v are positive constants. It can be written
also as:

V ¼ �e21ðTrð�y�Þ � Nv2Þ2

þ �e21

�
Trð�y��y�Þ � 1

N
ðTrð�y�ÞÞ2

�
: (2.6)

The first term forces the scalar fields to develop a nontrivial
minimum, while the second term forces the minimal con-
figurations � to be such that �y� ¼ v2I.
This general system contains some well-known special

cases, or seen from the other direction, may be considered
as a generalization of several systems. From the point of
view of the present discussion our model generalizes the
extended Abelian Higgs model which corresponds to N ¼
1 (and e2 ¼ 0, while Nf is arbitrary) in our terminology. In

the Abelian case, the second term of the potential vanishes

FIG. 1 (color online). The magnetic field and few spiral field
lines of a twisted Abelian semilocal string. The thick line is the
string axis.
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identically. This model allows for two kinds of stable string
solutions as was first discovered [23] for the case Nf ¼ 2.

The first is just the embedded Abelian (Nielsen-Olesen)
flux tube which in these circumstances is stable [33] for
� � 1=2. The second is sometimes called ‘‘skyrmion’’
because of the relation with the �-model lumps [33] and
exists only in the self-dual limit where the masses of the
Higgs and the gauge particles are equal (or � ¼ 1=2). Its
stability is guaranteed by a Bogomol’nyi-type argument.
Both solutions are termed semilocal strings and their dis-
covery was a surprise at the time, since the vacuum mani-
fold of the model is a ð2Nf � 1Þ- dimensional sphere which

does not give rise to noncontractible loops. This discovery
gave an explicit example for a system where the nontri-
viality of the first homotopy group of the vacuum manifold
is not a necessary condition for the existence of stable
stringlike solutions. In this system, the kinetic (gradient)
term plays a crucial role since it has a lower symmetry than
the potential term, and it is this ‘‘mismatch’’ between the
different symmetries which enables the existence of these
solutions [24,33,34].

The two kinds of solutions mentioned above are static,
but stationary spinning semilocal strings also exist in this
system, as well as solutions which carry a persistent cur-
rent. These solutions [27,28] belong to a new family of
solutions named twisted semilocal strings. The twist is
realized by a relative phase between the two Higgs field
components, which changes along the string axis and may
be also time dependent. These twisted strings exist for �>
1=2 and form a continuous family parametrized by this
twist parameter. The main physical property of these
twisted strings is the current along the string axis which

exists in both the static and stationary cases and gives rise
to azimuthal component of the magnetic field. Their energy
in their rest frame decreases with growing current which
implies that they are energetically more favorable to be
produced during (cosmological) phase transitions than the
embedded Abelian strings. These new solutions bifurcate
with the embedded Abelian flux tubes in the limit of
vanishing current, thus clarifying the nature of the ‘‘mag-
netic spreading’’ instability [33,34] of the embedded
Abelian flux tubes for �> 1=2.

III. NON-ABELIAN SEMILOCAL STRINGS

A. Field equations for stringlike solutions

We look for cylindrically symmetric non-Abelian string-
like solutions and for definiteness, we limit ourselves to the
case Nf ¼ N þ 1. But, the ansatz presented below and the

corresponding equations can be generalized easily.
The electromagnetic potential and its non-Abelian coun-

terpart will be:

A�dx
� ¼ A0ðrÞdtþ A�ðrÞd�þ AzðrÞdz;

�a ~Aa�dx
� ¼ ð ~A0ðrÞdtþ ~A�ðrÞd�þ ~AzðrÞdzÞG;

(3.1)

where G belongs to the Cartan subalgebra of the gauge
group. For SUð2Þ there is only one possibility, i.e. G ¼ �3

but already for SUð3Þ which is a rank 2 group there is more
freedom and G is a linear combination of the two (com-
muting) diagonal Gell-Mann matrices. We will denote the
diagonal elements of G by Ga with a ¼ 1; . . . ; N.
For the scalar field we take:

� ¼ v

’1ðrÞei�1 0 � � � 0 0 0
0 ’2ðrÞei�2 � � � 0 0 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � 0 ’NðrÞei�N ; 	NðrÞei
N

0
BBBB@

1
CCCCA (3.2)

which follows (and actually generalizes) the form of [14] or [30]. The phases�i and 
N will have linear dependence on t, �
and z: �i ¼ !itþmi�þ kiz and 
N ¼ $tþ n�þ qz.

To write the field equations, it is convenient to use a dimensionless coordinate, to rescale the fields and ‘‘phase
parameters’’ appropriately and to define a relative gauge coupling constant:

r ¼ x

ve1
; ð!i; kiÞ ! ve1ð!i; kiÞ; ð$; qÞ ! ve1ð$; qÞ;

� ¼ e2
e1

ðA0ðrÞ; AzðrÞÞ ¼ vðA0ðxÞ; AzðxÞÞ; ð ~A0ðrÞ; ~AzðrÞÞ ¼ ve1
e2

ð ~A0ðxÞ; ~AzðxÞÞ:
(3.3)

With these dimensionless quantities, the field equations of the system are written below. For the scalar fields we obtain
(recall: Ga are the diagonal elements of G) :

ðx’0
aÞ0
x

¼
�ðma � A� � ~A�GaÞ2

x2
� ð!a � A0 � ~A0GaÞ2 þ ðka � Az � ~AzGaÞ2

�
’a

þ 2

�
�

�
	2
N þX

b

’2
b � N

�
þ �

N

�
ðN � 1Þ’2

a �
X
b�a

’2
b � 	2

N

��
’a; a < N; (3.4)
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ðx’0
NÞ0
x

¼
�ðmN � A� � ~A�GNÞ2

x2
� ð!N � A0 � ~A0GNÞ2 þ ðkN � Az � ~AzGNÞ2

�
’N

þ 2

�
�

�
	2
N þX

b

’2
b � N

�
þ �

N

�
ðN � 1Þð	2

N þ ’2
NÞ �

XN�1

b¼1

’2
b

��
’N; (3.5)

ðx	0
NÞ0
x

¼
�ðn� A� � ~A�GNÞ2

x2
� ð$� A0 � ~A0GNÞ2 þ ðq� Az � ~AzGNÞ2

�
	N

þ 2

�
�

�
	2
N þX

b

’2
b � N

�
þ �

N

�
ðN � 1Þð	2

N þ ’2
NÞ �

XN�1

b¼1

’2
b

��
	N; (3.6)

where there is no summation on repeated indices and all
sums are for a; b ¼ 1; . . . ; N unless indicated otherwise.
For the Abelian-gauge fields, we have

ðxA0
0Þ0
x

¼ �2
X
a

ð!a � A0 � ~A0GaÞ’2
a

� 2ð$� A0 � ~A0GNÞ	2
N; (3.7)

xðA0
�=xÞ0 ¼ �2

X
a

ðma � A� � ~A�GaÞ’2
a

� 2ðn� A� � ~A�GNÞ	2
N; (3.8)

ðxA0
zÞ0
x

¼ �2
X
a

ðka � Az � ~AzGaÞ’2
a

� 2ðq� Az � ~AzGNÞ	2
N: (3.9)

Finally, for the non-Abelian fields:

ðx ~A0
0Þ0
x

¼ �2�2

�X
a

ð!a � A0 � ~A0GaÞ’2
aGa

þ ð$� A0 � ~A0GNÞ	2
NGN

�
; (3.10)

xð ~A0
�=xÞ0 ¼ �2�2

�X
a

ðma � A� � ~A�GaÞ’2
aGa

þ ðn� A� � ~A�GNÞ	2
NGN

�
; (3.11)

ðx ~A0
zÞ0
x

¼ �2�2

�X
a

ðka � Az � ~AzGaÞ’2
aGa

þ ðq� Az � ~AzGNÞ	2
NGN

�
: (3.12)

In order to obtain localized solutions, appropriate
boundary conditions should be imposed. The boundary
conditions will guarantee that the solutions will be regular
on the axis x ¼ 0 and approach a vacuum for x! 1.
Regularity at x ¼ 0 yields

’að0Þ ¼ 0; A�ð0Þ ¼ 0; ~A�ð0Þ ¼ 0;

	0
Nð0Þ ¼ 0; A0

0;zð0Þ ¼ 0; ~A0
0;zð0Þ ¼ 0

(3.13)

while the requirement for asymptotic approach to the
vacuum is somewhat more involved. For the scalar field
we simply have

’að1Þ ¼ 1; 	Nð1Þ ¼ 0 (3.14)

which makes a clear distinction between the N fields ’a
and the 	N field. This last one will either trivially vanish, or
have a unique behavior of starting at a nonvanishing central
value and decreasing monotonically to zero. Therefore, to
avoid singularity at x ¼ 0 all the solutions discussed in the
following will have n ¼ 0.
For the asymptotic behavior of the gauge fields we start

by the observation that under a Lorentz boost in the z
direction, the quantities ð!i; kiÞ transform as Lorentz
two-vectors. Since we will consider in this paper only the
case when these two vectors are spacelike (corresponding
to the magnetic case in the classification of [28]), we can
choose one of these two-vectors to be of the form ð0; kiÞ
without loosing generality. Independently, one can perform
residual gauge transformations of the form

Ures ¼ expiððatþ bzÞI þ ða0tþ b0zÞGÞ (3.15)

and assume in the following

A0ð1Þ ¼ 0; Azð1Þ ¼ 0;

~A0ð1Þ ¼ 0; ~Azð1Þ ¼ 0:
(3.16)

As for the azimuthal components of the gauge fields we
have to impose

ma � A�ð1Þ � ~A�ð1ÞGa ¼ 0: (3.17)

These are N equations for the two unknowns A�ð1Þ and
~A�ð1Þ, so the three magnetic numbers ma cannot be inde-
pendent. Moreover, since they must be integers, not every
G in the Cartan subalgebra is possible. A closed formula
for these relations is rather complicated so we demonstrate
this by two examples for the case N ¼ 3 where we can
parametrize G by: G ¼ �3 cos þ �8 sin where �i are
Gell-Mann matrices. For  ¼ �=6 we have the relation

m2 ¼ m3 and ~A�ð1Þ ¼ ðm1 �m3Þ=
ffiffiffi
3

p
, while for  ¼

�=3 we have m2 ¼ ðm1 þm3Þ=2 and accordingly
~A�ð1Þ ¼ ðm1 �m3Þ=2. A�ð1Þ however is given always
by A�ð1Þ ¼ ðm1 þm2 þm3Þ=3. The concrete solutions
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which we will present will be mainly with N ¼ 3 (other
values of N can be treated similarly).

B. Physical quantities: Energy, angular momentum,
currents and charges

In this section, we express several quantities which
characterize the different types of solutions. The quantities
are presented for string solutions of the extended non-
Abelian Higgs model. The corresponding formulas for
the ‘‘non extended’’ model (i.e. Nf ¼ N) are obtained by

setting 	N ¼ 0 and 
N ¼ 0 in Eq. (3.2) and those that
follow.

The energy and angular momentum (per unit length) of
the solutions are obtained by computing the integrals

E ¼ 2�v2
Z 1

0
dxxðE0 þ E1 þV Þ;

J ¼ 2�v2
Z 1

0
dxxJ :

(3.18)

The energy densities E0, E1, V , correspond, respectively,
to the scalar part, the gauge field part and the potential.
They are given by

E0 ¼
X
a

�
’02
a þ

�ðma � A� � ~A�GaÞ2
x2

þ ð!a � A0 � ~A0GaÞ2 þ ðka � Az � ~AzGaÞ2
�
’2
a

�

þ 	02
N þ

�ðn� A� � ~A�GNÞ2
x2

þ ð$� A0 � ~A0GNÞ2

þ ðq� Az � ~AzGNÞ2
�
	2
N; (3.19)

E1 ¼ 1

2
ðA02

0 þ ðA0
�=xÞ2 þ A02

z Þ þ 1

2�2
ð ~A02

0 þ ð ~A0
�=xÞ2 þ ~A02

z Þ;
(3.20)

V ¼ �

�X
a

’2
a þ 	2

N � N

�
2

þ �

�X
a

’4
a þ 2	2

N’
2
N þ 	4

N � 1

N

�X
a

’2
a þ 	2

N

�
2
�
:

(3.21)

The angular momentum density J has the form

J ¼ 2
X
a

ð!a � A0 � ~A0GaÞðma � A� � ~A�GaÞ’2
a

þ 2ð$� A0 � ~A0GNÞðn� A� � ~A�GNÞ	2
N þ A0

0A
0
�

þ 1

�2
~A0
0
~A0
�: (3.22)

The solutions are also characterized by the Noether
charges and currents associated with the global SUðN þ
1Þ symmetry of the Lagrangian. The charges (per unit

length) are the integrals of the time components of the
current densities

j�ðRÞ ¼ �ið��
apRpqD��aq � ðD��apÞ�Rpq�aqÞ;

(3.23)

where R denotes any of the generators of the global sym-
metry and the summation convention is used for both the
local and global indices. For the ‘‘diagonal’’ ansatz,
Eq. (3.2), we get the following expressions for the global
charge densities

j0ðRÞ ¼ 2
X
a

Rað!a � A0 � ~A0GaÞ’2
a

þ 2RNþ1ð$� A0 � ~A0GNÞ	2
N; (3.24)

where we denote by Rs the diagonal elements of the
commuting flavor generators as we do for local symmetry.
Similarly for the current densities:

jzðRÞ ¼ 2
X
a

Raðka � Az � ~AzGaÞ’2
a

þ 2RNþ1ðq� Az � ~AzGNÞ	2
N: (3.25)

Accordingly, the charges and currents will be

QðRÞ ¼ 2�
Z 1

0
dxxj0ðRÞ ¼

XNþ1

s¼1

RsQs;

IðRÞ ¼ 2�
Z 1

0
dxxjzðRÞ ¼

XNþ1

s¼1

RsIs;

(3.26)

where the ‘‘single field contributions’’ Qs and Is are de-
fined in an obvious way. In terms of these, the angular
momentum J of the string can be written as J ¼P
maQa þ nQNþ1.
Since the non-Abelian charges all vanish due to the

boundary conditions, these ‘‘single field contributions’’
are not independent but satisfy the following identities
among the charges and currents

XNþ1

s¼1

Qs ¼
XNþ1

s¼1

Is ¼ 0;

XN
a¼1

GaQa þGNQNþ1 ¼
XN
a¼1

GaIa þGNINþ1 ¼ 0:

(3.27)

These identities allow one to express two of the currents (or
charges) in terms of the others. As a consequence, for an
SUðN þ 1Þ global symmetry, the N diagonal global cur-
rents can be expressed in terms ofN � 1 independent ones.
For example, for local SUð2Þ and global SUð3Þ, these
relations lead to I1 ¼ 0; therefore I2 ¼ �I3 by the left
equation of (3.27) and the two diagonal global currents
are proportional to I3.
For local SUð3Þ and the choice  ¼ �=6, the global

SUð4Þ currents depend on two of the ‘‘single field’’ cur-
rents Is say, I2 and I4. Actually two of them are just
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proportional to I2 and I4 and the third is a combination:

IðR3Þ ¼ �2I2; IðR8Þ ¼ � 1ffiffiffi
3

p ð3I2 þ 2I4Þ;

IðR15Þ ¼ �
ffiffiffi
8

3

s
I4:

(3.28)

These identities provide useful crosschecks of the numeri-
cal solutions discussed next.

IV. DISCUSSION OF THE SOLUTIONS

We solved the system of nonlinear equations (3.4), (3.5),
(3.6), (3.7), (3.8), (3.9), (3.10), (3.11), and (3.12) by using a
numerical routine based on the collocation method [35].
The solutions were constructed with grids involving typi-
cally 1000 points and with accuracy of the order of 10�8.
The solutions we found are described in the following.

A. Special case: Local strings

Before discussing the semilocal strings, we pause to
describe the simplest kind of non-Abelian ones, namely,
the local non-Abelian strings. They are obtained by trun-
cating the general system to the case withNf ¼ N so 	N ¼
0 and 
N ¼ 0. This requires the further substitutions $ ¼
n ¼ q ¼ 0 in the field equations above.

Inspection of the boundary conditions for the gauge
fields as x! 1, reveals that in the gauge choice (3.16)

all the parameters !j, ki should vanish, leading to A0ðxÞ ¼
AzðxÞ ¼ ~A0ðxÞ ¼ ~AzðxÞ ¼ 0. So we solve Eqs. (3.4), (3.5),
(3.6), (3.7), (3.8), (3.9), (3.10), (3.11), and (3.12) with the

above substitutions and with the following boundary con-
ditions :

’að0Þ ¼ 0; A�ð0Þ ¼ 0; ~A�ð0Þ ¼ 0; (4.1)

’að1Þ ¼ 1; ma � A�ð1Þ � ~A�ð1ÞGa ¼ 0: (4.2)

The only stringlike solutions in this system are of the
magnetic type, labeled by the integers ma which are con-
sistent with the value we pick for the angle  in the 3-8
plane of the Cartan subalgebra.
In Fig. 2 we show the field profiles of a typical SUð3Þ

local string solutions with  ¼ �=6. The Abelian flux is
still quantized but is not an integer as can be easily seen
from the figure. Its value is 3=2. Similarly, the non-Abelian

flux is 1=
ffiffiffi
3

p
.

B. Semilocal strings

Nowwe return to the general case of the full system with
Nf ¼ N þ 1, that is Eqs. (3.4), (3.5), (3.6), (3.7), (3.8),

(3.9), (3.10), (3.11), and (3.12) with nonvanishing 	N and

N . The solutions have in general ð$;qÞ � 0 while we can
still exploit the remaining symmetry to require again!j ¼
kj ¼ 0 for j ¼ 1; . . . ; N.

In contrast with the local case, the equations for the

fields A0, Az, ~A0, and ~Az are not trivially satisfied if
	NðxÞ � 0 and we have now nontrivial boundary condi-
tions for these gauge components. The boundary condi-
tions are contained in Eqs. (3.13), (3.14), (3.16), and (3.17)
and we will not repeat them here. We just point out that the
scalar and gauge fields reach their asymptotic values with
exponential corrections. In particular, the field 	N decays

according to 	N / exp½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �$2

p
x�, which explains

why this field can decay slower than the others forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �$2

p � 1. We have therefore to solve for 	NðxÞ,
A0ðxÞ, AzðxÞ, ~A0ðxÞ, and ~AzðxÞ in addition to the N scalar

components and the two gauge components A� and ~A�.
Along with [27], we call solutions of this type ‘‘twisted’’

solutions. The parameter q will be referred to as the twist
parameter. The solutions will be generally twisted, but
special ‘‘untwisted’’ solutions (with q ¼ 0) also occur.
We also distinguish between static solutions with $ ¼ 0
and stationary for $ � 0. Their properties will be studied
below.

C. Purely magnetic (‘‘untwisted’’) solutions

The simplest kind of semilocal solutions is the em-
bedded (non-Abelian) local flux tubes. These are purely
magnetic solutions of the full system with 	N ¼ 0. It is

therefore evident that A0 ¼ Az ¼ ~A0 ¼ ~Az ¼ 0 and the
nonvanishing fields, the N scalars ’a, and the two gauge

components A� and ~A�, are the same as for the local strings
of Sec. IVA.

FIG. 2. A non-Abelian SUð3Þ local string: Profiles of the three
Higgs fields ’1, ’2, ’3, the two gauge fields A� and ~A� (A0

� in

the figure) and the corresponding magnetic fields for m1 ¼ 2,
m2 ¼ 1, m3 ¼ 1 . This choice yields the relation ’2 ¼ ’3. The
Abelian flux is 3=2; the non-Abelian flux is 1=

ffiffiffi
3

p
. The relative

gauge strength is � ¼ 1 and the parameters in the potential are:
� ¼ � ¼ 1.
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Another kind of purely magnetic strings is the untwisted
semilocal strings which generalize the Skyrmion solutions
of the Abelian model mentioned in Sec. II. These solutions
are only self-dual as in the Abelian case, and are contained
already among the results of earlier studies [21,22,30]. In
our parametrization they exist for � ¼ 1=2, � ¼ 1, � ¼ 1.

The more general kinds of solutions which contain
‘‘twists’’ [27,28] will be discussed in the next sections.

D. Twisted static and stationary semilocal strings

The space of twisted semilocal strings decomposes into
three regions which are labeled according to the sign of the
norm of the two-vector ð$; qÞ, that is according to the sign
of $2 � q2. In the ‘‘timelike’’ region ($2 � q2 > 0) we
were unable to find localized solutions as happens also in
the Abelian case [28] (recall also the asymptotic behavior
mentioned above), so we do not discuss them further.
Solutions with $2 � q2 ¼ 0 are known as ‘‘chiral’’ and
will be discussed below among the stationary solutions. If
we assume the two-vector ð$; qÞ to be spacelike, we can
set $ ¼ 0 by an appropriate Lorentz boost. The field

equations for A0 and ~A0 are satisfied trivially by A0ðxÞ ¼
~A0ðxÞ ¼ 0 and all the charges Qs vanish with this choice.

The components Az and ~Az as well as the currents Is do not
vanish.

In the Abelian case (N ¼ 1 and Nf ¼ 2 with irrelevant

�) [27,28] twisted semilocal strings appear for large
enough values of the potential coupling constant � (pre-
cisely for �> 1=2 in our notations). They form continuous
family of static solutions and are labeled by the ‘‘twist
parameter’’ q appearing in the phase of the scalar function
	2; this parameter takes values in a finite interval, that is
q 2 ½0; qcr� where qcr is the maximal twist where bifurca-
tion with the embedded flux tube occurs. This value of qcr
depends on the coupling constant �. In the limit �! 0 the

function 	2 converges uniformly to the null function and
the branch of twisted solutions bifurcates into the local
string solutions.
Here, we consider the extended non-Abelian Higgs

model with our potential (2.5) and find that analogous
string solutions exists when the potential parameters, �,
�, are chosen large enough. A similar critical phenomenon
occurs, and in addition to the critical twist there exists now
a critical �.
First, we study the case of an SUð2Þ gauge group and a

global SUð3Þ. We find twisted semilocal strings corre-
sponding to different choices of the magnetic parameters
ðm1; m2Þ. Figure 3 shows the field profiles of two typical
static twisted semilocal strings with different windings and
therefore different fluxes. Note the additional scalar field
	2 which decreases slowly, yet still exponentially. The

FIG. 3. A non-Abelian SUð2Þ static twisted semilocal strings: Profiles of the three Higgs fields ’1, ’2, 	2 and the components of
the two gauge fields A�, Az and ~A�, ~Az (A0

�, A
0
z in the figure). The other parameters are: � ¼ 1, � ¼ 1

2 , � ¼ 1. Left: Note that the

non-Abelian magnetic flux vanishes and that Az ¼ � ~Az. The Abelian flux is 1. Right: Note that Az ¼ � ~Az. The Abelian flux is 3=2;
the non-Abelian flux is 1=2.

FIG. 4. A non-Abelian SUð3Þ static twisted semilocal string
(A0 stands for ~A). � ¼ 1.
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relations among the currents, Eq. (3.27) yield in this case
I1 ¼ 0 [see explanation below (3.27)] and we observe that

it is consistent with the numerical results giving Az ¼ � ~Az
for this case as is indeed seen in Fig. 3.

Analogous twisted solutions were obtained for N ¼ 3
and Nf ¼ 4. Figure 4 depicts a typical solution corre-

sponding to the specific Cartan generator fixed by  ¼
�=6. The magnetic fields along the string axis (Abelian
and non-Abelian) and the energy density of a twisted
solution (with 	3ð0Þ ¼ 1:25 or q ¼ 0:34) are compared
in Fig. 5 with those of an embedded local string. Note
that the twisted strings have a nonvanishing tangential
magnetic field (B�—see Fig. 1) whose contribution to the
flux vanishes.

The solutions constructed above are static but they can
be made stationary by applying a boost along the string

axis (z). Alternatively, stationary solutions can be obtained
directly by setting the parameter $ nonzero in the field
equations. Interestingly, allowing the parameter $ � 0
confers the strings with angular momentum as was first
demonstrated in the Abelian case [27,28]. The resulting
angular momentum is therefore more like the ‘‘orbital’’
kind rather than an intrinsic spinlike.
The profiles of twisted solutions corresponding to m1 ¼

2, m2 ¼ m3 ¼ 1 and q ¼ 0:5 are presented in Fig. 6 for
$ ¼ 0 and $ ¼ 0:495 (i.e. very close to the chiral limit
$ ¼ q). We note that the chiral limit $ ! q leads to a
different kind of solutions with 	3 decaying as a power
instead of exponentially. This tendency is apparent in
Fig. 6 namely, through the decay of the function 	3.

E. Analysis of parameter space

Since we know from the Abelian case (N ¼ 1) that
twisted semilocal strings exist only is a restricted domain
of the parameter space, it is natural to try to figure out this
domain in the present non-Abelian model. The Lagrangian
(2.2) is characterized by four parameters: �, � of the scalar
potential and two gauge coupling constants e1 and e2.
However, only the relative strength � ¼ e2=e1 appears in
the field equations so the parameter space of the model is
three-dimensional.
The parameter space of the solutions is far more com-

plicated since it contains also the twist q, the other phase
parameter $ and the flux numbers.
We investigated this problem in the case of an SUð3Þ

gauge group and we present here the main results in various
planes in this higher dimensional parameter space. We took
representative values of � ¼ � ¼ 1 for which it turns out
that twisted semilocal strings exist.
The effect of changing the parameter � on the twisted

solutions is illustrated in Fig. 7 where the critical qcr-value
is plotted as a function of �2 for two different choices of
~m ¼ ðm1; m2; m3Þ. The choice (2, 1, 1) corresponds to  ¼
�=6 and the choice (3, 2, 1) to  ¼ �=3 as explained at the

FIG. 5. The energy density and magnetic fields along the string
axis (B0 stands for ~B) are superposed for a twisted semilocal
string 	3ð0Þ ¼ 1:25 or q ¼ 0:34 (solid lines) and an embedded
local one (dashed lines).

FIG. 6. Field profiles (A0 stands for ~A) of two N ¼ 3 twisted solutions with � ¼ � ¼ � ¼ 1, ~m ¼ ð2; 1; 1Þ, q ¼ 0:5. Solid lines:
static ($ ¼ 0); dashed lines: stationary with $ ¼ 0:495.

Y. J. BRIHAYE AND Y. VERBIN PHYSICAL REVIEW D 77, 105019 (2008)

105019-8



end of Sec. III A. The twisted semilocal strings exist only
for q < qcr and for values of �2 below a maximal value of
�2
cr. This value depends on ~m and determines a domain of

existence of twisted solutions in the ð�; qÞ plane.
In Fig. 8, a few physical quantities characterizing the

solutions corresponding to q ¼ 0:4 are presented. We find
�2
cr ¼ 5:55 which is consistent with the value that is ob-

tained from Fig. 7. We further studied the critical phenome-
non appearing when the maximal value of � (with q fixed)
is reached as seen in Fig. 8. Our numerical results suggest,
in particular, that the twisted solution bifurcates into the

embedded local string at � ¼ �cr. Note especially the
vanishing of I2, I4 and 	3ð0Þ as �! �cr.
The evolution of the physical parameters characterizing

the twisted solutions for � ¼ 1 is further presented in
Fig. 9 as a function of the twist parameter q. We see
from the plot that the solution bifurcates into the embedded
local string for q ¼ 0:597 which is of course consistent
with qcrð1Þ of Fig. 7. We notice that the central value of the
non-Abelian magnetic field, ~Bð0Þ changes sign between the
bifurcation point and the low twist region (i.e. q! 0).
The effect of a boost along the string axis, which is

reflected by a nonvanishing$, on some physical quantities
is presented in Fig. 10. In this figure E, J, Bð0Þ and ~Bð0Þ are

FIG. 7. The critical q-value as a function of the coupling ratio
�2 for � ¼ � ¼ 1.

FIG. 8. Energy, global currents [see (3.28)], central magnetic
fields (B0 stands for ~B), and central twisted scalar field as a
function of the coupling ratio �2 for static twisted semilocal
strings with q ¼ 0:4 (solid lines) and embedded local ones
(dashed lines). Both for � ¼ � ¼ 1 and ~m ¼ ð2; 1; 1Þ. Note that
the twisted string has lower energy.

FIG. 9. Energy, global currents, central magnetic fields (B0
stands for ~B), gauge potential, and scalar field as function of the
twist parameter for � ¼ � ¼ � ¼ 1 for ~m ¼ ð2; 1; 1Þ. Note that
q ¼ 0 is not included.

FIG. 10. Evolution of the mass and the magnetic fields (B0
stands for ~B) on the axis as functions of $.
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plotted versus $ for a fixed value of q (for instance q ¼
0:5) and for the two values  ¼ �=6, �=3 which require
different sets of ma as explained above. We stress that the
plots are made for fixed q, so the solutions involved are not
related to each other by boosts along the z direction. In
particular, the magnetic fields on the z-axis vary with $.
Note also that the chiral limit has nontrivial consequences
on the mass and spin of the solutions (per unit length)
which diverge in this limit as indicated in Fig. 10.

V. CONCLUSIONS

This work presents string solutions in the extended non-
Abelian Higgs model which may be seen as an expansion
of recent discussions of Abelian twisted semilocal strings
[27,28] and of non-Abelian untwisted ones [21,22,25,26].
The solutions are classified according to the twist parame-
ter q as twisted or untwisted (for q ¼ 0). The twisted
solutions are characterized by a persistent current along
the string axis. The twisted solutions are further classified
as static ($ ¼ 0) or stationary, where the latter are also
characterized by a nonzero angular momentum. The ex-
tended non-Abelian Higgs model allows also two kinds of
special solutions—both untwisted and both purely mag-
netic: The embedded local non-Abelian flux tubes and the
self-dual ‘‘Skyrmions.’’

The occurrence of Twisted semilocal string and their
corresponding conserved currents is closely connected to
the existence of a scalar field which condensates on the
axis and vanishes asymptotically. For Nf ¼ N all scalars

are Higgs-like fields which acquire asymptotically a non-
vanishing expectation value due to the potential. As a
consequence, there is no place for a condensate and no
twisted semilocal string are possible in this case.

All those solutions were constructed by numerically
solving the field equations with the appropriate boundary
conditions. The solutions exist only on a nontrivial domain
of the parameter space of the possible solutions. We have
tried to determine this domain qualitatively and obtained a

lot of information about the pattern of the solutions. We
demonstrated the bifurcation phenomenon which occurs in
this case at a critical value of the twist q which now
depends on the various fluxes and on � ¼ e2=e1 in addition
to the parameters in the potential.
A crucial step for deciding the physical relevance of

non-Abelian twisted semilocal strings would be to study
their stability by performing a systematic normal mode
analysis, as was done recently [36] for the extended
Abelian Higgs model. Another important issue is the
understanding of the low-energy dynamics of the non-
Abelian twisted semilocal strings. This can be done e.g.
by using the geodesic approximation of [37,38] which is
based on a parametrization of the zero modes in terms of
collective coordinates. For untwisted local and semilocal
strings, this analysis is reported in details by Aldrovandi
(see sec. VI of [30]). Since the phases of twisted semilocal
strings depend on t and z, the parametrization of the
orientational moduli in terms of slowly varying functions
of these coordinates does not seem to be straightforward.
The parametrization of the fluctuations used in [36] might
turn out to be very useful. We plan to address these ques-
tions in a further publication, as well as the gravitating
counterparts of twisted strings.
Another direction is motivated by the non-Abelian

superconducting strings, recently obtained by Volkov
[29] within the SUð2Þ �Uð1Þ electroweak theory. These
untwisted strings can be used as a starting point towards
constructing twisted solutions which will be related to a
non-Abelian subgroup of the gauge group.
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