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We propose an electric-magnetic duality and conjecture an exact conformal window for a class of

nonsupersymmetric UðNcÞ gauge theories with fermions in the (anti)symmetric representation of the

gauge group and Nf additional scalar and fermion flavors. The duality exchanges Nc ! Nf � Nc � 4

leaving Nf invariant, and has common features with Seiberg duality in N ¼ 1 super QCD (SQCD) with

SU or SO=Sp gauge group. At large N the duality holds due to planar equivalence withN ¼ 1 SQCD. At

finite N we embed these gauge theories in a setup with D-branes and orientifolds in a nonsupersymmetric,

but tachyon-free, noncritical type 0B string theory and argue in favor of the duality in terms of boundary

and crosscap state monodromies as in analogous supersymmetric situations. One can verify explicitly that

the resulting duals have matching global anomalies. Finally, we comment on the moduli space of these

gauge theories and discuss other potential nonsupersymmetric examples that could exhibit similar

dualities.
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I. INTRODUCTION

A. Setting the stage

Seiberg duality [1] is an impressive statement about the
infrared dynamics of strongly coupled gauge theories. It
states that two gauge theories, which are distinct in the
ultraviolet (UV), flow in the infrared (IR) to the same fixed
point. In the prototypical example of N ¼ 1 super QCD
(SQCD) with gauge group SUðNcÞ and Nf flavors, the low-
energy dynamics in the conformal window (3Nc=2<

Nf < 3Nc) is described by a nontrivial scale-invariant

theory of interacting quarks and gluons, which has a dual
formulation in terms of a ‘‘magnetic’’ theory with gauge
group SUðNf � NcÞ and the same of number of flavors.

Currently there is no proof of Seiberg duality, but in super-
symmetric cases (e.g.N ¼ 1 SQCD) there is overwhelm-
ing evidence both from field theory [1] and string theory
[2,3].

In field theory, besides ’t Hooft anomaly matching,
which is not based on supersymmetry, one can perform a
number of nontrivial consistency checks that rely on the
power of supersymmetry; in particular, holomorphy and
the properties of the superconformal algebra (see [4] for a
review).

In string theory, one embeds the gauge theory of interest
in a D-brane setup in a ten-dimensional type II superstring
vacuum (with fivebranes in flat space—for a review see [5]
and references therein—or in near-singular Calabi-Yau

compactifications [6]), or lifts to M-theory [7–11]. These
situations include extra degrees of freedom, but by going to
a convenient region of moduli space (alas, typically not the
one of direct interest for the gauge theory) the description
simplifies and one can draw interesting conclusions.
More recently, it has been understood how to obtain a

useful, controllable embedding of interesting SQCD-like
theories in the corner of parameter space most relevant for
the gauge theory. For example, in the case of N ¼ 1
SQCD (with a quartic coupling as we will see in
Sec. III), this description involves Nc D3- and Nf D5-

branes in noncritical type IIB superstrings on

R 3;1 � SLð2Þ1=Uð1Þ; (1.1)

where SLð2Þ1=Uð1Þ is a supersymmetric coset of the
SLð2;RÞ Wess-Zumino-Witten (WZW) model at level 1
[12]. String theory in (1.1) arises within the ten-
dimensional setup that realizes N ¼ 1 SQCD (with two
orthogonal NS5-branes), in a suitable near-horizon decou-
pling limit that takes properly into account the backreac-
tion of the NS5-branes [13]. Since the setup provided by
(1.1) admits an exact world sheet conformal field theory
(CFT) formulation, an explicit analysis of perturbative
string theory is possible in this case.
It has been proposed in [14] that Seiberg duality for

N ¼ 1 SQCD can be understood in the noncritical string
context in terms of D-brane monodromies. We will review
this argument in detail in Sec. III with some important new
elements that modify some of the basic points in the
analysis of [14]. We will find this implementation of the
duality particularly useful in this paper, because in contrast
with the noncritical string considered here, the critical ten-
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dimensional description suffers from a closed string
tachyon instability and its M-theory lift is less understood.

It is an interesting and compelling question whether
similar phenomena, e.g. the appearance of a conformal
window or the existence of Seiberg dual theories, can arise
and be properly understood in nonsupersymmetric gauge
theories. Here are some known facts about this question.

The presence of a conformal window in QCD, more
specifically SUð3Þ Yang-Mills theory1 with Nf Dirac fer-

mions in the fundamental representation was argued many
years ago in [15]. The conclusions of [15] are based on a
perturbative analysis of the two-loop beta function, which
predicts a conformal window for N�

f < Nf < 33=2.

Reference [16] estimated the lower bound of the conformal
window in SUðNcÞ QCD with Nf flavors at N

�
f ’ 4Nc (i.e.

Nf ’ 12 for Nc ¼ 3). Lattice Monte Carlo studies [17,18]

of QCD with Nf flavors suggest N�
f > 8. In search of a

QCD Seiberg dual, ’t Hooft anomaly matching was exam-
ined without definite conclusion in [19].

Seiberg duality in the context of nonsupersymmetric
models has been discussed also in theories that are con-
nected to N ¼ 1 SQCD by soft supersymmetry breaking
[20–22] or by a discrete projection that breaks supersym-
metry. The first attempt to construct a nonsupersymmetric
Seiberg dual in the large N limit by discrete projection was
made by Schmaltz in [23] using the orbifold projection of
[24]. Schmaltz proposed aUðNcÞ �UðNcÞ ‘‘orbifold’’ the-
ory as a candidate for the electric theory. Seiberg duality
was expected to follow in the large N limit as a conse-
quence of a ‘‘planar equivalence’’ between the parent and
daughter theories of the projection. The validity of this
proposal relies, however, on the presence of an unbroken
global Z2 symmetry [25,26], which is not always guaran-
teed. In the string realization of the gauge theory, this
requirement translates to a very simple condition: the
condition that the closed string background is tachyon-
free [27]. Hence, the string realization of the gauge theory
in [23] with D-branes and NS5-branes in the tachyonic
type 0B string theory [28] suggests that the necessary Z2

symmetry is in fact broken in this case. It was therefore
proposed in [29] that a gauge theory that lives on branes of
a nontachyonic type 00B string theory [30,31] (the Sagnotti
model) would be a better candidate for an electric theory.

This logic leads us naturally to the ‘‘orientifold’’ gauge
theories of [32] (for a review see [33]). These are QCD-
like, nonsupersymmetric UðNcÞ gauge theories with fermi-
ons in the (anti)symmetric representation of the gauge
group and Nf scalar and fermion flavors. In fact, for Nc ¼
3 and Nf ¼ 0, the theory with fermions in the antisym-

metric representation is QCD with one flavor. Moreover,
these theories have been argued, in the large N limit, to be
planar equivalent toN ¼ 1 SQCD. Sowe know to leading

order in 1=N that these theories have the same structure as
N ¼ 1 SQCD—in particular, they have a conformal win-
dow at 3

2Nc < Nf < 3Nc and exhibit Seiberg duality. Our

aim in this paper is to extend this picture beyond the large
N regime, where planar equivalence is lost, and to make
some exact predictions about the conformal window and
Seiberg duality at finite N. A specific result is the predic-
tion for a finite N conformal window at 32Nc � 20

3 � Nf �
3Nc � 4

3 with Nc > 5. The plus/minus signs refer to the

specifics of the orientifold projection. The plan of the paper
is as follows.

B. Overview of the paper

In the first part of Sec. II we review known facts about
the orientifold field theories of interest, namely their defi-
nition and symmetries. We consider two models, one with
the ‘‘gaugino’’ in the antisymmetric representation of the
UðNcÞ gauge group and another with the gaugino in the
symmetric representation of the gauge group. We will call
the first model OQCD-AS and the second OQCD-S. We
will refer to any of these theories collectively as OQCD. In
both cases, there are Nf quark multiplets in the fundamen-

tal and antifundamental of the gauge group. The matter
content of both theories is summarized in Table I.
In the second part of Sec. II we present the definition and

symmetries of a corresponding set of theories, which we
will claim are the magnetic duals of OQCD-AS and
OQCD-S. The matter content of these models is summa-
rized in Table II.
Our primary motivation for the proposal of this non-

supersymmetric electric-magnetic duality comes from
string theory. In Sec. III we explain how we can embed
both the electric and magnetic descriptions of OQCD in a
highly curved, but exact type 0B noncritical string theory
background and how we can motivate Seiberg duality as a
statement about boundary and crosscap state monodro-
mies. The setup involvesNcD3-branes, Nf D5-branes and

an O05-plane that projects out the tachyonic mode of type
0B string theory. The outcome of the string theory setup is
a proposal for a duality between the electric description of
OQCD-AS (respectively OQCD-S) with gauge group
UðNcÞ and Nf flavors and the magnetic description with

gauge group UðNf�Ncþ4Þ (respectively UðNf�Nc�
4Þ) and the same number of flavors Nf. A similar analysis

has been performed for type IIB string theory in (1.1) with
D3- and D5-branes [12], giving Seiberg duality forN ¼1
SQCD with gauge group SUðNcÞ [14]. Adding O5-planes
in the type IIB setup gives Seiberg duality for SOðNcÞ or
SpðNc=2Þ gauge group [34]. We note, however, that the
analysis of the D-brane monodromies in the present paper
(in both cases of SQCD and OQCD) departs significantly
from those in the latter two references.
We want to emphasize that noncritical string theory on

(1.1) with an O05-plane is forced upon us in an almost
unique way. From the analysis of the gauge invariant

1Similar statements can be made also for any number of colors
Nc > 3.
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operators of OQCD in the large N limit [33], we expect a
purely bosonic spectrum. This implies, using general ideas
from holography [35], that in order to engineer OQCDwith
a D-brane setup in string theory, we have to embed D-
branes in a background with a closed string spectrum that
is also purely bosonic in space-time. At the same time, the
validity of planar equivalence withN ¼ 1 SQCD at large
N requires [25,26] that a certain discrete symmetry (charge
conjugation in the present case) is not spontaneously bro-
ken. This condition translates to a tachyon-free closed
string background [27]. So gauge theory considerations
alone imply that we are looking for a string theory that
has a purely bosonic closed string spectrum without closed
string tachyons. Besides two-dimensional examples
(which are clearly irrelevant for our purposes) the only
other examples that are known with these features are the
noncritical string theories of [36], a close cousin of which
is the theory we are discussing in Sec. III.2

In Sec. IV we collect the evidence for the proposed
duality and discuss its limitations. The evidence in favor
of our proposal includes:
(1) Seiberg duality is guaranteed to hold at infinite N

because of planar equivalence with N ¼ 1 SQCD.
This alone fixes the basic features of the magnetic
duals, e.g. the matter content and the form of the
dual Lagrangian.

(2) The string theory embedding motivates a definite
proposal for the duality at finite N. The details of
the string theory construction and the interpola-
tion between the electric and magnetic descriptions
are a hybrid of the corresponding setups in the
context of N ¼ 1 SQCD with UðNcÞ or
SOðNcÞ=SpðNc=2Þ gauge groups. Hence, certain
arguments that can be used in favor of the validity
of the duality in those cases suggest (however, do
not rigorously prove) the validity of the duality in
OQCD as well.

(3) Global anomalies can be computed explicitly and ’t
Hooft anomaly matching is found to hold for the
proposed duals at any N.

TABLE II. The matter content of the proposed magnetic description of OQCD-AS (left) and OQCD-S (right), with number of colors
~Nc ¼ Nf � Nc þ 4 and ~Nc ¼ Nf � Nc � 4, respectively.

OQCD-AS ( ~Nc ¼ Nf � Nc þ 4) OQCD-S (N̂c ¼ Nf � Nc � 4)
Uð ~NcÞ SUðNfÞ SUðNfÞ Uð1ÞR Uð ~NcÞ SUðNfÞ SUðNfÞ Uð1ÞR

A� Adjoint ~N2
c � � 0 Adjoint N̂2

c � � 0

� p �Ncð �Nc�1Þ
2 � � 1 o N̂cðN̂cþ1Þ

2 � � 1

~� p �Ncð �Nc�1Þ
2 � � 1 o N̂cðN̂cþ1Þ

2 � � 1

� h ~Nc h �Nf � Nc�2
Nf

h N̂c h �Nf � Ncþ2
Nf

 h �~Nc h �Nf � Nc�Nf�2

Nf
h �̂Nc h �Nf � Nc�Nfþ2

Nf

~� h �~Nc � h Nf
Nc�2
Nf

h �̂Nc � h Nf
Ncþ2
Nf

~ h ~Nc � h Nf
Nc�Nf�2

Nf
h N̂c � h Nf

Nf�Nfþ2

Nf

M � h Nf h �Nf
2Nf�2Ncþ4

Nf
� h Nf h �Nf

2Nf�2Nc�4

Nf

� � o NfðNfþ1Þ
2 � Nf�2Ncþ4

Nf
� p NfðNf�1Þ

2 � Nf�2Nc�4

Nf

~� � � o NfðNfþ1Þ
2

Nf�2Ncþ4

Nf
� � p NfðNf�1Þ

2

Nf�2Nc�4

Nf

TABLE I. The matter content of the electric description of OQCD. The left (right) four columns depict the matter content,
representations and Uð1ÞR quantum numbers of the OQCD theory in the antisymmetric (symmetric) projection.

OQCD-AS OQCD-S

UðNcÞ SUðNfÞ SUðNfÞ Uð1ÞR UðNcÞ SUðNfÞ SUðNfÞ Uð1ÞR
A� Adjoint N2

c � � 0 Adjoint N2
c � � 0

� p NcðNc�1Þ
2 � � 1 o NcðNc�1Þ

2 � � 1

~� p NcðNc�1Þ
2 � � 1 o NcðNcþ1Þ

2 � � 1

� h �Nc h Nf � Nf�Ncþ2

Nf
h �Nc h Nf � NcðNcþ2Þ

Nf

� h Nc h Nf � �Ncþ2
Nf

h Nc h Nf � �Nc�2
Nf

~� h Nc � h �Nj
Nf�Ncþ2

Nf
h Nc � h �Nj

Nf�Ncþ2

Nf
~� h �Nc � h �Nj

�Nc�2
Nf

h �Nc � h �Nf
�Nc�2
Nf

2The Sagnotti model in ten dimensions is also a theory with a
tachyon-free, purely bosonic closed string spectrum, but includes
an additional open string sector with space-filling D9-branes.
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In Sec. V we discuss the implications of our proposal for
the IR dynamics of OQCD. One of them is a prediction for
the precise range of the conformal window and an emerg-
ing picture of the phase structure of the theory as a function
of the number of flavors Nf. Another interesting question

concerns the quantum moduli space of OQCD. The parent
N ¼ 1 SQCD has a whole space of vacua for Nf � Nc
parametrized by the vacuum expectation values (vevs) of
meson and baryon fields. At finite N quantum corrections
lift the classical moduli space of OQCD and one is left with
a unique vacuum. To demonstrate this we compute the one-
loop Coleman-Weinberg potential for the vev of the squark
fields.

We conclude in Sec. VI with a brief discussion on
possible extensions of this work.

II. DUALITY IN NONSUPERSYMMETRIC GAUGE
THEORY: A PROPOSAL

In this section, we propose an IR duality between an
electric and a magnetic version of the nonsupersymmetric
OQCD gauge theories. We present the precise definition of
these theories and summarize their most salient features.

A. The electric theory

The electric version of the gauge theory we will discuss
here comes into two variants: OQCD-AS and OQCD-S.
The matter content of these theories is given in Table I. In
both cases, the boson representations are identical to the
boson representations of the original UðNcÞ super-QCD.
The difference occurs in the fermionic sector. The original
gaugino is replaced by a gaugino in either the antisymmet-
ric representation (in OQCD-AS) or in the symmetric
representation (in OQCD-S). Similarly, the quarks (the
‘‘superpartners’’ of the ‘‘squarks’’), although still in bifun-
damental representations, do not transform exactly as the
quarks of the original supersymmetric theory. Their repre-
sentations are fixed by their coupling to the gaugino and the
quark, namely by the terms

OQCD� AS: �½ij	�i
�
��j� þ ~�½ij	 ~��

i
�~�j� (2.1a)

OQCD� S: �fijg�i
�
��j� þ ~�fijg ~��

i
�~�j�; (2.1b)

where i, j are color indices and � is a flavor index. The
tree-level Lagrangian of the theory is inherited from the
supersymmetric theory, hence it contains the same fields
and the same interaction terms as in the supersymmetric
UðNcÞ gauge theory. Altogether, the Lagrangian looks like
a hybrid of bosons from the UðNcÞ and fermions from the
SOðNcÞ [SpðNc=2Þ] theories.

Both theories exhibit an anomaly free SUðNfÞ �
SUðNfÞ �Uð1ÞR global symmetry. We call the anomaly

free axial symmetry Uð1ÞR, although it is not an R-
symmetry. Moreover, it will be important for our consid-
erations below that the baryon Uð1ÞB symmetry is gauged
and that the gauge group is UðNcÞ instead of SUðNcÞ.
Consequently, there are no baryon operators in the theories
we will consider.
At the classical level, the model admits a moduli space,

parametrized by the vevs of scalars, exactly as in the
supersymmetric UðNcÞ theory. At the quantum level, and
finite N, this moduli space is lifted as no supersymmetry is
present. This will be discussed further in Sec. V.
Nevertheless, due to planar equivalence [33] in the large
N limit, both OQCD-AS and OQCD-S become equivalent
to theUðNcÞ electric SQCD theory in the common sector of
C-parity even states [26]. Hence, in this limit the non-
supersymmetric effects are suppressed and OQCD exhibits
the same moduli space as the SQCD theory.

B. The magnetic theory

The planar equivalence at infiniteN raises the possibility
of an electric-magnetic duality in OQCD even at finite N.
Our purpose here is to make a definite proposal for this
finite N duality. We will propose that the Seiberg dual of
the UðNcÞ electric OQCD-AS theory is a UðNf � Nc þ 4Þ
magnetic OQCD-AS theory. Similarly, the dual of the
electric OQCD-S is a UðNf � Nc � 4Þ magnetic OQCD-

S theory. At infinite N, both magnetic duals become planar
equivalent to the magnetic UðNf � NcÞ SQCD theory.

The matter content of the proposed magnetic theories is
summarized in Table II. Besides the gauge bosons and the
‘‘gluinos,’’ this table contains, as in SQCD, additional
fundamental degrees of freedom, which comprise a com-
plex scalar field M (the magnetic meson) and Weyl fermi-
ons �, ~� (the magnetic ‘‘mesinos’’).
The representations of the fermions are fixed by the

same rules as in the electric case. The representation of
the gaugino is antisymmetric in OQCD-AS and symmetric
in OQCD-S. The mesino representation is symmetric in
OQCD-AS and antisymmetric in OQCD-S, otherwise the
anomalies would not match. This is similar to the SOðNÞ
[SpðN=2Þ] SQCD case, where the mesino representation is
symmetric when the gaugino is antisymmetric (and anti-
symmetric when the gaugino is symmetric).
The tree-level Lagrangians of the magnetic theories are

again inherited, due to planar equivalence at infinite N,
from the supersymmetric theory. An important feature of
the magnetic Lagrangians are the meson, ‘‘mesino’’ cou-
plings

OQCD� AS: M�
� �k

~ �k þ �f��g��
k  

�k þ ~�f��g ~�k
�
~ �k

(2.2a)

OQCD� S: M�
� �k

~ �k þ �½��	��
k  

�k þ ~�½��	 ~�k
�
~ �k:

(2.2b)
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III. EMBEDDING IN STRING THEORY

OQCD is a four-dimensional gauge theory with a purely
bosonic spectrum of gauge invariant operators in the large
N limit [33]. This is an indication, using general ideas from
holography [35], that in order to engineer OQCD with a D-
brane setup in string theory, we should embed D-branes in
a nonsupersymmetric vacuum with a purely bosonic closed
string spectrum. At the same time, the validity of planar
equivalence with N ¼ 1 SQCD at large N requires [25–
27] the absence of closed string tachyons. Higher dimen-
sional backgrounds with these features are not common in
string theory. The only such examples that we are aware of
are the noncritical examples of [36], which are noncritical
variants of the type 00B string theory in ten dimensions
[30,31]. Fortunately, a close cousin of the closed string
theories presented in [36] provides the right setup for the
string theory embedding of OQCD. Electric-magnetic du-
ality in this context will be discussed using the techniques
of [14], which were applied in an analogous type IIB
construction to N ¼ 1 SQCD. Note, however, that we
correct some statements made in [14], thus obtaining a
partially modified picture of electric-magnetic duality in
the context of noncritical string theory.

We would like to mention in passing that there is a close
relation between the noncritical embedding of gauge theo-
ries that we consider here and the more familiar Hanany-
Witten (HW) constructions [37] in critical string theory,
with configurations of NS5-branes, D-branes, and orienti-
folds in flat space-time (see [5] for an extensive review).
ForN ¼ 2 gauge theories this relation has been discussed
in detail in [38]. For N ¼ 1 SQCD it has been discussed
in [12,14] (see also [39] for related issues). However, in
this paper, we will not make explicit use of HW construc-
tions (or their M-theory lifts for that matter), since they are
embedded in tachyonic type 0 string theory and the re-
quired orientifold planes do not fully project out the closed
string tachyon (more details are given at the end of
Sec. III A). On the contrary, closed string tachyons are
not an issue in the noncritical description. Moreover, as
always, the noncritical description isolates and captures in
HW constructions the region of moduli space that is most
relevant for the gauge theory of interest (for a more de-
tailed discussion of these aspects we refer the reader to
[12,14,38] and references therein).

In this section we will focus mostly on the physics and
the implications of the string theory setup at hand. Many
explicit technical details are left for the interested reader in
Appendices A and B.

A. OQCD in type 00B noncritical strings

Our starting point is type 0B string theory on the exact
perturbative string background

R 3;1 � SLð2Þ1
Uð1Þ : (3.1)

The flat R3;1 factor requires on the world sheet the usual
four free bosons and their fermionic superpartners. The
second factor is captured by an axial coset of the SLð2;RÞ
supersymmetric WZW model at level k ¼ 1. In target
space this superconformal field theory describes the
Euclidean two-dimensional black hole [40–42] (commonly
known as the ‘‘cigar’’ geometry). At k ¼ 1 this geometry
has curvatures at the string scale and is highly curved,
hence the geometric intuition is not always a useful or
accurate guide for the description of this setup. Here are
some useful facts about the supersymmetric SLð2Þ=Uð1Þ
coset.
It is a superconformal field theory with N ¼ ð2; 2Þ

supersymmetry that has a mirror dual formulation asN ¼
2 Liouville theory [43–45]. An important aspect of this
duality is the presence of a nonperturbative winding con-
densate in the CFT. Far from the tip of the cigar, the coset
CFT is well approximated by the free theory R ffiffi

2
p �Uð1Þ1,

i.e. a linear dilaton field � with background charge Q ¼ffiffiffi
2

p
, a free boson X at the self-dual radius3 R ¼ ffiffiffi

2
p

, and
their supersymmetric partners, a Dirac fermion with left-

and right-moving components  � ¼  � � i x and ~ � ¼
~ � � i ~ x. In terms of this free field description, the N ¼
2 Liouville potential reads

�SLð�; ��Þ ¼ i

2	

Z
d2z½� þ ~ þe�ð�þiðXL�XRÞ=

ffiffi
2

p Þ

þ �� � ~ �e�ð��iðXL�XRÞ=
ffiffi
2

p Þ	: (3.2)

XL, XR denote the left- and right-moving parts of Xðz; �zÞ.
In the case at hand k ¼ 1, and the Liouville coupling

constant � is given by mirror symmetry in terms of the
effective string coupling constant as follows:4

�ren;k¼1 :¼ lim

!0þ


�ð1=2Þ�k¼1þ
 ¼ 2

geff
: (3.3)

According to this relation, when �! 0, the background
becomes strongly coupled. A more detailed description of
the supersymmetric SLð2;RÞ=Uð1Þ coset and N ¼ 2
Liouville theory can be found, for example, in [48] and
references therein.
The type 0B theory has a closed string tachyon. In order

to project it out of the physical spectrum we can use, like in
ten dimensions [30,31], a space-filling orientifold; in more
technical terms, the orientifold should be spacefilling in
R3;1 and B-type in the SLð2Þ=Uð1Þ supercoset [36]. We
now proceed to discuss the physics of this orientifold and
its implications in more detail.

3Hereafter we set �0 ¼ 2.
4The relation found in [46] needs to be renormalized in the

limit k! 1þ. See also [47]. For convenience, we will denote
�ren;k¼1 simply as � in what follows.
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1. The closed string sector

From the world sheet point of view, type 0B string
theory on (3.1) is described by the tensor product of a
free R3;1 super-CFT, the usual ghosts and superghosts
and the supercoset SLð2Þ=Uð1Þ, with left-right symmetric
boundary conditions for the world sheet fermions. Physical
states have delta-function normalizable wave functions in
the coset (i.e. belong to the continuous representations, see
Appendix A); their left- and right-moving conformal
weights, for radial momentum P, read

� ¼ 1

2
p�p

� þ P2 þ ðnþ wÞ2
4

þ N � 1

4
¼ 0; (3.4a)

�� ¼ 1

2
p�p

� þ P2 þ ðn� wÞ2
4

þ �N � 1

4
¼ 0; (3.4b)

where n (respectively w) is the momentum (respectively
the winding) around the compact direction of the coset.5N,
�N are the left-, right-moving oscillator levels and p� is the

flat space four-dimensional momentum. From the torus
partition function (see Appendix B), one finds the follow-
ing spectrum of lowest lying modes (see also [49]):

(i) A real tachyon with m2 ¼ �1=2 for n ¼ w ¼ 0 in
the NS�NS� sector.

(ii) A pair of complex massless scalars, for (n ¼ �1,
w ¼ 0) and (n ¼ 0, w ¼ �1), in the NS�NS�
sector.

(iii) A real massless Ramond-Ramond (RR) scalar and a
massless self-dual RR two-form in six dimensions
from the RþRþ sector, plus another real scalar and an
anti-self-dual two-form from the R�R� sector. From
the four-dimensional perspective, one gets two com-
plex scalars and two vectors.

The lowest modes in the NSþNSþ fields ðg��; B��;�Þ are
massive, with mass squared m2 ¼ 1=2. The positive mass
shift is due to the presence of a linear dilaton.

In order to obtain a tachyon-free spectrum, we need to
perform a specific orientifold projection [we refer the
reader to [48] for a general analysis of orientifolds in
SLð2Þ=Uð1Þ]. The orientifold that turns out to be appro-
priate for our present purposes is very similar to the one
utilized in [36], and is defined by the following action on
primary states:6

P ¼ �ð�ÞQR : jn; wi 
 j0iNS
! ð�Þnþwþ1jn;�wi 
 j0iNS; (3.5)

where � is the standard world sheet parity. In this defini-
tion,QR is the charge of the left-movingUð1ÞR world sheet

symmetry

QR ¼
I dz

2	i
ði � x þ i

ffiffiffi
2

p
@XÞ ¼ Fþ nþ w; (3.6)

whereF is the left-moving world sheet fermion number. As
with the critical type 00B theory defined in [30,31], the
world sheet parity (3.5) acts on the GSO-invariant states of
the corresponding type IIB model simply as �.
The closed string tachyon is odd under P , hence it is

projected out. The resulting theory has a tachyon-free
spectrum with a Hagedorn density of states, but no
space-time fermions. The invariant massless physical
states are
(i) A complex massless scalar from the states j�1;0i


j0iNS in the NS�NS� sector.
(ii) A real massless scalar from ðj0;þ1i þ j0;�1iÞ 


j0iNS in the NS�NS� sector.
(iii) A four-dimensional massless vector and a pair of

massless real scalars from the RþRþ sector.
Compared to the type IIB case, instead of having two
complex massless scalars in the NSNS sector, one has
one complex and one real scalar. The missing state is the
antisymmetric combination of winding one states.
Interestingly enough, this is not the whole story. It was

found in [48] (see also [34]) that an orientifold described
by the parity (3.5) alone does not give a consistent crosscap
state7 in the SLð2Þ=Uð1Þ CFT. The full crosscap state
contains a second piece, with a wave function that is
localized near the tip of the cigar. The parity associated
with the localized piece of the crosscap state acts on closed
string states as

~P ¼ ð�ÞnP ¼ ð�ÞFþw�: (3.7)

The presence of this parity does not affect the closed string
spectrum as determined with an asymptotic linear dilaton
analysis above.8

The full consistency of the CFT requires that theN ¼ 2
Liouville potential (3.2) is invariant under any parity we
want to consider. Indeed, one can check that under both

parities P and ~P the N ¼ 2 Liouville potential trans-
forms as follows:

P ; ~P : �SLð�; ��Þ ! �SLð ��;�Þ: (3.8)

Consequently, these are symmetries of the CFT at the
nonperturbative level if and only if � 2 R.

5Only the former is preserved by the interactions taking place
near the tip of the cigar.

6This orientifold is B-type in SLð2Þ=Uð1Þ, whereas the orienti-
fold appearing in [36] was A-type. A-type boundary conditions
are Dirichlet boundary conditions for the Uð1Þ boson X whereas
B-type are Neumann.

7In this paper we will use heavily the boundary and crosscap
state formalism in boundary conformal field theory. For an
introduction to this formalism we refer the reader to the reviews
[50–52] and references therein.

8For instance, one can check that the parity (3.7) does not
contribute to the Klein bottle amplitude with a term proportional
to the volume of the asymptotic linear dilaton cylinder. There is
only a localized, finite contribution from states with zero radial
momentum P. More details can be found in Appendix B, or in
Ref. [48].
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The fully consistent crosscap state, including both an
extensive and a localized component that correspond, re-

spectively, to the parities P and ~P , can be found with
modular boostrap methods, using the results of [48]. It
turns out to be similar to the RR part of the supersymmetric
type II orientifold found in [34], and reads

jCi ¼ jC; exti þ jC; loci
¼

Z 1

0
dP

X
�¼�1

� X
w
2Zþ1

�ext

�
P;
w

2
; �

�
jC;P;w

2
;�iiR

þ X
w
2Z

�loc

�
P;
w

2
; �

�
jC;P;w

2
;�iiR

�
; (3.9)

with the wave functions9

�ext

�
P;
w

2
; �

�
¼

ffiffiffi
2

p
4	2

�iP�ðw=2Þ ��iPþðw=2Þ

� �ð1� 2iPÞ�ð�2iPÞ
�ð1� iPþ w

2Þ�ð�iP� w
2Þ

(3.10a)

�loc

�
P;
w

2
; �

�
¼

ffiffiffi
2

p
4	2

�ð�Þw=2�iP�ðw=2Þ ��iPþðw=2Þ

� �ð1� 2iPÞ�ð�2iPÞ
�ð1� iPþ w

2Þ�ð�iP� w
2Þ

cosh	P:

(3.10b)

jC;P;w=2;�iiR denote B-type crosscap Ishibashi states

with superconformal gluing conditions G� ¼ � ~G� on the
real axis. The flat space-time part of these Ishibashi states
is the standard one associated with the parity ð�ÞF�.
Although � ¼ �� in our case, it will still be useful to
keep the holomorphic/antiholomorphic dependence on �
explicit in the crosscap (and later boundary state) wave
functions.

The orientifold we are discussing here is space filling,
hence we will call it an O05-plane. Notice that it sources
only modes in the RR sector with zero momentum n. The
extensive part of the orientifold sources odd winding
modes, which are all massive, whereas the localized part
sources even winding modes. The zero winding mode is a
massless RR field. Since there are no massless, nondynam-
ical RR tadpoles from the extensive part of the orientifold,
there is no need to add extra D-branes for consistency [36].
Thus, we have a consistent theory of closed strings with a
purely bosonic spectrum. This should be contrasted with
the corresponding ten-dimensional case [30,31], where D-
branes need to be added to cancel a nonvanishing RR
tadpole.

2. A brief comment on the relation with NS5-brane con-
figurations

There is a configuration of NS5-branes with an orienti-
fold plane in ten-dimensional type 0A string theory, whose
near-horizon region, in a suitable limit, will be described
by the type 0B noncritical string theory on (3.1) in the
presence of the O05-plane. This configuration involves two
orthogonal NS5-branes and an O04-plane stretched along
the following directions:

NS5: 0 1 2 3 4 5 at x6 ¼ 0; x7 ¼ x8 ¼ x9 ¼ 0

NS50: 0 1 2 3 8 9 at x6 ¼ L; x4 ¼ x5 ¼ x7 ¼ 0

O04: 0 1 2 3 6 at x4 ¼ x5 ¼ x7 ¼ x8 ¼ x9 ¼ 0:

The O04-plane is the standard O0 plane in ten dimensions
associated with the orientifold projection ð�ÞFI5� (I5 is
the reversal parity in the transverse space xi ! �xi, with
i ¼ 4, 5, 7, 8, 9.)10

One can argue, as in [13], that the tachyon-free type 0B
noncritical string theory of this section describes the near-
horizon geometry of the above configuration in a double-
scaling limit, where the asymptotic string coupling gs ! 0

and L=
ffiffiffiffiffi
�0p
gs is kept fixed. Apparently, as we take this

near-horizon limit, the bulk tachyon decouples and is left
outside the near-horizon throat [36]. One can think of this
situation as the exact opposite of localized closed string
tachyons in nonsupersymmetric orbifolds [53].
Having said this, we could proceed with the above

fivebrane configuration to construct a HW setup that real-
izes the electric description of OQCD [33]. The HW setup
requires, besides the fivebranes and the O04-plane, Nc D4-
branes parallel to the O04-plane suspended between the
NS5-branes along the 6-direction and Nf D6-branes along

the 0 1 2 3 7 8 9 plane. Then, keeping the bulk tachyon at its
unstable maximum, we could further use what we know
from similar supersymmetric configurations in type IIA to
argue for Seiberg duality in OQCD and recover the results
of Sec. II. We will not follow this route here, instead we
will go to the noncritical description, which allows for
more explicit control in a tachyon-free environment and
argue for Seiberg duality there.

B. D-branes

N ¼ 1 SQCD can be realized in the type IIB non-
critical background (3.1) with an appropriate combination
of localized and extended B-type branes in SLð2Þ=Uð1Þ
[12] (see also [14,47,54] for earlier work). The boundary
states we will use are the same as those of the supersym-
metric setup. These ‘‘dyonic’’ branes are not elementary in

9The wave functions in Eqs. (3.10a) and (3.10b) are identified
with the coefficients of the one-point functions on the disc for
closed string modes with radial momentum P, winding w and
zero angular momentum n, in the RR sector.

10A mirror description of this setup is given by wrapped D-
branes with an orientifold in the deformed conifold geometry as
in [6].
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oriented type 0B string theory, however they are elemen-
tary in the presence of the O05 orientifold.

1. Color branes

The ‘‘color’’ branes, i.e. the branes that will provide the
gauge degrees of freedom, are D3-branes in the type 00B
theory that are localized near the tip of the cigar and have
Neumann boundary conditions in R3;1. Their open string
spectrum is made only of the identity representation of the
N ¼ 2 superconformal algebra, see Appendix A for more
details.

In the SLð2Þ=Uð1Þ boundary conformal field theory, the
corresponding boundary states obey B-type boundary con-
ditions and can be expressed as a linear combination of B-
type boundary Ishibashi states [12]:

��������B;P;
w

2
;�

��
NSNS=RR;

P 2 Rþ; w 2 Z; � ¼ �1:

(3.11)

These Ishibashi states have nonvanishing couplings to
winding closed string modes only. They are associated to

N ¼ 2 continuous representations with QR ¼ � ~QR ¼ w
in SLð2Þ=Uð1Þ and obey in R3;1 the standard Neumann
boundary conditions. As with the crosscap Ishibashi states
above, the label � ¼ �1 refers to the superconformal
boundary conditions.11

Boundary states with � ¼ �1 (called, respectively,
electric or magnetic) are separately GSO invariant in
type 0B string theory. The orientifold action, however,
maps one to the other. More specifically, the action of the
parities (3.5) and (3.7) on the Ishibashi states (3.11) is

P ; ~P
��������B;P;

w

2
;�

��
NSNS

¼ð�Þwþ1

��������B;P;�w
2
;��

��
NSNS

;

(3.12a)

P ; ~P
��������B;P;

w

2
;�

��
RR

¼ð�Þwþ1

��������B;P;�w
2
;��

��
RR

(3.12b)

Then one can check that the D3-brane boundary state,

which is invariant under the both parities P , ~P is of the
same form as the boundary state of the BPS D3-brane in
type IIB string theory obtained in [12]

jD3i ¼ X
a¼NSNS;RR

Z 1

0
dP

X
w2Z

�a

�
P;
w

2

����������B;P;
w

2
;þ

��
a

þ ð�Þwþ1

��������B;P;
w

2
;�

��
a

�
; (3.13)

where

�NSNSðP;mÞ ¼
ffiffiffi
2

p
32	2

�iP�m ��iPþm

� �ð12 þmþ iPÞ�ð12 �mþ iPÞ
�ð2iPÞ�ð1þ 2iPÞ ; (3.14a)

�RRðP;mÞ ¼
ffiffiffi
2

p
32	2

�iP�m ��iPþm

� �ð1þmþ iPÞ�ð�mþ iPÞ
�ð2iPÞ�ð1þ 2iPÞ : (3.14b)

Notice that this boundary state does not carry any labels,
i.e. it has no open string modulus.
The annulus and Möbius strip amplitudes for this brane

are presented in Appendix B. The former is identical to the
D3-brane annulus amplitude in type IIB found in [12], see
Eq. (B4), and vanishes by supersymmetry. The latter con-
tains a contribution from the Ramond sector only, see
Eq. (B5), hence this amplitude breaks explicitly the
Bose-Fermi degeneracy and is responsible for the super-
symmetry breaking in our D-brane setup. Adding the two
contributions, we can read off the spectrum of massless
states

AD3-D3 þMD3;OO05 ¼ V4

Z 1

0

dt

2t

1

ð16	2tÞ2

�
�
N2
c

2
ð2þOðqÞÞNSþ

� NcðNc � 1Þ
2

ð2þOðqÞÞRþ

�
:

(3.15)

The Neveu-Schwarz (NS) sector contains a UðNcÞ gauge
boson. The R sector contains a Dirac fermion transforming
in the symmetric (upper sign) or antisymmetric (lower
sign) representation of UðNcÞ, depending on the sign of
the orientifold charge.

2. Flavor branes

The ‘‘flavor’’ branes are space-filling D5-branes labeled
by a continuous variable s 2 Rþ parametrizing the mini-
mum distance of the brane from the tip of the cigar. A
second continuous parameter  2 ½0; 2	Þ parametrizes the
value of a Wilson loop around the compact direction of the
cigar. In the asymptotic cylinder part of the cigar, the D5-
branes are double-sheeted and look likeD- �D pairs (without
an open string tachyon however). This geometry is respon-
sible for the UðNfÞ �UðNfÞ global symmetry of the four-

dimensional gauge theory that we will engineer. Moreover,

11Our definition, which follows standard practice, has the
property

NSNSh�je�	THc j�0iNSNS � #

�
0

1���0
2

�
ðiTÞ;

RRh�je�	THc j�0iRR � #

�
1

1���0
2

�
ðiTÞ;

where #½ab	ð�Þ are standard theta functions.
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although space filling, the flavor D5-branes are not charged
under a nondynamical six-form RR potential in six
dimensions.

The full D5 boundary states are given in terms of the
same B-type Ishibashi states as the color branes (3.11)

jD5; s; 
2	

i ¼ X
a¼NSNS;RR

Z 1

0
dP

X
w2Z

�a

�
s; ;P;

w

2

�

�
�
jB;P;

w

2
;þiia � ð�ÞwjB;P;

w

2
;�iia

�
;

(3.16)

where now

�NSNS

�
s; ;P;

w

2

�
¼

ffiffiffi
2

p
16	2

ð�Þwe�iw�iP�ðw=2Þ ��iPþðw=2Þ

� �ð�2iPÞ�ð1� 2iPÞ
�ð12 � w

2 � iPÞ�ð12 þ w
2 � iPÞ

� cosð4	sPÞ; (3.17a)

�RR

�
s; ;P;

w

2

�
¼

ffiffiffi
2

p
16	2

ð�Þwe�iw�iP�ðw=2Þ ��iPþðw=2Þ

� �ð�2iPÞ�ð1� 2iPÞ
�ð1� w

2 � iPÞ�ðw2 � iPÞ
� cosð4	sPÞ: (3.17b)

The annulus amplitude for open strings stretched be-
tween identical flavor branes (5-5 strings) is given by
Eq. (B6) in Appendix B. The massless spectrum comprises
of an N ¼ 1 chiral multiplet (with the quantum numbers
of a massless meson), which is part of a continuous spec-
trum of modes. Vacuum expectation values of the scalar
fields in this multiplet should be interpreted as parameters
of the four-dimensional gauge theory [12]. The massive
spectrum contains a vector multiplet, which accounts for
the gauge degrees of freedom on the D5-brane. The posi-
tive mass shift in this multiplet is due to the linear dilaton.

The action of the orientifold parity on the open strings
attached to the flavor branes can be read from the corre-
sponding Möbius strip amplitudes, which appear in
Appendix B. As before, the Möbius strip amplitudes are
nonzero only in the Ramond sector, hence they leave the
bosons unaffected but project the fermions. In particular,
the fermionic superpartner of the massless chiral multiplet
transforms, after the orientifold projection, in the (anti)
symmetric representation of the diagonal UðNfÞ flavor

group (the opposite projection compared to that of the
gauginos).

The nonvanishing Möbius strip amplitude manifestly
shows that space-time supersymmetry is broken on the
flavor branes and leads to a net force between the flavor
D5-branes and the orientifold plane, which we discuss in
Appendix D. This force, which arises as a one-loop effect
on the flavor branes, has no consequences on the dynamics
of the four-dimensional OQCD theory that will be engi-

neered in the next subsection. Indeed, we will consider the
open string dynamics in a low-energy decoupling limit
where the dynamics on the flavor branes are frozen. In
this limit, only fields from the 3-3 and 3-5 sectors are
allowed to run in loops.

3. Flavor open strings

Open string stretched between flavor branes and color
branes (3-5 strings) transforms in the fundamental repre-
sentation of UðNcÞ. From the relevant annulus amplitude,
see Eq. (B10), one gets a nontachyonic, supersymmetric
open string spectrum either from a flavor brane with  ¼ 0

(jD5ðs; 0Þi) or a flavor antibrane jD5ðs; 1=2Þi with  ¼ 	
[12]. For these branes and Nc color branes, the 3-5 sector
includes the following light degrees of freedom:
(i) A flavor brane with  ¼ 0 gives an N ¼ 1 massive

vector multiplet with four-dimensional mass m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 1=2

p
in the fundamental of UðNcÞ.

(ii) A flavor antibrane with  ¼ 	 gives two quark chiral

multiplets with mass m ¼ ffiffiffi
2

p
s, in the fundamental

and antifundamental of UðNcÞ.
Only the second case will be relevant for engineering the
electric OQCD theory.

C. Realizing the electric theory

We are now in position to reveal the final picture. The
electric version of OQCD can be obtained in noncritical
type 00B string theory as the low-energy description of the
open string dynamics on Nc color branes jD3i and Nf

flavor branes of the type jD5ðs; 1=2Þi. In this configuration,
the four-dimensional low-energy degrees of freedom are
(i) A UðNcÞ gauge field A� from 3-3 strings.

(ii) A Dirac fermion in the symmetric or antisymmetric
UðNcÞ representation from 3-3 strings. Positive ori-
entifold charge gives the symmetric representation
and negative charge the antisymmetric.

(iii) Nf quark multiplets � in the UðNcÞ fundamental

representation and Nf antifundamental multiplets ~�

from 3-5 strings. The mass of these multiplets is
proportional to s, the parameter that appears in the
labeling of the D5-brane boundary state.

In addition, from 5-5 strings we get a massless chiral
multiplet propagating in five dimensions. From the four-
dimensional point of view, the dynamics of this multiplet
are frozen; the vacuum expectation value of the scalar
component of this multiplet gives a mass to the quarks,
i.e. it is directly related to the parameter s above [12].
So far we have discussed the low-energy open string

spectrum, but we have not determined unambiguously all
the couplings in the low-energy string field theory
Lagrangian.12 The symmetries of the D-brane setup sug-

12From the gauge theory point of view, this is the UV
Lagrangian defined at some scale below the string scale.
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gest that the Lagrangian includes the usual minimal cou-
plings of the OQCD theory, but, in principle, it is possible
that additional couplings allowed by the symmetries are
also present. One could check this by computing tree-level
correlation functions in open string theory. This is a com-
plicated exercise that requires explicit knowledge of open
string correlation functions in the boundary conformal field
theory of SLð2Þ=Uð1Þ. This information goes beyond the
currently available technology, so wewill not pursue such a
task any further here.

Nevertheless, it was pointed out in [14] (in a type IIB
context, using the results of a computation in [47]) that the
leading asymptotic backreaction of NcjD3i and

NfjD5ðs; 1=2Þi boundary states on the profile of the dilaton
and graviton fields in the bulk is proportional to Nf � 2Nc.

One would expect the factor Nf � 3Nc from a D-brane

setup realizing just N ¼ 1 SQCD without any extra cou-
plings. On these grounds, Ref. [14] proposed that the gauge
theory on the above D-brane setup is in factN ¼ 1 SQCD
with an extra quartic superpotential coupling of the formZ

d2W ¼ h
Z

d2ðQ ~QÞðQ ~QÞ; (3.18)

where Q, ~Q are the quark multiplets of N ¼ 1 SQCD in
the fundamental and antifundamental, respectively. This
proposal is consistent with the one-loop beta function of
this theory [55], which is also proportional toNf � 2Nc. In

the context of holography, this quartic coupling has been
discussed recently in [56,57].

These observations carry over naturally to our nonsu-
persymmetric case. Hence, we propose that the above D-
brane setup in type 00B string theory realizes the electric
OQCD-S theory (see Table I) if the orientifold charge is
positive, or the OQCD-AS theory if the charge is negative,
with an extra quartic coupling. We will find further evi-
dence for the quartic coupling in a moment.

D. D-brane monodromies

Now we want to examine the behavior of the D3, D5
boundary states and the O05 crosscap state under the Z2

transformation of the closed string modulus � [the
Liouville coupling constant, see Eq. (3.2)]

�! ��: (3.19)

Henceforth, we will refer to this transformation as the
�-transition following [58]. It has been argued in a similar
type IIB setting [14,34] that one can use the�-transition to
interpolate between D-brane configurations that realize the
electric and magnetic descriptions of SQCD with gauge
groups SU, or SO=Sp. This fits very nicely with the HW
description, where � corresponds to the separation of the
NS5 and NS50 branes in the ðx6; x7Þ plane.

Note that in the supersymmetric SU case, � takes any
value in the complex plane, so this interpolation can be
made continuously without ever passing through the strong

coupling point at � ¼ 0. This should be contrasted with
the SO=Sp cases [34] where � is real, so a continuous
interpolation from � to �� entails passing through the
strong coupling point at the origin at which we lose per-
turbative control over the theory. In the present case of type
00B string theory, we face a similar difficulty, since � is
again real. Our attitude towards this will be the same as in
[34]: we will perform the � transition (3.19) as a Z2

transformation and will account for any missing RR charge
at the end of this process by adding the appropriate number
of D-branes needed by charge conservation. Here we make
the underlying assumption that nothing dramatic can hap-
pen along the � real line that could affect the IR dynamics
of the gauge theory on the branes. We discuss this point
further in the next section.
To distinguish the boundary and crosscap states of the�

and �� theories, we will explicitly label them by �. To
implement Seiberg duality, we supplement the�-transition
(3.19) with the following boundary and crosscap state
transformations:13

jD3;�i ! jD3;��i; (3.20a)

jD5; 0; 1=2;�i ! jD5; i=2; 0;��i
¼ jD5; 0; 1=2;��i þ jD3;��i; (3.20b)

jO05;�i ! jO05;��i: (3.20c)

These monodromies are different from the ones proposed
in [14,34], so we will take a moment here to explain each
one of them in detail.14

First of all, the�! �� transformation is equivalent, as
a transformation of theN ¼ 2 Liouville interaction (3.2),
to a half-period shift s~x along the angular direction in

winding space, i.e. XL � XR ! XL � XR þ
ffiffiffi
2

p
	. Hence,

the Z2 transformation (3.19) is equivalent to the multi-
plication of the D-brane wave functions with the phase
ð�Þw, which follows from the action

s~x

��������B;P;
w

2
;�

��
¼ ð�Þw

��������B;P;
w

2
;�

��
;

s~x

��������C;P;w2 ;�

��
¼ ð�Þw

��������C;P;w2 ;�

��
:

(3.21)

This is consistent with the � dependence of the wave
functions (3.14a), (3.14b), (3.17a), and (3.17b). The first

13Notice that we set the D5-brane parameter s to zero. In other
words, we discuss what happens when the quark multiplets in the
electric description are massless.
14Some of the monodromies proposed in [14,34] do not follow
from the �! �� transformation and lead to D3-branes with
negative tension. They also lead to a gauge theory spectrum with
unexplained features that does not fit with the expected Seiberg
duality. The monodromies we present here do not have these
problems. Although we discuss a setup realizing OQCD, our
analysis has analogous implications for the D-brane setups that
realize N ¼ 1 SQCD with SU or SO=Sp gauge groups, which
were the subject of [14,34].
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line (3.20a) exhibits the transformation of the D3-brane
(i.e. the color brane) according to these rules.

The second line (3.20b) presents the transformation of
the D5 boundary states. In order to obtain Seiberg duality,
we want a process that affects only the physics near the tip
of the cigar. In particular, we want to keep the value of the
Wilson line on the D5-branes, as measured in the asymp-
totic region �! 1, fixed during the �-transition.
Otherwise, we simply rotate the whole configuration by
half a period in the angular (winding) direction of the cigar
to get back the electric description of the gauge theory.

In order to achieve this, we have to shift the D5 boundary
state modulus M ¼ 

2	 ¼ 1
2 to M ¼ 0 [notice that this off-

sets the effect of the �! �� transformation on the wave
functions (3.17a) and (3.17b)]. At the same time, we want
to keep the brane chiral, i.e. maintain the property J ¼ M
of the D-brane labels, where, by definition, J ¼ 1

2 þ is.

This is important for the following reason. The world sheet
action for an open string ending on the D5 boundary state is
captured by the boundary action [59]

Sbdy ¼
I

dx½ ��@x���B� 
þe�ðð�LþiXLÞ=

ffiffi
2

p Þ

� ��Be
�ðð�LþiXLÞ=

ffiffi
2

p Þ � ��

� ~�Bð� ��� ���Þð þ � � i
ffiffiffi
2

p
@XÞe�

ffiffi
2

p
�L	; (3.22)

where �, �� are boundary fermions and �B, ��B, ~�B are
boundary Liouville couplings that are related to the ðJ;MÞ
labels of the branes and the bulk Liouville coupling � by
the following equations:15

~�ren;k¼1
B ¼ 1

2	
j�ren;k¼1j cos	ð2J � 1Þ; (3.23a)

�ren;k¼1
B ��ren;k¼1

B ¼ 2

	
j�ren;k¼1j sin	ðJ �MÞ sin	ðJ þMÞ:

(3.23b)

For J ¼ M ¼ 1
2 the boundary couplings�B and ��B vanish.

Demanding that they still vanish after the transformation
M ¼ 1

2 ! M ¼ 0 requires that we also set J ¼ 0, i.e. that

we perform an additional Z2 transformation on the D5
boundary state ~�B ! � ~�B.

This explains the transformation appearing in (3.20b).
The equality that expresses the J ¼ M ¼ 0 boundary state
as a linear combination of the fundamental D5-brane with
J ¼ M ¼ 1

2 and the D3-brane follows from the character

identity (A12) in Appendix A. The importance of this
relation for this setup was also pointed out in [14] (the
character identity (A12) was observed earlier in [54]). In
the HW context, it expresses the possibility of the flavor
branes to break onto the NS5-brane after the rotation; a

similar phenomenon was touched upon in [38] forN ¼ 2
setups.
Finally, in the last line (3.20c) the bar follows from the

requirement that we get the same projection on the gauge
theory fermions before and after the �-transition [34].
From the �-transition action on the Ishibashi states,
Eq. (3.21), and the expression of the crosscap state (3.9),
one observes that this transformation is such that the ex-
tensive part of the orientifold is invariant, while the local-
ized part is reversed. As with the D5-brane, this is a
consequence of the requirement to have a ‘‘local’’ opera-
tion, leaving the asymptotics invariant.
Consequently, if we start with the electric description of

OQCD that arises in a setup that includes the states

NcjD3;�i; NfjD5; 0; 1=2;�i; �jO05;�i
(3.24)

we end up naively after the �-transition and the annihila-
tion of Nc D3 brane-antibrane pairs with a configuration

that comprises of the boundary states ðNf � NcÞjD3;��i
and NfjD5; 0; 1=2;��i, together with the crosscap

�jO05;��i.
This, however, cannot be the final answer. Notice that in

this process the C0 RR scalar charge has changed. In
appropriate normalizations where the jD3;�i boundary
state has unit RR charge, the total charge of the electric
configuration is [14,34] (see also Appendix C for a detailed
determination of the RR charges)

Qe ¼ Nc �
Nf
2

� 2: (3.25)

The � sign in this relation is the same as the � sign
appearing in front of the crosscap state in (3.24). We
remind the reader that the þ sign corresponds to gauginos
in the symmetric representation and the� sign to gauginos
in the antisymmetric.
The RR scalar charge of the �� configuration is equal

to

Qm ¼ Nc �
Nf
2

� 2: (3.26)

Therefore, charge conservation requires the creation of
new charge during the�-transition. This is a familiar effect
in HW setups with orientifolds [3]. Remember that mass-
less RR charge is carried only by the jC; loci part of the
jO05i crosscap state [see Eq. (3.9)]. Hence, it is natural to
proclaim that the new charge is carried by the only other
localized object in the game, the D3-branes. Adding four

D3 or D3 boundary states in the �� configuration, we are
canceling the deficiency (or surplus) of four units of scalar
charge to obtain the following magnetic configuration

ðNf � Nc � 4ÞjD3;��i; NfjD5; 0; 1=2;��i;
� jO05;��i: (3.27)

15As in the bulk, see Eq. (3.3), these relations need to be
renormalized in the limit k! 1þ [14].
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The low-energy open string degrees of freedom of this
configuration are string theory’s ‘‘prediction’’ for the mag-
netic version of OQCD.

E. The magnetic theory

Low-energy open string degrees of freedom arise in
three different sectors in the D-brane configuration
(3.27): 3-3 strings, 3-5 strings, and 5-5 strings. These can
be determined from the annulus and Möbius strip ampli-
tudes that appear in Appendix B. They are in fact the same
as those appearing in Sec. III C for the electric setup of
OQCD. The main difference is the all important change in
the rank of the gauge group from Nc to Nf � Nc � 4.

Besides that, the �-transition exhibits a self-duality be-
tween the electric and magnetic setups. Indeed, both setups
involve the same boundary and crosscap states (modulo a
sign change in the RR sector which is naturally accounted
for by the fact that we have rotated the theory in the bulk
along the angular direction of the cigar).

The self-duality of the configuration matches very nicely
with the proposal in Sec. III C that the low-energy theory
on the D-branes is OQCD with a quartic coupling. In the
large N limit, the theory is planar equivalent to N ¼ 1
SQCD with the quartic coupling (3.18). Seiberg duality for
N ¼ 1 SQCDwith a quartic coupling gives back the same
theory with an inverse coupling constant for the quartic
interaction and therefore exhibits the same self-duality
property [55]. The dual Lagrangian can be obtained from
the magnetic theory with a supersymmetric mass term for
the magnetic meson if we integrate out the magnetic
meson. For Nf � 2Nc, one recovers in the far infrared

the usual duality between the electric and magnetic de-
scriptions of SQCD without quartic couplings. The case
Nf ¼ 2Nc is special. In this case, the quartic coupling

becomes exactly marginal in the infrared.
The string theory picture of this section suggests a

similar state of affairs also in OQCD. This is certainly
true in the large N limit, because of planar equivalence,
but we would like to propose here that this picture extends
also at finite N. Furthermore, we consider this picture as
evidence for the validity of the finite N Seiberg duality of
Sec. II in the absence of quartic couplings.

IV. EVIDENCE FOR THE DUALITY

The string theory analysis of the previous section moti-
vates an electric-magnetic duality for OQCD as postulated
in Sec. II. This duality shares many common features with
Seiberg duality in N ¼ 1 SQCD in the SU and SO=Sp
cases. However, unlike the supersymmetric case, here we
cannot use, in principle, the arsenal of supersymmetry to
perform a set of nontrivial consistency checks. For in-
stance, we cannot use holomorphy to fix the exact quantum
form of potential terms, there is no known exact beta
function formula [60–62] (except at largeN [32]) and there

is no superconformal symmetry or chiral ring structure that
fixes the IR features of a class of special operators. What
support can we then find in favor of our claim given that
OQCD is a nonsupersymmetric gauge theory? In this
section, we would like to summarize the evidence for the
proposed duality and discuss its viability as a conjecture in
nonsupersymmetric gauge theory.

A. Duality at large N

First of all, there is a sense in OQCD, in which we can
expand around a supersymmetric point. At infinite N,
namely, when both Nc ! 1 and Nf ! 1, with g2YMNc
and Nf=Nc kept fixed, the dynamics of the electric and

magnetic theories is almost identical to the dynamics of
N ¼ 1 SQCD. The reason is, as we mentioned above,
‘‘planar equivalence’’ [33]: the planar nonsupersymmetric
electric (magnetic) theory is nonperturbatively equivalent
to the supersymmetric electric (magnetic) theory in the
common sector of C-parity even states [26]. This argu-
ment, by itself, is sufficient for the duality to hold.
A consistency check of the proposed duality at infiniteN

is a one-loop calculation of the Coleman-Weinberg poten-
tial for the ‘‘squark’’ field (this will be discussed in more
detail in the next section). The potential remains flat. This
is consistent with the existence of a moduli space in SQCD.
In addition, both the magnetic and the electric nonsu-

persymmetric theories admit a Novikov-Shifman-
Vainshtein-Zakharov (NSVZ) beta function [32] at large
N. The large-N NSVZ beta function supports the existence
of a conformal window as in Seiberg’s original paper [1].
We wish to add that the infinite-N equivalence with the

supersymmetric theory does not involve any fine-tuning.
Once the tree-level Lagrangian is given, quantum correc-
tions will preserve the ratio between couplings as if the
theory was supersymmetric.
We conclude that planar equivalence with SQCD is a

nontrivial and nongeneric statement that proves the pro-
posed duality at infinite N. Now the question about the fate
of the duality becomes a question about the effects of 1=N
corrections. Our evidence for a finite-N duality is weaker.
One argument is that if a certain projection (‘‘orientifold-
ing’’) is made on both the electric and magnetic original
theories, the IR-duality should still hold. Additional argu-
ments can be made on the basis of anomaly matching and
the string realization.

B. Anomaly matching

A nontrivial check of consistency that we can always
perform independent of supersymmetry, is ’t Hooft anom-
aly matching, i.e. we should verify that global anomalies
are the same in the UV and IR descriptions of the theory.
For concreteness, let us consider here the case of OQCD-
AS (similar statements apply also to OQCD-S). The global
SUðNfÞ3, SUðNfÞ2Uð1ÞR, Uð1ÞR and Uð1Þ3R anomalies are

summarized for the electric and proposed magnetic de-
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scriptions of OQCD-AS in Table III. As before, we use the
notation ~Nc ¼ Nf � Nc þ 4 and the terms in each box are

ordered as (‘‘gluino’’)þ (quarks) in the electric theory and
(gluino) þ (quarks) þ (mesino) in the magnetic theory.
d2ðRÞ�ab and d3ðRÞdabc for the representation R are, re-
spectively, the traces TrRT

aTb, TrRT
afTb; Tcg.16 In

Table III we make use of the following relations:

d2ðoÞ ¼ ðNf þ 2Þd2ðhÞ;
d3ðoÞ ¼ ðNf þ 4Þd3ðhÞ: (4.1)

It is worth noticing that up to factors of 2 the matching
works precisely as the matching of the anomalies in the
supersymmetric SOðNcÞ case. This is not surprising, since
the fermions in our model carry the same dimensions (up to
factors of 2) as the fermions in the SOðNcÞ models.

The perfect matching of the above anomalies, including
1=N corrections, is our first independent consistency check
for the duality directly in gauge theory. It suggests that the
duality, as we formulated it in Sec. II, may hold even at
finite N. There are known nonsupersymmetric cases, how-
ever, where ’t Hooft anomaly matching is misleading as a
basis for the proposal of an IR effective theory [19,63].
These are cases where the matching works in a nontrivial
manner, but one can still argue that the so-proposed IR
effective theory cannot be the correct one. Our case is
different, however, because of planar equivalence at infi-
nite N, which fixes the basic structure of the duality.

C. Hints from the string theory realization

The string theory realization of Sec. III cannot be taken
as a proof for the proposed duality, but we believe it gives
useful hints. Let us outline some of the pertinent issues.

What we presented in Sec. III is a procedure—the
�-transition—that relates two distinct configurations of
D-branes and O-planes (exactly described in a nontrivial
underlying two-dimensional world sheet CFT via the ap-
propriate boundary and crosscap states). This procedure as
a continuous process involves a number of nontrivial steps.
Starting from the electric description with � ¼ �0 2 Rþ
we slide � along the real axis until it goes through zero to

��0. At zero � the background string theory develops a
linear dilaton singularity and becomes strongly coupled.
This is the first nontrivial effect. Then as we emerge from
zero � four extra D-branes have been created and Nc D- �D
pairs annihilate via open string tachyon condensation.
In order to argue for Seiberg duality in this setup we

have to show that the IR dynamics on the branes are
unaffected by the above procedure. For instance, one
should show that any open string process that contributes
in the extreme IR is independent of the sign of �. This is
plausible, given the fact that the boundary states are the
same as in the corresponding SO=Sp setup in type IIB
string theory [34] and the crosscap state is the RR part of its
supersymmetric counterpart. We have not been able to
show this explicitly however.
Another source of intuition that the �-transition pro-

duces an actual Seiberg dual is based on the fact that the
closed string modulus� controls the bare coupling gYM on
the branes

g2YM � 1=j�j: (4.2)

Hence, changing � does not affect the IR dynamics. This
naive picture could be spoiled if, for example, some extra
nontrivial strong coupling IR dynamics take place at � ¼
0, so that when we emerge on the other side of the �-line
the IR dynamics on the branes are not anymore related with
the IR dynamics on the brane setup of the electric descrip-
tion. In the supersymmetric case without orientifolds, type
IIB string theory on R3;1 � SLð2Þ1=Uð1Þ is related to type
IIB string theory on the resolved conifold in a double-
scaling limit [13,64]. In this limit, gs and the volume of
the blown-up S2 cycle are taken to zero in such a way that
D5-branes wrapping the S2 have a finite tension [13]. The
tension vanishes when � on the SLð2Þ=Uð1Þ side becomes
zero. In that case, the linear dilaton singularity is a signal of
the corresponding conifold singularity. It is known [65–68]
that the singularity of a slightly resolved conifold can be
explained by taking into account the instanton contribu-
tions associated to D1-branes wrapping the S2. These con-
tributions are already present in the gauge theory on the D-
brane setup of the electric description, so no abrupt change
is anticipated as we go through the singularity.

TABLE III. ’t Hooft anomaly matching for OQCD-AS.

Electric Magnetic

SUðNfÞ3 0þ Ncd
3ðhÞ ¼ Ncd

3ðhÞ 0þ ~Ncð�d3ðhÞÞ þ d3ðoÞ ¼ Ncd
3ðhÞ

SUðNfÞ2Uð1ÞR 0þ Ncð�Ncþ2
Nf

Þd2ðhÞ ¼ �N2
cþ2Nc
Nf

d2ðhÞ 0þ ~NcðNc�Nf�2

Nf
Þd2ðhÞ þ ðNf�2Ncþ4

Nf
Þd2ðoÞ ¼ �N2

cþ2Nc
Nf

d2ðhÞ
Uð1ÞR ðN2

c � NcÞ þ 2ðNcNf �Ncþ2
Nf

Þ ¼ �N2
c þ 3Nc ð ~N2

c � ~NcÞ þ 2ð ~NcNf
Nc�Nf�2

Nf
Þ þ 2ð12 ðN2

f þ NfÞ Nf�2Ncþ4

Nf
Þ

¼ �N2
c þ 3Nc

Uð1Þ3R ðN2
c � NcÞ þ 2½ðNcNfð�Ncþ2

Nf
Þ3	

¼ NcðNc � 1� 2 ðNc�2Þ3
N2
f

Þ
ð ~N2

c � ~NcÞ þ 2½ ~NcNfðNc�Nf�2

Nf
Þ3	 þ 2½12 ðN2

f þ NfÞðNf�2Ncþ4

Nf
Þ3	

¼ NcðNc � 1� 2 ðNc�2Þ3
N2
f

Þ

16By definition dabc ¼ TrhT
afTb; Tcg:.
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The situation is more involved in the presence of an O4-
plane. The NS5-branes act as domain walls for the orienti-
fold charge, so when an O4-plane goes through an NS5-
brane its charge changes [we can see this effect clearly in
the noncritical description: the culprit for the extra charge
is the localized part of the crosscap state jC; loci—see
Eq. (3.9)]. A consequence of this is a shift in RR charge
as we go through the �-transition, which has to be com-
pensated by the creation of 4 (anti)D-branes. This a clear
signal of a phase transition that occurs at� ¼ 0. Still, what
we know about Seiberg duality in SQCD with SO=Sp
gauge groups suggests that there are no strong coupling
dynamics that affect the IR physics during this phase
transition. Given the similarities of the supersymmetric
setup with the setup realizing OQCD, we are tempted to
speculate that an analogous conclusion can be reached in
the absence of supersymmetry, although, clearly, it would
be desirable to substantiate this conclusion with a stronger
argument.

V. IMPLICATIONS IN GAUGE THEORY

In the previous section we provided evidence for a
Seiberg duality between two nonsupersymmetric
(OQCD) gauge theories. For the moment let us accept
this duality as a correct statement and discuss its
implications.

At infinite N the dynamics of the electric and magnetic
theories is supersymmetric in the sector of C-parity even
states due to planar equivalence [33]. The immediate im-
plications of this statement are: a quantum moduli space, a
conformal window at 3

2Nc � Nf � 3Nc and confinement

at Nc � Nf <
3
2Nc. For Nc þ 1<Nf <

3
2Nc the magnetic

description is IR free and provides a good effective de-
scription of the IR dynamics.

At finite N the nonsupersymmetric effects become more
significant and determining exactly the IR dynamics be-
comes a complicated problem. As in ordinary QCD, a
Banks-Zaks analysis of the two-loop beta function reveals
that there should be a range of Nf where the IR dynamics

are captured by a scale-invariant theory of interacting
quarks and gluons. One of the most interesting implica-
tions of our proposal for a Seiberg duality in OQCD is a
precise prediction for the exact range of the conformal
window.

The one-loop beta function coefficient of the electric
OQCD-AS theory is � ¼ 3Nc � Nf þ 4

3 . Similarly, the

one-loop beta function coefficient of the magnetic theory
is � ¼ 3ðNf � Nc þ 4Þ � Nf þ 4

3 . Since the upper and

lower parts of the conformal window are determined by
the vanishing of the one-loop beta function coefficients of
the electric and magnetic theories, we expect a conformal
window for OQCD-AS when

3

2
Nc � 20

3
� Nf � 3Nc þ 4

3
; Nc > 5: (5.1)

When the gluino is in the symmetric representation (the
OQCD-S theory), we expect a conformal window when

3

2
Nc þ 20

3
� Nf � 3Nc � 4

3
; Nc > 5: (5.2)

The restriction on the number of colorsNc > 5 is explained
below.
Above the upper bound of the conformal window, the

electric theories lose asymptotic freedom and become
infrared free. Below the conformal window, i.e. when
Nf <

3
2Nc � 20

3 , the magnetic theories become infrared

free and the electric theories are expected to confine.
This is known as the free magnetic phase. However, we
know from planar equivalence at infinite N that if we keep
reducing the number of flavors, at some point the space of
vacua of the theory will become empty. For SUðNcÞN ¼
1 SQCD this critical point occurs at Nf ¼ Nc, precisely

when we lose the magnetic description. It is natural to
conjecture that a similar effect takes place for OQCD at
finite N. The magnetic description is lost at the critical
values Nf ¼ Nc � 4 in OQCD-AS and Nf ¼ Nc þ 4 in

OQCD-S. Below these values we expect the space of vacua
of OQCD to be empty. The overall picture is summarized
in Fig. 1. For OQCD-AS this picture makes sense only
when 3

2Nc � 20
3 >Nc � 4, whereas for OQCD-S it makes

sense only when 3Nc � 4
3>

3
2Nc þ 20

3 . Both inequalities

require Nc >
16
3 , or equivalently Nc > 5.

One of the nontrivial effects of the absence of super-
symmetry at finite N is the lift of the classical moduli
space. To see this, let us consider the Coleman-Weinberg

potential for the vev of the squark field h ~�i
�i ¼ h�i

�i �
�i�v

i of the electric OQCD-S theory. Keeping up to qua-
dratic terms in the Lagrangian and integrating over all the
fields, we obtain the effective potential (see Ref. [69])

FIG. 1. The conjectured phase structure of OQCD as a func-
tion of the number of flavors Nf. At infinite N we recover the

phase structure of N ¼ 1 SQCD with gauge group UðNcÞ.
This picture makes sense for Nc > 5.
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Eðv1; v2; . . . ; vNcÞ ¼ Nc
Z
d4p log

�
p2 þXNc

i¼1

vivi
�

� ðNcþ 2Þ
Z
d4p log

�
p2 þXNc

i¼1

vivi
�
;

(5.3)

namely,

Eðv2Þ ¼ �2
Z
d4p logðp2 þ v2Þ

� ��4 ��2v2 þ ðlog�2=�2Þv4 þ    ; (5.4)

where v2 � P
iv
ivi,� is a UV cutoff and � is an IR cutoff.

The first term in the above equation (5.4) is a cosmological
constant and thus has no implications on the gauge theory
dynamics. The second term is a mass term for the scalars. It
may be removed by a fine-tuned renormalization. The one-
loop generated potential demonstrates that it is impossible
to have a quantum moduli space at finite N. The minimum
of the Coleman-Weinberg potential is at the origin vi ¼ 0,
where the electric theory exhibits the full SUðNfÞ and

UðNcÞ symmetries. It is worth noting that when the gau-
gino is in the antisymmetric representation (OQCD-AS),
vi ¼ 0 is a maximum of the potential.

These observations do not invalidate our statement about
Seiberg duality. It is still possible that there is a duality
between the electric and magnetic theories in their true
(unique) vacuum, rather than a duality in a large moduli
space.

VI. OUTLOOK

In this paper we considered a nonsupersymmetric
Seiberg duality between electric and magnetic ‘‘orientifold
field theories.’’ These theories are not generic nonsuper-
symmetric gauge theories. In the large N limit they exhibit
planar equivalence with supersymmetric QCD. This non-
trivial statement gives extra control and allows us to argue
convincingly for Seiberg duality in this limit. Our discus-
sion suggests that the duality may work also at finite N. An
obvious question is whether we can generalize our results
in other nonsupersymmetric cases. Namely, can we find
other examples where we can argue for nonsupersymmet-
ric Seiberg dualities in a similar fashion?

Another potential example relies on Seiberg duality
between the SOðNcÞ electric SQCD and the SOðNf �
Nc þ 4Þ magnetic theory. To obtain a nonsupersymmetric
descendant, one replaces the adjoint fermion in the electric
theory by a symmetric fermion. Similarly, one replaces the
adjoint fermion of the magnetic theory by a symmetric
fermion and the symmetric fermion in the meson multiplet
by an antisymmetric fermion. The result is a nonsupersym-
metric electric theory and a nonsupersymmetric magnetic
theory. We would like to propose that these theories form a
pair of Seiberg duals. The evidence for the duality is

identical to the one in the prime example of this paper.
The global anomalies match and moreover, we may embed
the theory in a noncritical string theory version of the
Sugimoto model [70]. In addition, the electric and mag-
netic theories become supersymmetric at large N. It is
interesting to explore this proposal and perhaps others in
a future work.
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APPENDIX A:N ¼ 2CHARACTERS ANDUSEFUL
IDENTITIES

In the main text we determine the spectrum of open
strings in various sectors by computing a corresponding
set of annulus or Möbius strip amplitudes. The final ex-
pressions of these amplitudes are formulated in terms of
the characters of the supersymmetric SLð2Þ=Uð1Þ theory.
Such expressions appear in Appendix B. In this Appendix,
we summarize the relevant notation and some useful facts
about the SLð2Þ=Uð1Þ representations and their characters.
In view of the applications in this paper, we will con-

centrate on the characters of the SLð2Þ=Uð1Þ supercoset at
level 1. These are characters of anN ¼ 2 superconformal
algebra with central charge c ¼ 9. They can be categorized
in different classes corresponding to irreducible represen-
tations of the SLð2Þ algebra in the parent WZW theory. In
all cases the quadratic Casimir of the representations is
c2 ¼ �jðj� 1Þ. Here we summarize the basic
representations.
One class of representations is the continuous represen-

tations with j ¼ 1=2þ ip, p 2 Rþ. The corresponding
characters are denoted by chcðp;mÞ½ab	, where the N ¼ 2

superconformal Uð1ÞR charge of the primary is Q ¼ 2m,
m 2 R.17 The explicit form of the characters is

ch cðp;m; �; �Þ
�
a

b

�
¼ qðp2þm2Þ=ke4i	�ðm=kÞ

#½ab	ð�; �Þ
�3ð�Þ ;

(A1)

where q ¼ e2	i�. This character is similar to the character
of a free theory comprising of two real bosons and a
complex fermion. #½ab	ð�; �Þ and �ð�Þ are, respectively,

the standard theta and eta functions.

17The spectrum of R-charges is not necessarily continuous and
depends on the model considered. For instance in the cigar CFT
one has m ¼ ðnþ wÞ=2 with n, w 2 Z.
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Another important class of representations comprises
discrete representations with j real. However, none of
them are normalizable for k ¼ 1.

While the closed string spectrum contains only continu-
ous representations, the spectrum of open strings attached
to localized D-branes is built upon the identity representa-
tion with j ¼ 0. We denote the character of the identity
representation by chIðrÞ½ab	. It has the form

chIðr; �; �Þ
�
a

b

�

¼ ð1� qÞq�ð1=4þðrþa=2Þ2Þ=ke2i	�ð2rþa=kÞÞ

ð1þ ð�Þbe2i	�q1=2þrþa=2Þð1þ ð�Þbe�2i	�q1=2�r�a=2Þ
� #½ab	ð�; �Þ

�3ð�Þ : (A2)

The primary states in the NS sector, for example, are,
besides the identity, states of conformal dimension

� ¼ r2 � jrj � 1
2; r � 0: (A3)

1. Extended characters

When the level k of SLð2Þ=Uð1Þ is rational it is often
convenient to define extended characters [54], which serve
as a useful repackaging of ordinary characters. For k ¼ 1
the extended characters are defined by partially summing
over integer units of spectral flow [71,72]. More explicitly,
extended characters (denoted by capital letters) are defined
as

Ch ?ð?; ?Þ
�
a

b

�
ð�;�Þ ¼ X

‘2Z

ch?ð?; ?Þ
�
a

b

�
ð�;�þ ‘�Þ:

(A4)

The stars stand for the appropriate, in each case, represen-
tation or quantum number. For example, the extended
characters of the continuous representations are for k in-
teger

Ch cðP;mÞ
�
a

b

�
ð�;�Þ ¼ qP

2=k

�3ð�Þ�2m;kð�; 2�Þ#
�
a

b

�
ð�;�Þ

(A5)

with 2m 2 Z2k. �n;k is a classical theta function.

2. Hatted characters

As usual, Möbius strip amplitudes are conveniently ex-
pressed in terms of hatted characters. These are defined as

bch ?ð?; �Þ
�
a

b

�
¼ e�i	ð��c=24Þch?ð?; �þ 1=2Þ

�
a

b

�
; (A6)

where� is the scaling dimension of the primary state of the
representation and c the central charge of the CFT. We
refer the reader to [48] for a more detailed discussion of the

properties of these characters in the SLð2Þ=Uð1Þ
supercoset.

3. Modular transformation properties

In deriving the one-loop amplitudes in the direct or
transverse channel, the following modular transformation
properties are useful:18

#½ab	ð�1=�Þ
�ð�1=�Þ ¼ e�ði	ab=2Þ #½�ba 	

�ð�Þ ;

�ð�1=�Þ ¼ ð�i�Þ1=2�ð�Þ;
(A7)

#½ab	ð� 1
4itþ 1

2Þ
�3ð� 1

4itþ 1
2Þ

¼ 1

2t
ei	ð1=4�b=2þ3a=4Þ #½ a

a�bþ1	ðitþ 1
2Þ

�3ðitþ 1
2Þ

;

(A8)

chc

�
P;m;� 1

4�

��
a

b

�
¼ 4ei	ab=2

Z 1

0
dP0 Z 1

0
dm0e�4	imm0

� cosð4	PP0ÞchcðP0; m0; �Þ
��b
a

�
;

(A9)

bchc
�
P;m;� 1

4�

��
a

b

�
¼ 2eði	=4Þð1�a�2bÞ Z 1

0
dP0 Z 1

0
dm0

� e�2	imm0
cosð2	PP0Þ

� bchcðP0; m0; �Þ
�

a

a� bþ 1

�
:

(A10)

4. Relations between identity and continuous characters

The definition of the extended identity characters is

Ch Ið�Þ
�
a

b

�
¼ X

n2Z

chI

�
nþ a

2
; �

��
a

b

�
: (A11)

Some useful identities between continuous and identity
characters are

ChIð�Þ
�
a

b

�
¼ Chc

�
i

2
;
a

2
; �

��
a

b

�

� ð�ÞbChc
�
0;
1þ a

2
; �

��
a

b

�
; (A12)

X
n2Z

ð�ÞnchIðn; �Þ
�
a

b

�
¼ X

n2Z

ð�Þn
�
chc

�
i

2
; nþ a

2
; �

��
a

b

�

þ ð�Þbchc
�
0; nþ 1þ a

2
; �

��
a

b

�	
;

(A13)

18From now on we set � ¼ 0.
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X
n2Z

ð�Þn bchIðn;�Þ
�
1

b

�
¼ X

n22Zþ1

bchc�i2 ;n2 ;�
��

1

b

�

þ X
n22Z

ð�Þbe	in=2 bchc�0; n2 ;�
��

1

b

�
;

(A14)

X
n2Z

bchIðn; �Þ
�
1

b

�
¼ � X

n22Zþ1

ð�Þðn�1Þ=2 bchc
�
i

2
;
n

2
; �

��
1

b

�

þ X
n22Z

ð�Þb bchc�0; n2 ; �
��

1

b

�
: (A15)

5. Leading terms in character expansions

The identity characters have the following leading terms
in an expansion in powers of q ¼ e2	i� (here � ¼ it):

X
n2Z

chIðn; itÞ
�
0

0

�
#½00	ðitÞ
�3ðitÞ ¼ q�ð1=2Þ þ 2þOðqÞ; (A16)

X
n2Z

chIðn; itÞ
�
0

1

�
#½01	ðitÞ
�3ðitÞ ¼ q�ð1=2Þ � 2þOðqÞ; (A17)

X
n2Z

chIðn; itÞ
�
1

0

�
#½10	ðitÞ
�3ðitÞ ¼ 4þOðqÞ; (A18)

X
n2Z

ð�Þn bchIðn; itÞ
�
1

0

�
#½10	ðitÞ
�3ðitÞ ¼ 4þOðqÞ: (A19)

APPENDIX B: ONE-LOOP STRING AMPLITUDES

In this Appendix we provide the string theory one-loop
amplitudes that are relevant for the discussion in the main
text.

1. The closed string sector

The starting point of our construction in Sec. III is type
0B string theory on

R 3;1 � SLð2Þ1
Uð1Þ : (B1)

The closed string spectrum of this theory is summarized by
the torus partition function:

T 0B ¼ V

2

Z d�d ��

4�2

X
a;b2Z2

#½ab	ð�Þ#½ab	ð ��Þ
ð8	2�2Þ2�3ð�Þ�3ð ��Þ

� X
n;w2Z2

Z 1

0
dp chc

�
p;
nþ w

2
; �

�

�
�
a

b

�
chc

�
p;
n� w

2
; ��

��
a

b

�
: (B2)

In this expression V is a factor that diverges proportionally
to the overall volume of the space-time—this includes the
volume of the 3þ 1 dimensional flat space-time and the
volume of the cigar. The continuous representation char-
acters were defined in the previous Appendix. As far as the
fermions are concerned, (B2) is a typical, 0B diagonal,
modular invariant sum.
The Klein bottle amplitude for the orientifold defined in

Sec. III A, can be obtained in the transverse channel from
the crosscap wave functions (3.10a) and (3.10b). It receives
two contributions: one from the extended part of the cross-
cap state jC; exti and another from the localized part
jC; loci. In the direct channel (from which we can read
off the orientifold action on closed string states), one finds
by channel duality:

Kext ¼ 1

2

Z 1

0

dt

4t2
1

ð8	2Þ2 hC; extje
�ð	=tÞHc jC; exti

¼ �1

2

Z 1

0

dt

2t

1

ð8	2tÞ2
X
a2Z2

X
n2Z

Z 1

0
dp

Z 1

0
dp0

� cosð4	pp0Þ
sinh2ð	pÞ ð�Þaþnþ1chc

�
p0;
n

2
; 2it

�

�
�
a

1

�
#½a1	ð2itÞ
�3ð2itÞ ; (B3a)

Kloc ¼ 1

2

Z 1

0

dt

4t2
1

ð8	2Þ2 hC; locje
�ð	=tÞHc jC; loci

¼ �1

2

Z 1

0

dt

4t3
1

ð8	2Þ2
X
a2Z2

X
n2Z

Z 1

0
dp

Z 1

0
dp0

� cosð4	pp0Þð�Þaþ1chc

�
p0;
n

2
;2it

��
a

1

�
#½a1	ð2itÞ
�3ð2itÞ :

(B3b)

The extended contribution to the Klein bottle amplitude is,
as expected, divergent and reproduces the expression an-
ticipated from the known asymptotic form of the parity
[48]. The localized contribution to the Klein bottle ampli-
tude exhibits a delta-function density of states localized at
p0 ¼ 0.

2. The open string sectors

In this paper we consider D-brane setups with D3-branes
(the color branes) and D5-branes (the flavor branes). There
are three types of open strings: color-color strings, flavor-
flavor strings and color-flavor strings.

3. Color-color strings

The annulus amplitude for Nc color D3-branes, charac-
terized by the wave functions (3.14a) and (3.14b), reads in
the open string channel

NONSUPERSYMMETRIC SEIBERG DUALITY, . . . PHYSICAL REVIEW D 77, 105009 (2008)

105009-17



A D3-D3 ¼ V4N
2
c

Z 1

0

dt

4t

1

ð16	2tÞ2
X1
a;b¼0

ChIðitÞ
�
a

b

�

� #½ab	ðitÞ
�3ðitÞ ; (B4)

where V4 is the volume of R3;1. This expression involves
only the characters of the identity representation, defined in
Appendix A.

In the presence of the O05 orientifold, the Möbius strip
amplitude is

MD3;O05 ¼ �V4Nc
Z 1

0

dt

4t

1

ð16	2tÞ2
X
n
Z

ð�Þn X1
b¼0

bchIðn; itÞ

�
�
1

b

�#½1b	
�
itþ 1

2

�

�3

�
itþ 1

2

� : (B5)

The overall sign is fixed by the orientifold charge. For
example, the � sign leads to a symmetric projection of
the gauginos and arises from a positive orientifold charge.
Note that the annulus amplitude (B4) is twicewhat it would
be in type IIB, since the color brane is not a fundamental
boundary state in type 0B. However, in type 00B this brane
is fundamental.

With the use of these amplitudes and the character
expansions (A16)–(A19) one can deduce easily the low-
energy degrees of freedom of 3-3 open strings.

4. Flavor-flavor strings

Next we consider the noncompact flavor D5-branes,
whose wave functions are given by Eqs. (3.17a) and
(3.17b). The annulus amplitude for two flavor branes
with parameters ðs1; m1Þ and ðs2; m2Þ reads in the open
string channel

AD5ðs1;m1Þ-D5ðs2;m2Þ¼V4

Z 1

0

dt

4t

1

ð16	2tÞ2
X1
a;b¼0

ð�Þa#½
a
b	

�3

�
Z 1

0
dP

�
�1ðP;s1js2ÞChc

�
P;m1�m2

þ1�a
2

;it

��
a

b

�
þð�Þb�2ðP;s1js2Þ

�Chc

�
P;m1�m2þa2;it

��
a

b

�	
: (B6)

In our previous notation, mi ¼ i=2	. The spectral den-
sities �1, �2 are given by the expressions

�1ðP; s1js2Þ ¼ 4
Z 1

0
dP0 cosð4	s1P0Þ cosð4	s2P0Þ cosð4	PP0Þ

sinh2ð2	PÞ ; (B7a)

�2ðP; s1js2Þ ¼ 4
Z 1

0
dP0 cosð4	s1P0Þ cosð4	s2P0Þ cosð4	PP0Þ coshð2	P0Þ

sinh2ð2	PÞ : (B7b)

Both densities have an infrared divergence at P0 ! 0,
which is related to the infinite volume of the cigar. This
infinity can be regularized by computing relative annulus
amplitudes, i.e. by substracting the annulus amplitude of a
reference brane [12,73].

In Sec. III we consider D5-branes with  ¼ 0 mod 	.
The setup of Sec. III C involves Nf D5 boundary states

jD5ðs; 1=2i for which the Möbius strip amplitude reads in
the open string channel

M
D5ðs;1=2Þ;O05 ¼ �Nf

Z 1

0

dt

4t

1

ð16	2tÞ2
Z 1

0
dP

� X
N
Z

�
ð�ÞN � �3ðP; sÞ bchcðP;N; itÞ

�
1

0

�

� #½10	ðitþ 1=2Þ
�3ðitþ 1=2Þ � �4ðP; sÞ

� bchc�P;N þ 1

2
; it

��
1

0

�
#½10	ðitþ 1=2Þ
�3ðitþ 1=2Þ

�
(B8)

with spectral densities

�3ðP; sÞ ¼ 2
Z 1

0
dP0 cosð8	sP0Þ cosð4	PP0Þ

sinh2ð2	P0Þ
¼ �1ðP; sjsÞ � 2

Z 1

0
dP0 cosð4	PP0Þ

sinh2ð2	P0Þ ; (B9a)

�4ðP; sÞ ¼ 2
Z 1

0
dP0 cosð8	sPÞ cosð4	PP0Þ

coshð2	PÞ : (B9b)

We observe that the density �3, coming from the extensive
part of the crosscap, is divergent, and coincides with the
density �1 in the annulus amplitude for two identical flavor
branes, see Eq. (B7a), up to an s-independent term that
cancels out when we compute a relative amplitude in order
to remove the infrared divergence. The density �4 is infra-
red finite, as it comes from the localized piece of the
orientifold.
The low-energy spectrum of 5-5 open strings in Sec. III

can be determined straightforwardly from the above
amplitudes.
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5. Color-flavor open strings

Flavor degrees of freedom in gauge theory arise from 3-
5 strings. The open string spectrum of this sector can be
determined from the annulus amplitude between a color
D3-brane and a flavor D5-brane. By definition, there is no
Möbius strip amplitude contributing to this sector. The
flavor brane has parameters ðs; Þ. In order to cover the
general case we will include here amplitudes involving
flavor branes with both positive and negative RR-charge,

i.e. both D5 and D5 branes. We call " ¼ �1 the sign of the
flavor RR-charge. One finds in the open string channel:

AD3-D5ðs;;
Þ ¼
Z 1

0

dt

4t

1

ð16	2tÞ2
X1
a;b¼0

ð�Þaþbð1�"Þ

� Chc

�
s;


2	
þ a

2
; it

��
a

b

�
#½ab	ðitÞ
�3ðitÞ : (B10)

There are no nontrivial spectral densities in this case and
one can read off the spectrum immediately by using the
extended continuous character definition (A5).

APPENDIX C: RR CHARGES

In this Appendix we determine the RR scalar charge of
the D3-, D5-branes and of the O05-plane. The massless RR
field C0 has quantum numbers P ¼ 0, w ¼ 0, n ¼ 0. The
charge of the above objects is proportional to the one-point
of C0 on the disc. This quantity is provided by the wave-
functions of the boundary/crosscap states in the main text.

Specifically, for D3-branes we have [see Eq. (3.14b)]

lim
P!0

�RðP; 0Þ ¼ N D3 lim
P!0

�ðiPÞ
�ð2iPÞ ¼ 2N D3: (C1)

For D5-branes of the type jD5; 0; 12i we have [see

Eq. (3.17b)]:

lim
P!0

�R

�
0;
1

2
;P; 0

�
¼ �N D5 lim

P!0

�ð�2iPÞ
�ð�iPÞ ¼ �N D5

2

¼ �N D3: (C2)

Finally, for the O05-plane [see Eq. (3.10b)]

lim
P!0

ðP; 0;þÞ ¼ N O05 lim
P!0

�ð�2iPÞ
�ð�iPÞ ¼ N O05

2
¼ 4N D3:

(C3)

In these expressions N D3, N D5 ¼ 2N D3, and N O05 ¼
8N D3 are, respectively, the normalizations of the D3, D5
boundary states and the O05 crosscap state.

APPENDIX D: FORCES BETWEEN D-BRANES
AND O-PLANES

Here we consider the forces that arise between the
branes and/or orientifold planes at one string loop in our
setups. By construction, the annulus amplitudes vanish,
hence they do not give a net potential to the brane moduli.
The Möbius strip amplitudes, however, get contributions
from the RR sector only and break the Bose-Fermi degen-
eracy of the open string spectra. This breaking of super-
symmetry leads to attractive or repulsive forces between
the O05 orientifold plane and the D-branes. Since the color
D3-brane has no moduli, this contribution generates only a
constant potential. However, the Möbius strip amplitude
for the flavor D5-brane generates a potential for the brane
modulus s, which characterizes the minimum distance of
the brane from the tip of the cigar.
From the closed string point of view, the force between

the orientifold and the flavor brane comes from the ex-
change of massless RR closed string modes. It is captured
by the t! 0 (or ‘ � 1=t! 1) asymptotics of the Möbius
strip amplitude (B8):

M
D5ðs;1=2Þ;O05 ��Nf

Z 1
d‘

Z 1

0
dP

cosð4	sPÞ
coshð	PÞ

� e�ð	l=2ÞP2½1þOðe�ð	l=2ÞÞ	RR: (D1)

Only the localized part of the orientifold sources massless
fields, hence this is the only one that contributes in this
regime. We are interested in the small s behavior of the
function FðsÞ � �@sMD5ðs;1=2Þ;O05, where quarks from the

3-5 sector are nearly massless. FðsÞ is the ‘‘force’’ felt by
the flavor branes in the presence of the orientifold plane.
Since we focus on the ‘! 1 asymptotics, the P-integral
in (D1) is dominated by the region P! 0. Hence, we get a
linear expression in the modulus s at first order: FðsÞ / �s.
This result shows that the force is attractive towards s ¼ 0
for an orientifold with positive charge (OQCD-S setup).
Similarly, for an orientifold with negative charge (the
OQCD-AS setup) the force is repulsive.
It should be noted that this force, which arises as a one-

loop effect on the flavor branes, has no consequences on
the dynamics of the four-dimensional OQCD theory that
was engineered in the intersection of D3- and D5-branes in
Sec. III. In order to isolate the four-dimensional gauge
theory dynamics from the rest of the open string degrees
of freedom we need to take a low-energy decoupling limit
where the dynamics on the flavor D5-branes are frozen. In
this limit, only fields from the 3-3 and 3-5 sectors can run
in loops to generate potentials. The force FðsÞ appearing
above is not one of these effects, because it arises from a
loop in the 5-5 sector.
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