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In this paper, we evaluate the self-energy of the vector mesons at one loop in our recently proposed

subtraction scheme for the massive nonlinearly realized SU(2) Yang-Mills theory. We check the fulfill-

ment of physical unitarity. The resulting self-mass can be compared with the value obtained in the massive

Yang-Mills theory based on the Higgs mechanism, consisting in extra terms due to the presence of the

Higgs boson (tadpoles included). Moreover, we evaluate all the one-loop counterterms necessary for the

next order calculations. By construction, they satisfy all the equations of the model (Slavnov-Taylor, local

functional equation, and Landau gauge equation). They are sufficient to make all the one-loop amplitudes

finite through the hierarchy encoded in the local functional equation.
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I. INTRODUCTION

We have recently proposed a subtraction procedure [1]
of the divergences in the SU(2) Yang-Mills (Y-M) theory
[2] with a mass term [3–5] based on a nonlinearly realized
gauge group. This theory has no Higgs boson in the per-
turbative approach.

The proposed subtraction scheme is based on the follow-
ing strategy. i) A local functional equation is derived
encoding a hierarchy among the 1-PI Green functions.
According to this hierarchy, all of the amplitudes involving
at least one unphysical Goldstone boson are fixed by the
local functional equation once one knows the amplitudes
independent of the Goldstone bosons (ancestor ampli-
tudes). ii) It is shown that only a finite number of divergent
ancestor amplitudes exists at every loop order (weak
power-counting). iii) The subtraction of the divergences
is based on dimensional regularization. In particular, the
local functional equation indicates that only the poles in
D� 4 should be removed in the properly normalized
amplitudes.

Thus, the algorithm does not modify the number of the
independent parameters of the zero-loop effective action.
Hence, although the original Lagrangian is not renorma-
lizable, we construct order by order in @ a consistent theory
which depends on three parameters: the coupling constant
g, the mass M and the mass scale � for the radiative
corrections. The tree-level vertex functional compatible
with the symmetry properties of the theory (Slavnov-
Taylor, local functional equation and Landau gauge equa-
tion) and the weak power-counting is unique. This strategy
is unconventional and departs from the standard renormal-
ization procedure.

The proof of consistency (in the iterative subtraction)
has been given in a series of papers [1,5–10]. In particular,
the Slavnov-Taylor identity [11] is maintained after the
counterterms are introduced. The same is valid for the local
functional equation (LFE) derived from the transformation
properties under local left multiplication as well as for the
Landau gauge equation.
Physical unitarity is guaranteed to follow from the

Slavnov-Taylor identity [12,13]. Locality of the counter-
terms follows from the above mentioned local functional
equation. The construction of the counterterms is based on
two important properties of this equation: hierarchy and
weak power-counting, which allow a full control of the
amplitudes involving the auxiliary scalar fields (descend-
ant) in terms of the amplitudes with no auxiliary fields
(ancestor).
In this work, we provide as an example the evaluation of

the self-energy of the vector meson in D dimensions by
using the Landau gauge. This explicit calculation is neces-
sary for the following reasons: i) to show how the proposed
subtraction procedure works; ii) to check that the Landau
gauge (because of its unphysical pole at zero mass) does
not pose any problem for physical unitarity as it is required
for the proof given in Ref. [13]; and iii) to provide the
quantitative difference between the theories with the linear
(with Higgs boson) and the nonlinear representation (no
Higgs boson) of the gauge group.
The result shows how physical unitarity is recovered on

shell. A comparison with the theory where the gauge group
is linearly realized (Higgs mechanism [14]) is very inter-
esting. It shows that our approach yields a consistent
identification of the Higgs part. This can be done on the
physically relevant part: the self-mass of the vector meson.
The discussion of this item necessitates the comparison of
our calculation with previous works [15] usually employ-
ing a ’t Hooft gauge [16]. Since the tadpoles (vacuum
expectation value of the Higgs field) are gauge dependent,
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then the comparison can be made only for the self-mass.
The identification of the Higgs contribution, up to the mass
scale �, is possible because our approach does not allow
the introduction of free parameters for each local invariant
solution of the defining equations. These solutions for the
one-loop case are listed in Appendix A.

The self-energy of the vector boson can be evaluated at
the two-loop level. This calculation necessitates of the
local one-loop counterterms. In this paper, we evaluate
all the counterterms necessary for any two-loop calcula-
tion. This amounts to find the coefficients of the pole parts
inD� 4 for all the ancestor amplitudes, i.e. for all external
legs A�, V�, K0, ��, c, �c, and A�

�, c�, ��, ��
0.

Counterterms with Goldstone boson external legs are ob-
tained from those involving only ancestor variables. They
satisfy the linearized Slavnov-Taylor (ST) identity, the
linearized LFE, and the Landau gauge equation. These
constraints imply nontrivial relations among the ancestor
amplitudes in the sector spanned by the external sources
and the ghost field. Finally, the counterterms are described
by a suitable basis of invariant local solutions of the same
equations. Their coefficients are evaluated from the diver-
gent part of the ancestor amplitudes. The latter are col-
lected in Appendix B.

II. EFFECTIVE ACTION AT THE TREE LEVEL
AND COUNTERTERMS

The Feynman rules are implicitly given by the vertex
functional at the tree level

�ð0Þ ¼ �ðD�4Þ

g2

Z
dDx

�
� 1

4
Ga��G

��
a þM2

2
ðAa� � Fa�Þ2

þ BaðD�½V�ðA� � V�ÞÞa � �caðD�½V�D�½A�cÞa
þ�

�
a ðD�½A� �cÞa þ ðA�

a�sA
�
a þ��

0s�0

þ��
as�a þ c�asca þ K0�0Þ

�
; (1)

where, beside the conventional notations, Ba is the
Lagrange multiplier for the Landau gauge, Va�, �a�, K0

are the external sources necessary for the LFE and A�
a�,�

�
0,

��
a, c�a are the antifields for the Becchi-Rouet-Stora-

Tyutin-transforms sA�
a , s�0, s�a, sca. The mass scale �

enters as a common factor in order to simplify the sub-
traction procedure. The nonlinearity of the representation
of the gauge group SUð2ÞLEFT LOCAL � SUð2ÞRIGHT GLOBAL

comes from the constraint on �0

Fa�

�a
2

¼ F� ¼ i�@��
y

�ij ¼ 1

v
ð�0 þ i�a�aÞij 2 SUð2Þ

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~�

2
q

:

(2)

The complete set of Feynman rules includes the counter-
terms

�̂ � �ð0Þ þ�ðD�4Þ

g2

X
j�1

Z
dDxMðjÞ: (3)

The counterterms MðjÞ are given by the pole parts in D�
4 of the normalized vertex functional [the normalization is
tightly conditioned by the particular form of the effective
action in Eq. (1)]

Z
dDxMðjÞ ¼ � g2

�ðD�4Þ
Xj�1

k¼0

�ðj;kÞ
��������POLE PARTS

; (4)

where �ðj;kÞ denotes the vertex functional where the total
power of @ of the inserted counterterms is k. The subtrac-
tion procedure is consistent if the counterterms are local
and if the relevant equations are preserved: Slavnov-
Taylor, LFE, and Landau gauge equations. We have given
the formal proofs that the subtraction proposed in Eq. (3)
works for the Feynman rules in Eq. (1) [1]. In the present
paper, we provide an explicit one-loop calculation. The
result will be compared with the result of the linear theory
(Higgs mechanism). In our final formula it is evident how
physical unitarity is realized and how the parameter v of
Eq. (2) disappears from the final result since it is not a
physical parameter [1].
We provide also all the one-loop counterterms for the

ancestor amplitudes (those with no �-external legs). A
complete two-loop calculation is expected to be a straight-
forward task, without any obstruction in the subtraction
procedure, since the structure of the divergences is, for
most graphs, that of the linear theory. There are few
exceptions as those depicted in Fig. 1, which however
have been already consistently dealt with in the nonlinear
sigma model [6].

III. SELF-ENERGY FOR THE NONLINEAR
MASSIVE Y-M

We give here the complete result of the one-loop calcu-
lation in D dimensions, without any subtractions. The
graphs are shown in Fig. 2. The transverse part is

FIG. 1. Two-loop graphs where the nonlinearity appears. The

dashed lines are ~�.
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�Tðp2Þ ¼ � i

D� 1

�
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�
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4
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�
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2M2
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��
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M4

�
H2ð0; 0Þ

�
; (5)

where

H1ðm2Þ ¼
Z
M

dDq

ð2�ÞD
1

ðq2 �m2Þ
H2ðm2

1; m
2
2Þ ¼

Z
M

dDq

ð2�ÞD
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2�
:

(6)

The longitudinal part is

�Lðp2Þ ¼ �iH1ðM2Þ
�
3

2
� p2

2M2

�
þ i

p2

2

�
1�M2

p2

�
2

�
�
H2ðM2; 0Þ � 1

M2
H1ðM2Þ

�
� i

p2

2
H2ð0; 0Þ:

(7)

It is worth to notice some points:
(1) �Tð0Þ ¼ �Lð0Þ is verified for generic D. By this

property the pole at p2 ¼ 0 in the 1-PI two-point
function is avoided. This condition is very important
in order to prove physical unitarity in the Landau
gauge [13].

(2) For p2 ¼ M2, �T contains only H2ðM2;M2Þ which
is the only Feynman integral with a physical dis-
continuity across the real positive p2 axis.

(3) As a check on �Lðp2Þ, the relevant Slavnov-Taylor
identity is explicitly evaluated in Appendix C.

The self-mass aroundD ¼ 4 can be evaluated according to
the prescription of Eq. (4). One gets

g2�TðM2ÞjD�4 ¼ g2
M2

ð4�Þ2
�
� 23

4
C� þ 2

3
� 33

4

�
Z 1

0
dxPð1; xÞ

�
(8)

with

C� � 2

D� 4
þ �� ln4�þ ln

�
M2

�2

�
(9)

and

Pðr; xÞ � x2 � rxþ r: (10)

IV. SELF-ENERGY IN THE LINEAR THEORY

At one loop it is straightforward to evaluate the contri-
bution of the Higgs sector. By this we mean the contribu-
tion of the graphs in Fig. 3. Our approach fixes the
separation of the Higgs from the non-Higgs contribution
once � is given. This is at variance with other approaches
where the Higgs part is removed by hand. In these meth-
ods, the arbitrariness introduced at one loop is due to the
presence of free parameters associated to the local solu-
tions of the ST identity and of the linearized LFE, once the
logs of MH are removed by hand. This problem has been
discussed thoroughly in Refs. [9,10] for the nonlinear
sigma model. The nondecoupling effects in the large
Higgs mass limit have been studied at length in the litera-
ture [see e.g. Refs. [17] for the standard model and [18] for
the SU(2) case].
The Higgs contribution to the self-energy is evaluated in

the Landau gauge by using the same form for the effective
action of Eq. (1) without the constraint in Eq. (2). The mass
term becomes (�0 ¼ hþ v)

FIG. 3. Graphs of self-energy for the linear theory (involving a
Higgs line).

FIG. 2. Graphs of self-energy for the nonlinear theory. The
arrows are for Faddeev-Popov ghosts.
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M2

2
ðAa� � Fa�Þ2 ¼ M2TrðA� � i�@��

yÞ2

¼ M2Trf½�yA� � i@��
y�½A��þ i@���g

¼ 4M2

v2

�
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2
@��a@

��a þ 1

8
A2ðh2 þ 2vhþ v2 þ ~�

2Þ

þ 1

2
A
�
a ½@�h�a � ðhþ vÞ@��a þ �abc�b@��c�

�
(11)

and the potential is added

� �2

4
ðh2 þ ~�

2 þ 2vhÞ2 ¼ ��2v2h2 � �2

4
ðh4 þ ~�

4

þ 2h2 ~�
2 þ 4vh3 þ 4vh ~�

2Þ:
(12)

The Higgs mass is

M2
H ¼ �2v4

2M2
: (13)

By using these Feynman rules, the contribution of the
graphs in Fig. 3 is evaluated. The contribution of the
Higgs to the transverse part of the two-point function is

�HIGGS
T ðp2Þ ¼ � i

4

1

ðD� 1Þ
�
H1ðM2

HÞ
�
M2

H

p2
�M2

p2
þ 2�D

�

�H2ðM2;M2
HÞ
�
4ðD� 2ÞM2

þ ðp2 þM2 �M2
HÞ2

p2

�

þH1ðM2Þ
�
M2

p2
�M2

H

p2
þ 1

��
: (14)

The contribution of the Higgs sector to the longitudinal
part of the two-point function is

�HIGGS
L ðp2Þ ¼ � i

4

�
M2 �M2

H

p2
H1ðM2

HÞ

� p2 þM2 �M2
H

p2
H1ðM2Þ

þ
�ðp2 þM2 �M2

HÞ2
p2

� 4M2

�
H2ðM2;M2

HÞ þ ð2M2
H

� p2ÞH2ðM2
H; 0Þ

�
: (15)

For later discussion, let us remind the reader that Eqs. (14)
and (15) are the contribution of the Higgs sector (in the
linear theory) to the self-energy of the vector meson in the
Landau gauge. The graphs shown in Fig. 4 have to be
included as a contribution coming from the Higgs sector.
In fact, we want to compare the predictions in the linear
and nonlinear realization of the gauge group. Thus, no
finite subtraction is performed and the parameters entering
in the self-mass (g and M) are given by the zero-order
values. In the Landau gauge both graphs (a) and (b) in
Fig. 4 are zero. Then we have

�TADPOLES
T ðp2Þ ¼ �TADPOLES

L ðp2Þ

¼ � 3i

4
H1ðM2

HÞ �
3i

2

M2

M2
H

ðD� 1ÞH1ðM2Þ:

(16)

V. SELF-MASS IN THE NONLINEAR VERSUS
LINEAR

The results of the Secs. III and IVallow a comparison of
the self-mass in the two cases. The subtraction procedure
of the poles in D� 4 must be the same. However, this is
not enough. In the linear case, a finite renormalization is
always possible, and, in particular, it is possible to drop the
tadpole contributions, since they can be eventually ac-
counted for by some mass counterterms. A comparison
between the theories based on the linear and the nonlinear
representation of the gauge group necessitates that the
parameters g and M enter as zero-order values and not as

FIG. 4. Tadpoles originated from the nonzero vacuum expec-
tation value of �0. (a) and (b) (tadpoles of the Faddeev-Popov
ghosts and of the Goldstone boson) are zero for massless
Goldstone bosons.
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dummy variables. In fact, the counterterms can be even
gauge-dependent if they are introduced in order to balance
the dropping of the tadpoles (see next section).

Now we take the case p2 ¼ M2 of �T and then consider
the Laurent expansion around D ¼ 4. We have in the
nonlinear case from Eq. (8)

	M2
NONLINEAR ¼ g2M2

ð4�Þ2
�
� 23

4
C� þ 2

3
� 33

4

�
Z 1

0
dxPð1; xÞ

�
: (17)

The linear theory, based on the Higgs mechanism, adds to
the above term the following quantity (tadpoles of Fig. 4
are included)

	M2
LINEAR ¼ 	M2

NONLINEARþ
g2

4

M2

ð4�Þ2
��
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3
� 3r� 18

r

�
C�
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3
�
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3

�
lnr

þ
�
4� 4

3
rþ r2

3

�Z 1

0
dx lnPðr;xÞ

�
; (18)

where

r ¼ M�2M2
H: (19)

VI. h0j�0j0i IS GAUGE DEPENDENT

The comparison of our calculation, given in Eqs. (17)
and (18), with results present in the literature needs some
consideration about gauge invariance of the vacuum. Thus,
we use the ’t Hooft gauge-fixing for the linear theory

L0t Hooft ¼ B2
a

2

þ Ba

�
@Aa þ 2M2

v

�a

�
� �ca

�
@�D½A�ab�

þM2

v

ð�0	ab � �abc�cÞ

�
cb: (20)

Hereafter, we list the amplitudes for the tadpoles in Fig. 4
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�TADPOLE GAUGE
aa0��

ðpÞ ¼ � 3i
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�� 3

2

M2
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ðD� 1Þ M2
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�
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�

2
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It is amazing that

�TADPOLE GAUGE
aa0��

ðpÞ þ �TADPOLE FP
aa0��

ðpÞ

¼ � 3i

2

M2

M2
H

g��	aa0 ðD� 1ÞH1ðM2Þ (25)

is gauge independent. Moreover,

h0j�0j0i ¼ v

�
1� g2

2M2

1

�ðD�4Þ
3i

4

�
H1ðM2

HÞ

þ 2
M2

M2
H

ðD� 1ÞH1ðM2Þ þH1

�
M2




���
; (26)

i.e. the vacuum expectation value of�0 is gauge dependent

through the mass of the Goldstone boson M2


 .

The above discussion shows that tadpoles have to be
considered in the evaluation of the self-mass if one wants a
gauge-invariant result. In the linear theory, it is not com-
pelling to introduce the tadpoles, since one can always
perform a finite renormalization in order to restore gauge
invariance. However, with this choice, one is not allowed to
use the physical parameters for the zero-order-value entries
of g, M, and MH.
The comparison of our results with the expression given

by Marciano and Sirlin in Appendix A of Ref. [15] must
take into account these facts. Their result for the gauge
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group SU(2)1

AðM2ÞMARCIANOSIRLIN
AA ¼ g2M2

16�2

�
�25
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r� r2
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4
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4
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12
� r

3
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�Z 1

0
dxPðr;xÞ

�

(27)

must be complemented by the contribution of the tadpole
(b) in Fig. 4 (at 
 ¼ 1) in order to get a gauge-invariant
result

AðM2ÞMARCIANO SIRLIN
AA þ�TADPOLE GOLDSTONE

¼ g2M2

16�2

�
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36
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12
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4
lnr
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0
lnPð1; xÞ þ

�
r2

12
� r

3
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�Z 1

0
dxPðr; xÞ

�
:

(28)

This agrees with our results in Eq. (18) if we add to the
expression in Eq. (28) the contributions of the gauge,
Higgs, and Faddeev-Popov tadpoles as reported in
Eqs. (23) and (25).

VII. ONE-LOOP COUNTERTERMS

Two-loop calculations require the knowledge of the full
set of one-loop counterterms. The counterterms must obey
the ST identity, the local functional equation, and the
Landau gauge equation [1]. According to the hierarchy
property, only the counterterms involving ancestor varia-
bles have to be computed in order to implement the iter-
ative subtraction of the divergences. The full list of the
relevant invariant solutions is reported in Appendix A
specialized to the case where the descendant fields are
neglected (Goldstone boson fields). Counterterms involv-
ing descendant field external legs are obtainable by using
the full expression of the invariant solutions given in
Ref. [1]: the compact expressions, written in terms of
bleached fields, must be projected on the relevant
monomials.

The coefficients of the invariants are determined by
computing the divergent part of the relevant ancestor am-
plitudes after the proper normalization given by Eq. (4).

The divergences of the ancestor amplitudes are collected in
Appendix B.
One finds

�̂ ð1Þ ¼ �ðD�4Þ

ð4�Þ2
1

D� 4

�
17

2
ðI1 � I2Þ � 67

6
I3 þ 11

4
I4

� 5

2
I5 þ 3M2I6 � 6I7 þ 3v2

128M4
I8 � v

8M2
I9

�
:

(29)

I10 and I11 do not enter into the parametrization of the
one-loop counterterms. This is a peculiar property of the
Landau gauge.
It is clear from Eq. (29) that the one-loop counterterms

for the pure gauge sector cannot be casted in the form

I 1 � I2 � 2I3 þ I4 � I5 ¼ 1

4

Z
dDxG

��
a Ga��; (30)

as noted already in the early works on the divergences of
the pure massive Y-M theory [19] [20]. Our approach
allows one to overcome this difficulty by managing the
divergences with another set of tools based both on Becchi-
Rouet-Stora-Tyutin transformations and the invariance of
the path integral measure under local left multiplication.
Despite the fact that they are divergent by power-

counting, one-loop 1-PI amplitudes involving more than
one V leg are finite. This result can be established from

Eq. (29) by noticing that the dependence of �̂ð1Þ on V is
only linear (via the invariant I7).

VIII. CONCLUSIONS

In this paper we have provided the D-dimensional self-
energy of the vector meson in the SU(2) gauge group in the
nonlinearly realized perturbative formulation recently pro-
posed in [1]. We have discussed how physical unitarity is
recovered on shell and presented a comparison with the
linear theory. Such a comparison is possible since the
subtraction scheme of [1] allows one to separate the
Higgs part of the self-mass. This is a consequence of the
fact that in our approach no free parameters can be intro-
duced for each local invariant solution of the defining
equations, as listed in Appendix A for the one-loop case.
We have also given the full set of one-loop counterterms
which are required for any two-loop computation. The
counterterms have been parametrized in terms of invariant
solutions of the ST identity, the LFE, and the Landau gauge
equation. Their coefficients are obtained from the evalu-
ation of the divergent part of the ancestor amplitudes (no
Goldstone fields).
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1This equation has been obtained by using the identity

Z 1

0
dxPðr; xÞ lnPðr; xÞ ¼ 1

3

�
� 2

3
þ r� r2

2
þ r2

2
lnr�

�
r2

2
� 2r

�

�
Z 1

0
lnPðr; xÞ

�
:
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APPENDIX A: ONE-LOOP INVARIANTS

We list here the 11 invariants compatible with the sym-
metry requirements and the weak power-counting at the
one-loop level. By the Landau gauge equation the depen-

dence of �ð1Þ on �ca happens in the combination

Â �
a� ¼ A�

a� þ ðD�½V� �cÞa: (A1)

We neglect the descendant fields

I 1 ¼ 1

2

Z
dDx@�Aa�@

�A�
a; I2 ¼ 1

2

Z
dDxð@AaÞ2; I3 ¼ � 1

2

Z
dDx�abc@�Aa�A

�
b A

�
c ;

I4 ¼ 1

4

Z
dDxðA2Þ2; I5 ¼ 1

4

Z
dDxðAa�A

�
b ÞðAa�A

�
bÞ; I6 ¼ 1

2

Z
dDxA2;

I7 ¼ 1

2

Z
dDxV

�
a ðD�G��½A� þM2A�Þa � 1

2

Z
dDxÂ�

a��
�
a þ 1

2

Z
dDxÂ�

a�ðD�½V�cÞa;

I8 ¼
Z

dDxð2K0 � ca�
�
aÞ2; I9 ¼

Z
dDx

�
1

2
ca�

�
aA

2 � K0A
2

�
;

I10 ¼
Z

dDx

�
1

2
ðD�½A�Â�

�Þaca � 1

4
��

aca � 1

2
c�a�abccbcc

�
; I11 ¼

Z
dDxðca��

a � 2K0Þ:

(A2)

We remind, once again, that I1 � I11 are not solutions of
the ST identity, local functional equation, and Landau
gauge equation. Instead, they are the projection on the
ancestor variables of the solutions given in Ref. [1].

APPENDIX B: ONE-LOOP DIVERGENCES OF THE
ANCESTOR AMPLITUDES

In this Appendix, we give the one-loop divergent parts of
the ancestor amplitudes. The resulting counterterms are for
the theory where the gauge group is represented nonli-
nearly and in the Landau gauge. The Feynman rules are
encoded in Eq. (1). From that action we can read immedi-

ately the free propagators (the factor g2

�ðD�4Þ is always left

understood)

.

We list here the relevant vertices for the one-loop diver-

gent ancestor amplitudes (the factor �ðD�4Þ
g2

is always left

understood)

i�ð0Þ
A
�
a ðp1ÞA�

b
ðp2ÞA�

c ðp3Þ ¼ ��abc½g��ðp1 � p2Þ� þ g��ðp3 � p1Þ� þ g��ðp2 � p3Þ��
i�ð0Þ

A
�
a ðp1ÞA�

b
ðp2ÞA�

c ðp3ÞA�
d
ðp4Þ ¼ �i½	ab	cdð2g��g�� � g��g�� � g��g��Þ þ 	ac	bdð�g��g�� þ 2g��g�� � g��g��Þ

þ 	ad	bcð�g��g�� � g��g�� þ 2g��g��Þ�

i�ð0Þ
A
�
a ðp1Þ�bðp2Þ�cðp3Þ ¼

2M2

v2
�abcðp2 � p3Þ� i�ð0Þ

A
�
a ðp1ÞV�

b
ðp2ÞBcðp3Þ ¼ �i�abcg�� i�ð0Þ

A
�
a ðp1Þcbðp2Þ �ccðp3Þ ¼ �abcp3�

i�ð0Þ
V
�
a ðp1Þcbðp2Þ �ccðp3Þ ¼ ��abcp2� i�ð0Þ

A
�
a ðp1ÞV�

b
ðp2Þccðp3Þ �cdðp4Þ ¼ �ig��ð	ab	cd � 	ad	bcÞ

i�ð0Þ
A�
a ðp1Þ �cbðp2Þ��

c ðp3Þ ¼ �i�abcg�� i�ð0Þ
A�
a ðp1Þcbðp2ÞA��

c ðp3Þ ¼ �i�abcg�� i�ð0Þ
caðp1Þ�bðp2Þ�cðp3Þ��

d
ðp4Þ ¼

i

2v
	ad	bc

i�ð0Þ
�aðp1Þ�bðp2ÞK0ðp3Þ ¼ � i

v
	ab:
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(i) �ð1Þ½AA�:
The relevant graphs are depicted in Fig. 5.

Graph (a)

9

2

1

ð4�Þ2
1

D� 4
M2

Z
dDxA2: (B1)

Graph (b)

� 6
1

ð4�Þ2
1

D� 4
M2

Z
dDxA2 � 25

6

1

ð4�Þ2
1

D� 4

�
Z

dDx@�Aa�@
�A�

a þ 14

3

1

ð4�Þ2
1

D� 4

�
Z

dDx@Aa@Aa: (B2)

Graph (c)

1

12

1

ð4�Þ2
1

D� 4

Z
dDxð@�Aa�@

�A�
a � @A2

aÞ: (B3)

Graph (d)

� 1

6

1

ð4�Þ2
1

D� 4

Z
dDxð@�Aa�@

�A�
a þ 2@A2

aÞ: (B4)

(ii) �ð1Þ½AAA�:
The relevant graphs are depicted in Fig. 6.

Graph (a)

� 15

2

1

ð4�Þ2
1

D� 4

Z
dDx�abc@�Aa�A

�
b A

�
c : (B5)

Graph (b)

2
1

ð4�Þ2
1

D� 4

Z
dDx�abc@�Aa�A

�
b A

�
c : (B6)

Graph (c)

þ 1

12

1

ð4�Þ2
1

D� 4

Z
dDx�abc@�Aa�A

�
b A

�
c : (B7)

Graph (d)

� 1

6

1

ð4�Þ2
1

D� 4

Z
dDx�abc@�Aa�A

�
b A

�
c : (B8)

(iii) �ð1Þ½AAAA�:
The relevant graphs are depicted in Fig. 7.

Graph (a)

� 1

ð4�Þ2
1

D� 4

Z
dDx

�
49

24
ðA2Þ2 þ 1

12
ðAa�A

�
b ÞðAa�A

�
bÞ
�
:

(B9)

Graph (b)

1

ð4�Þ2
1

D� 4

Z
dDx

�
7

3
ðA2Þ2 þ 8

3
ðAa�A

�
b ÞðAa�A

�
bÞ
�
:

(B10)

Graph (c)

� 1

ð4�Þ2
1

D� 4

Z
dDx½ðA2Þ2 þ 2ðAa�A

�
b ÞðAa�A

�
bÞ�:
(B11)

Graph (d)

� 1

ð4�Þ2
1

D� 4

Z
dDx

�
1

48
ðA2Þ2 þ 1

24
ðAa�A

�
b ÞðAa�A

�
bÞ
�
:

(B12)

Graph (e)

1

ð4�Þ2
1

D� 4

Z
dDx

�
1

24
ðA2Þ2 þ 1

12
ðAa�A

�
b ÞðAa�A

�
bÞ
�
:

(B13)

FIG. 5. Graphs contributing to the 2-point vector meson amplitude.

FIG. 6. Graphs contributing to the 3-point vector meson amplitude.
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(iv) �ð1Þ½VA�:
The relevant graphs are depicted in Fig. 8.

Graph (a)

3
1

ð4�Þ2
1

D� 4

Z
dDxM2Va�A

�
a þ 8

3

1

ð4�Þ2
1

D� 4

�
Z

dDxVa�hA�
a � 5

3

1

ð4�Þ2
1

D� 4

Z
dDxVa�@

�@Aa:

(B14)

Graph (b)

þ 1

3

1

ð4�Þ2
1

D� 4

Z
dDx½Va�ðhA

�
a � 4@�@AaÞ�: (B15)

(v) �ð1Þ½VAA�:
The relevant graphs are depicted in Fig. 9.

Graph (a)

3

2

1

ð4�Þ2
1

D� 4

Z
dDxð�abcVa�@AbA

�
c

� �abcVa�@�A
�
b A

�
c Þ: (B16)

Graph (b)

1

ð4�Þ2
1

D� 4

Z
dDx�abcVa�@AbA

�
c : (B17)

Graph (c)

1

ð4�Þ2
1

D� 4

Z
dDx

�
1

3
�abcVa�@AbA

�
c

� 25

6
�abcVa�@�A

�
b A

�
c þ 17

6
�abcVa�@

�Ab�A
�
c

�
: (B18)

Graph (d)

1

ð4�Þ2
1

D� 4

Z
dDx

�
1

6
�abcVa�@AbA

�
c

� 1

3
�abcVa�@�A

�
b A

�
c þ 1

6
�abcVa�@

�Ab�A
�
c

�
: (B19)

(vi) �ð1Þ½VAAA�:
The relevant graphs are depicted in Fig. 10.

Graph (a)

� 1

ð4�Þ2
1

D� 4

Z
dDx

�
4Va�A

�
a A2 � 5

2
Va�A

�
b Aa�A

�
b

�
:

(B20)

Graph (b)

FIG. 7. Graphs contributing to the 4-point vector meson amplitude.

FIG. 8. Graphs contributing to the 2-point mixed background
gauge-vector gauge amplitude. The wavy-solid line is the
BA-propagator.

FIG. 9. Graphs contributing to the one background gauge and two vector meson legs.
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� 1

ð4�Þ2
1

D� 4

Z
dDx

�
1

2
Va�A

�
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2
Va�A

�
b Aa�A

�
b

�
:

(B21)

Graph (c)
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Z
dDx

�
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�
b Aa�A

�
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�
:

(B22)

Graph (d)
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D� 4

Z
dDx

�
1
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Va�A

�
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�
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�
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�
:

(B23)

(vii) Amplitudes involving an A� leg:
The relevant graphs are depicted in Fig. 11.
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Z
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a��
�
a : (B24)

Graph (b)

3
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1

D� 4

Z
dDxA�

a�@
�ca: (B25)

Graph (c)

3

2

1

ð4�Þ2
1

D� 4

Z
dDx�abcA

�
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�
b cc: (B26)

Graph (d)

3

2

1

ð4�Þ2
1

D� 4

Z
dDx�abcA

�
a�V

�
b cc: (B27)

(viii) Amplitudes involving K0, �
�:

The relevant graphs are depicted in Fig. 12.

Graph (a)

� 3v2

32M4
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ð4�Þ2
1

D� 4

Z
dDxK2

0 : (B28)

Graph (b)
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dDxK0ca�
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a: (B29)

Graph (c)
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1

D� 4

Z
dDxca�

�
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�
b: (B30)

Graph (d)
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ð4�Þ2
1

D� 4

Z
dDxK0A

2: (B31)

Graph (e)

v

16M2

1

ð4�Þ2
1

D� 4

Z
dDxca�

�
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2: (B32)

FIG. 10. Graphs contributing to the one background gauge and three vector meson legs.

FIG. 11. Graphs with an A� leg.

FIG. 12. Graphs with K0 and �� legs.
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APPENDIX C: ST IDENTITY FOR THE 2-POINT
VECTOR MESON AMPLITUDE

In this Appendix, we check the ST identity for the
longitudinal part �L of the 2-point vector meson
amplitude.

Differentiation of the ST identity

Sð�Þ¼
Z
dDx

�
g2

�ðD�4Þ

�
	�

	A�
a�

	�

	A�
a
þ 	�

	��
a

	�

	�a

þ 	�

	c�a
	�

	ca

�

þBa

	�

	 �ca
þ�a�

	�

	Va�

�K0

	�

	��
0

�
¼0 (C1)

with respect to c, A� yields at one loop (after setting fields

and external sources to zero)

�ð0Þ
cbð�pÞA�

c�ðpÞ�
ð1Þ
Ac�ð�pÞAa�ðpÞ þ�ð1Þ

cbð�pÞA�
c�ðpÞ�

ð0Þ
Ac�ð�pÞAa�ðpÞ

þ�ð0Þ
cbð�pÞ��

cðpÞ�
ð1Þ
�cð�pÞAa�ðpÞ þ�ð1Þ

cbð�pÞ��
cðpÞ�

ð0Þ
�cð�pÞAa�ðpÞ ¼0:

(C2)

By explicit computation one finds

�ð1Þ
�bð�pÞAa�ðpÞ ¼ 0; �ð1Þ

cbð�pÞ��
aðpÞ ¼ 0;

�ð1Þ
cbð�pÞA�

a�ðpÞ ¼ 	abp
�

�
1

2M2p2
ðp2 þM2ÞH1ðM2Þ

þ p2

2M2
H2ð0; 0Þ � ðp2 �M2Þ2

2M2p2
H2ð0;M2Þ

�
:

(C3)

Moreover

�ð0Þ
Ab�ð�pÞAa�ðpÞ¼	ab½ð�p2þM2ÞT��þM2L���;

�ð0Þ
cbð�pÞA�

c�ðpÞ�
ð1Þ
Ac�ð�pÞAa�ðpÞ¼	abip

��L: (C4)

By using Eqs. (C3) and (C4) and the result in Eq. (7) for
�L, one sees that Eq. (C2) is fulfilled.
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