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Matrix model maps and reconstruction of AdS supergravity interactions
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We consider the question of reconstructing (cubic) SUGRA interactions in AdS/CFT. The method we
introduce is based on the matrix model maps (MMP) which were previously successfully employed at the
linearized level. The strategy is to start with the map for 1/2 BPS configurations, which is exactly known
(to all orders) in the Hamiltonian framework. We then use the extension of the matrix model map with the
corresponding Ward identities to completely specify the interaction. A central point in this construction is

the nonvanishing of off-shell interactions (even for highest-weight states).
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L. INTRODUCTION

The question of reconstructing bulk supergravity
(SUGRA) through the AdS/CFT [1,2] correspondence
is of considerable interest. Initially much insight into the
correspondence was gained through the GKP-W holo-
graphic relation which states [3,4] that correlators of
Yang-Mills theory coincide with certain boundary to
boundary amplitudes in supergravity. Indeed this was
the scheme which provided some of the initial prescrip-
tions for relating cubic supergravity interactions to gauge
theory correlators [5—14]. The holographic relation, how-
ever, has elements of an S-matrix relation, and one can
ask what set of correlators contains all the information
for reconstructing the theory in the bulk. Although some
studies [15] have been done along this direction, there
are still some main questions left open. The issue/problem
seems to be analogous to the question of reconstructing
the off-shell theory from strictly on-shell data, a problem
which is usually plagued by nonuniqueness. In addition
there is the question of unitarity, namely, the issue
of securing a unitary and local evolution of the bulk theory.
An alternative is to develop the construction directly in
the Hamiltonian framework, a method we consider in
the present work. The basic building block of our construc-
tion will be the matrix model representation that was
developed in the last few years beginning with the 1/2
BPS sector of the theory. This approach came for studies
of 1/2 BPS correlators in gauge theory [16,17] and the
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dual exact configurations in SUGRA [18,19]. What
emerged is a fermion droplet correspondence (see [20]
and references therein). Its Hamiltonian version given
through collective field theory [21,22] can serve as a
starting point for reconstructing the full theory.
Specifically, the strategy that we develop for the construc-
tion of the bulk interaction is then as follows: starting
from the nonzero ¢ =1 collective field theory vertex
we proceed with the action of raising operators to establish
Ward identities that, as we argue, are capable of determin-
ing the full cubic vertex. The form of the raising
and lowering operators can be deduced through the matrix
model map (MMP) formulated in [23]. The map of [23]
was given at the linearized level, and was shown to provide
a mapping from eigenfuctions of matrix model equations
to those of AdS. As such our work represents an extension
to the nonlinear level of the mapping introduced in [23].
The outline of this paper is as follows. In Sec. II we discuss
the form of cubic interactions in supergravity as well as
for the 1/2 BPS collective field theory. Here we also
discuss and resolve issues that concern the comparison of
the (vanishing) SUGRA vertex for the 1/2 BPS sector with
the (nonvanishing) matrix model vertex. In Sec. III we
review the linearized MMP of [23] in terms of canonical
transformations on phase space. This version turns out to
be useful for the nonlinear extension that we give in
Sec. IV, where we consider a simplified limit. Finally, in
Sec. V we discuss the Ward identities and their ability
to determine the vertex (from the initial highest-weight
one). Throughout this paper we restrict our analysis to
the AdS, case, where the method can be presented in the
simplest possible way.
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II. CUBIC INTERACTIONS IN THE 1/2 BPS
SECTOR

Our starting point is the direct Hamiltonian level map
that was accomplished in the (limited) 1/2 BPS sector of
the theory. On the Yang-Mills side one has a (reduced)
matrix model Hamiltonian established in [16] and its col-
lective field theory Hamiltonian description. This is fully
reproduced on the gravity side with the 1/2 BPS reduction
of 10D SUGRA in [18]. In particular, the energy of the 10D
geometries of the 1/2 BPS sector was shown [18] to be
given by

E= f dx, f dxy (2 + R)ulx;, x,), (1)

where u(x;, x,) is a density function distinguishing be-
tween space-time regions having different boundary con-
ditions (“‘black” and ‘“‘white’” regions). The expression (1)
is recognizable as the energy of fermions (corresponding to
matrix eigenvalues) in a harmonic oscillator potential. In
this language, u is responsible for differentiating between
particles (fermion droplets) and holes. After identifying
x; = x and x, = y, and after performing the x, integration
over a black region (fermion droplet), the energy (1) can be
shown to be equivalent to the collective field theory
Hamiltonian [24]

H=| dx(% - % -2y - y_)) @)

of a one-matrix model described by
H = 1Tr(X* + P?). )

The Hermitian N X N matrix X(z) depends only on time,
and P(f) = X(¢) denotes its conjugate momentum. The
functions y, and y_ describe the upper and lower profiles
of the Fermi droplet. Furthermore, the matrix Hamiltonian
is related to (2) via X = x and P = y. It is important to
emphasize that the collective field formalism describes
well the fully interacting theory of chiral primaries on
AdSs X 3. To show this explicitly, we examine next the
form of the cubic vertex as given by collective field theory.
The dynamics of the resulting collective field theory can be
directly induced from the much simpler dynamics of the
one-dimensional matrix X(r) (with eigenvalues A;), after a
change to the density field obeying the following cubic
collective Hamiltonian:

— 1 LRI _
Hcoll = [dx(i axncﬁaxﬂ + 6 d) + E(x M)¢)
4)

The static ground state equation yields the background
value ¢ for the field ¢. One can then introduce small
fluctuations about the background, letting
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After expanding the Hamiltonian one finds

P(x, 1) = ¢o(x) + —=0,m(x, 1). )

H= fdx[mﬁgem + %(axny) + %Z(am)3
+ gnaxnn]. (6)

Note that the corresponding quadratic Lagrangian takes the

form
1T %?
L, = | —— 2
o= [ fasz| 2= msmi] o)

describing a massless particle in a gravitational back-
ground with metric

1

0 —

e = (5 m00) ®)
- mho

The metric can be removed by an appropriate coordinate

transformation. In terms of the ““‘time of flight”” coordinate

7, the Hamiltonian then becomes

1 1 1
H= [dr|-II> +-(8,m)* +
[7[2 S0,

oz (O

+ 3nafnn)]. ©)

Furthermore, notice that this is the theory of a massless
boson with a spatially dependent coupling, ggying(7) =
1
7721,1’7(2]

action terms, let us concentrate on

. Since we are interested in studying the (cubic) inter-

1
H(3)=[ —— 3 4+ 3119,mIl). 1
d7672¢%((6m) 311a,mlI) (10)

If we recall how the (standard) fields «r— were introduced,
a+(x, 1) = 3,11 £ 7d(x, 1), it is clear that they could have
been expanded about the background in a similar way:

ay =*why+ ax. (11)

The cubic Hamiltonian takes on a much simpler form in
terms of @-:

H® = L”%T%(ai(r) — a (7). (12)

This can be simplified even further by combining &- into a
single field a(7) in the following way:

a(r)=a,(r) fort>0=—a_(r) for <0, (13)

where we must now take —7r < 7 < 7. Finally, expressing
the cubic Hamiltonian in terms of the new field «, we find

o = [ ’;Zoﬁ(»r). (14)
s
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Expanding « into creation and annihilation operators gives

a(r) = Z\/Z(ei’”an + e~inmgl). (15)

Rewriting (14) in terms of creation and annihilation opera-
tors we find several terms, but we would like to restrict our
attention to the one containing alaza;r :

T dr
H(3)=,/nnn[
128 ) sin?r

d )
= — /nnyn; [(E cot7'>e’(”l+”2_”3)7a1a2a;r +...

= i(l’l] + n, — I’l3)
X 1/711112n3[ah'C0t7'e"("1“L”Z_”»*)Talaza;r + ...

where we have implicitly used the fact that the boundary
term cancels. Introducing z = e'” and letting n =
n; + n, — ns, the integral above becomes

n—1
T . z 2
- int — B g
1 ,/._77 drcotre [dz T 1)(2 1),
(16)

e"(”ﬁ”f”»*”alaza;r + ...

which has simple poles at z; = 0, =1. Evaluating the
integral we find that the only nonzero contribution from
the residues occurs for n > 0 and even, and is given by

S Res(f, z;) = 2, yielding
H® = —dm /ninyny(ng + ny — n3)a1a2a§ +.... (7

We should note that the vertex vanishes when (n; + n, —
n3) = 0, which is the on-shell energy conservation condi-
tion. We mention here the relevance of an Euclidean pic-
ture which was established recently in [25]. It corresponds
to the inverted harmonic oscillator model of the ¢ = 1
string theory [24]. The analogue cubic Hamiltonian inter-
action was shown capable of reconstructing the noncritical
string amplitudes at both tree and loop level. The relevance
of this S-matrix to AdS/CFT (and comparison with 1/2
BPS correlators) was shown in [25]. For completeness in
the rest of this section we discuss the comparison of (17)
with the SUGRA vertex obtained by studying three-point
functions of chiral primaries on AdSs X $°. Next, we out-
line the main steps of such a comparison, and leave a
detailed discussion to Section below. The typical 3-point
(cubic) SUGRA interaction on backgrounds of the form
AdS,, X S$™ is given by the overlap of bulk wave functions,

Hy= (A5 — A — Ay [Ads d" \x\/gaas8asf1. 1],

X / dmy. JgsYYRyh,
S

with f;(x) and Y/(y) denoting eigenfunctions on AdS,, and
S™ respectively. The total wave functions ¥(x,y) =
S, f1(x)Y!(y) obey the linearized equation

(18)
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(Oags + Og)gp = 0.

Understanding the cubic interaction then relies on under-
standing bulk properties of AdS. From the GKP-W map
one has the “holographic” formula

Hy~ (A — Ay — A)C(, I, Iy), (19)

where C(1}, I, I3) are coefficients in the 3-point correlator.
For the highest-weight states one has that their energy A is
given by the angular momenta A = j. One also has'

C(jy Jor J3) Oyt jn s (20)
which is the R-charge conservation condition. We find that
the &-function forces the (highest-weight) vertex to vanish,
Vh% — (. We emphasize that this implies that the holo-
graphic vertex is equal to 0 both on and off- shell. On the
other hand, the collective vertex is seen to be nonvanishing
off-shell and can therefore serve as the starting point for a
raising-lowering procedure that one can apply to highest-
weight states.

Chiral primary interactions in AdSs X $°

Let us now examine the full interacting theory of chiral
primaries, with the ultimate goal of showing agreement
with the collective field calculation. We consider the case
of AdSs X S°, which has been studied in [5]. The equation
of motion for the chiral primary field s, of mass m?> =
j(j — 4), was found to be of the form

(VMV“ - m%)sl = Z(D[JKSJSK + EI‘]KVMSJVMSK
JK

+ F[JKV(#VV)SJV(MVV)SK),

where u denotes AdSs coordinates, and the sphere depen-
dence has already been integrated out. For the explicit form
of the coefficients D, E and F we refer the reader to [5].
The derivative terms can be removed by the following field
redefinition

st= T+ (Jiygs”s® + LygVes'V,s%),  @21)
7K

where Lk = %FIJK and Jpx = %EIJK + %Fljk(m% -
m3 — m% + 8). The field redefinition dramatically simpli-
fies the equation of motion, which becomes

(V,VE = m})s! =D Apygs’sk, (22)
JK

where Ak = Dyyx — (mj +mg —mp)J g — sLyygmimy.
Finally, after plugging in the coefficients D, E and F, the
action for the chiral primary s becomes

"We note that in the appendix we will show in more detail the
origin of the energy-conserving oJ-function in the 3-point
function.
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S = /d5x1/—g|:—Vs’V§[ — m3|s|?

1
- EAIJK(SISJEK + C.C)], (23)

where m?> = j(j — 4), and the coupling constant [5] is
Az = (s = ji1 — J2)2k

o NI = DU + 205 ~2)

VG = DGE = DG+ 202 +2)

Fips = 1 VG + DG +2)0e + DG + 2)'
Var® Gs + D3 +2)

The coefficient f1,; comes from the overlap integral over
spherical harmonics on S>. In global coordinates, the
highest-weight state on AdSs X S° takes the form

JAA-1)
§=— (25)
m(coshu)?

123,

(24)

The matrix element of the cubic Hamiltonian for the action
(23) is then given by

1 (A — DA, — D(A; = 1)
(3|H;5|12) = 232 : (A; — 12)(A3 - ;)
X Gi36(j1 + jo — Jj3)

VA AA
=(A;— A, — Az)#

N

8(j1 + ja — Ja)-
(26)

Since A = j, this agrees with the collective field theory
vertex (17)

H® ~ —4z [ainons(ny + ny — n3)a1(12a;r, 27)

apart from the absence of the &-function coming from
conservation of angular momentum. Thus, we have shown
that the collective field theory vertex is contained in the
gravity description. We will discuss at a later stage the
origin of two different pictures (for 1/2 BPS states) related
to the appearance of a delta function term in the vertex.

III. MATRIX MODEL MAPS

Our goal is to extend the Hamiltonian formulation from
the highest-weight states of the bubbling 1/2 BPS configu-
ration. In global coordinates AdSs X S° can be written as

ds* = (—cosh?pd* + dp?* + sinh?pdQ)3)
+ (sin20d6? + dp? + cos?0d)3), (28)

and, as we will show in more detail later, the chiral primary
fields fluctuations read
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bg ~ ( cosf eiqs).l, (29)
coshp

a highest-weight state of the isometry algebra. The collec-
tive droplet vertex represents an off-shell interaction of
such fluctuations. The basic strategy that we will employ
is then to use the resulting nonvanishing three-point inter-
action as a starting point for reconstructing the full 3-point
vertex, i.e. involving more general states. The first ingre-
dient in this program is the reconstruction of linearized
wave functions:

Winm(t, p, 0, &) ~ Lifi_mkﬁj(m e’¢)- (30)
This was done in [23]. From the interactions of chiral
primaries, we will develop an analogous raising-lowering
Ward identity which relates V; ,, i, j.x,, the vertex for two-
matrix states, to Vj]m-3, the one-matrix vertex. Toward this
end it is important to describe the inclusion of the 1/2 BPS
“bubbling” configurations of AdSs X S in the two-matrix
(coordinate) picture. In the 2D coordinate space (X;, X,),
where the Hamiltonian is given by H = (X + X3 +
P} + P3) and the angular momentum by J = X, P, —
X, P, one can introduce complex coordinates

7 = M’ 7 = M) 31
V2 V2
with corresponding conjugate momenta
P, + iP - P —iP
S LS | Pt B )
V2 V2
Switching to creation and annihilation operators,
1 - 1
Z=—(A"+B), Z=-—(A+B"), 33
ﬁ( ) ﬁ( ) (33)
—i - i
II=—@A'-B), II=-—(A-B", 34
\/E( ) ﬁ( ) (34)

the Hamiltonian and angular momentum generators be-
come

H = Tr(ATA + BB), J=Tr(ATA — B'B). (35)

So 1/2 BPS states having H = J are described by a
truncation to the sector where B = 0, and only A oscilla-
tors remain. This condition can be translated into having a
single matrix X = (A + A1), with conjugate momentum
P = i(A — A"). In the phase space (matrix model) one has
the corresponding canonical transformation

Y_XI_PZ
V2 V2
_P1+X2

75

(36)

Py = — , Py

with the fact that
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1 1 -

(37

In the matrix model picture (which from now on we denote
by a tilde), the R-charge transformation is not a coordinate
transformation, but rather a canonical transformation (dy-
namical symmetry). This gives an explanation of the origin
of the nonconservation in the 3-vertex of the cubic collec-
tive field theory that we have noted earlier: in the matrix
model formulation we have two representations that are
related by a canonical transformation. Next, we describe
the matrix model map associated with LLM (one-matrix
model), followed by the construction of [23] which extends
it to two matrices. The LLM map is given by one central
formula

(38)

u(x}, x5, 0)
Z(xy, x5, y) = fdxd 2[(ﬁ_1 2

‘>I)2 2]2 ’

where the integral is defined over a domain D and
u(x;, x,,0) = = % It is a nonlinear map since the dynami-
cal degree of freedom on the right-hand side is not
u(x;, x,,0), but the boundary of the domain.
Linearization leads to the following (linear) relationship
(for a detailed derivation see [23]):

1 f2m 1 —4a>— a*+ 4a’cos(t — ¢)
=_— dr 5 5— 0a(7),
27 Jo [1+ a* —2acos(t — ¢)]
(39)
where a = €32 On the right-hand side of the equation we

coshp
have the small fluctuation S« (7) of the one-matrix collec-
tive field described by

= [axmaym + @m2) = [arGatoy,

(40)
with
1 2
Po(x) = =y — %, (41)
T
and d7 = — <f> (x) On the left-hand side of (39) 6g denotes

the fluctuation of a SUGRA chiral primary. In the notation
of [23], t and p denote AdS coordinates, while 6 and ¢ are
sphere angles. For Sa(7) ~ €7 one gets

_ ( cosf ol ¢>) ’
coshp
the correct chiral primary fields fluctuations. More pre-

cisely, denoting the Kernel by K, ;,(p, 6, ¢; 7), one finds
(see [23] for more details):

(42)

et
Sg(t, p. 6, ) = [) drK iu(p, 0. : 7)dal(7).
(43)
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This is a one-dimensional map from the space 7 = [ W;:(x)
of a matrix model to the subspace of AdSs X §° given by

% e'®. The extension of the linearized LLM map to the

two-matrix case was given in [23] and starts with the
matrix observable

Yl n) = Tr((8(x = (A + AN)B)sym). (44
This then leads to an eigenvalue problem
Ky = wy, (45)
with solution
lZIjn(T, o) = sin((j + 2n)1)e", wj, = j+2n.
(46)

Through a kernel constructed in [23], this maps into a
nontrivial eigenfunction on AdS space:

1
Pin(t, p, &, 0) = e'“n Coslem

27 27T ~
x /O dr ]O doKy(p, 7, ).
47)

Notice that the map is 2 < 2, mapping the two coordinates
7, o of the matrix model into the space-time coordinates p,
¢. Furthermore, we have the following two remarks about
the kernel K. First, when applied to the states with n = 0,
it reduces to the kernel associated with the LLM map.
Second, the map is essentially a reduction to action-angle
variables associated with the nontrivial AdS Laplacian.

IV. NONLINEAR ANALYSIS

We now come to the main consideration of this work and
address the question of a nonlinear extension. In this
section we will also address the issue concerning the
presence of delta-function constraint in the 1/2 BPS inter-
action vertex. To simplify the discussion we start by con-
sidering what we refer to as the nonrelativistic model,
which will allow us to present the main steps of our argu-
ment in explicit terms. Recall that in Sec. III we distin-
guished between the matrix model picture (i.e. the tilde
representation with matrices X, ¥ and conjugate momenta
Py, Py) and the coordinate space (X, X,). In the non-
relativistic approximation one directly replace the matrices
with the corresponding coordinates, a procedure that is
simple to implement based on density fields. In Sec. III
we described (at the matrix level) the canonical transfor-
mation relating the two pictures in question, with

H=3(+y + pi+ py), (48)

and similarly for H. The linear map (in the nonrelativistic
approximation) which relates the two representations reads

Plx,y) = jdxl jdsz(f, B)(xy, x,), (49)
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where the kernel is given by

. +y
s, -0 o
V2

K(x, y;x,
o

It corresponds to a canonical transformation such that
J=x1py — xop) =3pE+ 22 —ipi+y) =7 (5D

related to the change to the matrix model picture discussed
in Sec. III. It maps (matrix model) eigenfunctions

F i y) = e CIH L (0H, () (52)

into (space-time) eigenfunctions

Pju(r, @) = L{z(r) (53)

r

where in the space-time picture x, + ix, = re’®. The ver-
tices in the two pictures are denoted by V and V and are
given by the overlap integral of three eigenfunctions:

— - 8-y [
$o(x)
X (//;Inl (r, ¢)’ﬁj2n2 (r’ ¢)¢J'§ﬂ‘5 (}’, (,b), (54)
with ¢, given in (53), and similarly for V. The 3-point
overlap V; will then be roughly of the form

Jinyjahajzng

~ [dd)ei(_jl+j2+j3)¢[er{;]]L{;ZZLf;gs

Vv

Jinijanyjins

=8y + 2+ ) [ drLh Lk
= 5(=ji+h+ i)V, (59)

and (still) yield a conserving delta function. Let us briefly
sketch what happens in the case of the tilde representation,
with eigenfunctions now given by (52). The overlap inte-
gral takes the form

- .[dxe_3szfl +n (X)Hiz+nz (X)H73+”3 (x)

X [ dye " H, (v)H,,()Hy., (). (56)

As one can verify, written in this basis the vertex no longer
has a conserving 6-function. Thus, as we commented ear-
lier, the vertex V has R-charge conservation

4 = 6/1»]2*]3 V’ 57)

Jilt1j2n2j303
while V does not. This is explained by the different action
of the R-charge operator J in the two pictures. While in the
present case one can easily show that for 2-point overlaps

fdxldx2$jn¢j'n’ = dedylenlpj’n’r (58)

one cannot do that for the 3-point function overlap. In fact
one can show explicitly that

PHYSICAL REVIEW D 77, 105005 (2008)

1% (59)

Jinyjanajzng

+V,

Jinyjanajang:

The basic theorem that we will establish in what follows is
that the two Hamiltonians

+
H= A]n jn + ( ]l”]/2”2/3”3Aj1n]A]2n2Aj3n3 + H-C-)
(60)
and
7 = T Q) ~
- Zw/nAJ”A/” + z (leﬂljznzjsﬂz JlnlAfznz Jans
Jn {j's,n's}
+ V12 At AT At 4 He) 61)

Jinyjanajzns® tjingttjang” Njan;

are in fact equivalent, with a nonlinear canonical trans-
formation relating them. To demonstrate this statement,
namely, the fact that (60) and (61) match, we would like
to perform the following field redefinition:

Ay = Ay + cyupAuAp + dNMPAIJ{/IAP + eNMPAIJ{/IA;‘
(62)

We have simplified the notation by using the index N to
denote all quantum numbers (j, 7). The Hamiltonian in the
tilde representation with this more compact notation takes
the form
I:I = H 2 + I:I 3
= szA Av+ Y (VaupAlAyAp
{N.M,P}
+ v ALAL AL + He.). (63)

Under the field redefinition (62) the quadratic part H,
yields additional cubic terms, and the total Hamiltonian
becomes

H Za)NA AN + Z [(VNMP + WONCNMP
N.M,P

+ dePMN)ANAMAP

If we want this to match (60), we need the following
conditions on the coefficients of the field redefinition:

2
WNeNmp = _VEW)WP’
. ;
Ve + oncnme + @pdpyy = V. (65)

Furthermore, we can obtain additional constraints on
cnmps Ayyp and ey p by imposing appropriate commuta-
tion relations:

[Ay, Ay ] =0, (66)

[Ay, AL]= 8y . (67)

Requiring (66) yields
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dyvm = dynms

(68)
enun — enun' T enwm — ennviy = 0.
The remaining commutation relation (67) gives
dyun' + Cymn t Sy =
(69)

dN/MN + CNMN' + CNN'M = 0.

This entirely fixes the nonlinear redefinition (62), showing
that one can in fact connect the two Hamiltonians.

To summarize, we have described how the matrix level
canonical transformation induces changes at the nonlinear
level. One has two related pictures, one in which the R-
symmetry is implemented as a coordinate symmetry (with
the corresponding delta function) and another where the R-
symmetry is dynamical, given by a canonical transforma-
tion. We have shown the equivalence of these two pictures
through a nonlinear field transformation. Related field
transformations have been identified previously at the
Lagrangian level in [8].

V. WARD IDENTITIES AND VERTEX
RECONSTRUCTION

Our main goal is to establish that, starting from the
vertex of highest-weight states, it is possible to build the
vertex for more general states that are reachable by (in this
case) SL(2) raising/lowering procedure. Specifically, we
will develop an identity that will allow us to generate such
nontrivial vertices, by making use of the available Ward
identities. We will again start from the simplified (non-
relativistic) model discussed in Sec. IV. This will then be
followed by a discussion on the form of Ward identities in
the AdS case.

A. Nonrelativistic model

Recall that the Hamiltonian of the nonrelativistic model
is given by

x> +y? p:+p?
H= + L 70
2 2 (70)
or, in terms of creation and annihilation operators,
H=a'a+ btb. (71)
Let us introduce complex variables
t t
a +b a+b
z= , = , 72
N N 72
and corresponding conjugate momenta
t—p _ — pt
a a
II =—-i0.-=1i , II =—-i9.=—i
Z \/— z \/z
(73)

These expressions can be combined to obtain
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a= L(z +9.), b= i(z + 95). (74)

V2 V2

The wave functions are then given by

|/, ny = M |()> (75)

VU + n)in!

and the generators I, [_, [y by

1 Z
I, ==(0,0, + —1—— ~ 29, 7
2( 22— 1) 5% (76)
1
_=—-(0.9. +zz+1)+ 9, += a (77)
2 2
ly= —9,0: + 22 — L. (78)

As we mentioned earlier, our goal is to use these generators
to derive an identity for the cubic vertex, which is given by

nnlym, (79)

1
d2
fx&ME

with X = (x, y). If we plug the standard mode expansion
n= \/E z Z(El,nlrlll,n + CJ,anfJ,n) (80)
J=1n=0

into the vertex we find

Z Z[Ejlynléfz»ﬂzchvm ]dx[dy

J=1n=0

R HF,(m

v¢o< X)

where we denote by P the prefactor coming from the action
of [, on the wave functions. Next, we would like to use the
fact that

I

Vin = VU +n)n

———— Vi (82)
and focus on

1 -
V= | &x— . 83
1 [ xmlrl/J],n]l//Jz,nzl//Jylh ( )

Using (76), the vertex term above becomes

Vl = [dzx !
2\ o(D)y/n3(J5 + ”3)

Xy, 0, (0,0; +22—1—

l/lll,nl

=20, - (84)

Let us treat each term in V| separately. We start from
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1 _
TE[de Dy 007
l 2\/% n3(J3+n3) fom P T

=[5
Vo ”3(12 + n3)

X [_lo + 22— Uy s,

l/jjl,n, wjz,nz

1 -
d2 17[[ 1'”1¢I 212
f x2\/¢0\/n3(13 + n3) frm

X [=J3 = 2n3 + 22— 1]¢y, 0, - (85)

We then look at the term

Tz =

1 _
— d2x ¢ nlﬂ,,,ZaIP n3
[ 2y pov/n3(J5 + n3) fom Tt

1

d2 JE

f XZ n3(]3 T ns) 17[,]3,”371{7[,‘]%”2

1 z -1/2 |7
[2F J—a #3000 ]‘p’""‘
1

N N ———

[ x2\/l’l3(.]3 + n3)

1 Z < -1/2
><[ +——=0,+-0.9, :Ir,lf,z,nz. (86)
2bo I T 27
Similarly,

l//J3,n3_] lﬁjl,nl

1

— | 42
[ xzv bovns(J3 + n3)
1
dPx———y. ., n
f X n}(J3 T n3) l/’]}, 37117/1«]% 2

I; = b1, 2001, 0,

1 1/2
[zr Neri 370"
1 _
d2 I
+[ X2 n3(J3—|—n3) l//J3,n3_]lr//.ll,n1

1 Z z -1/2
X +—0:+ —az¢ U iy (87)
[2\/¢0 Joo - 2 ] !

We now collect all terms and, using the definitions of /, and
[_, find

vV, = | & J_O li’;(";g; — [%2”2[1 +ZZO—ZZ
2 Z\/_a ¢01/2 Z\/_a ¢01/2:|¢11nl
+ &,l,nl[l_ +% 2+ 2+Z‘/—a by
Z\/_a (]501/2]%2"2
I ESI e (89
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We can rewrite the vertex above in the following way:

d2 lr//Jl n lr//Jz ny ( )d’]
VoovnsUs + n3) v
wJ n l//J n
— d2 3131 2,12
Joons(J5 + n3) ( >¢Jl "

+ fd2 ¢J3 n3— 1¢11 n (
Voovns(J3 + n3)
d2X ¢J1,n1 lpjz,nz ¢J3,n3,1

)l,bjz "

J’_
Voo Uz + n3)
><|:—12+Z\/_6 ¢01/2 Z\/_a ¢01/2:|. (89)

The last line vanishes, since ¢y = ¢~ 2% Thus, we find the
following identity:

forg

G _ 0 _
[1(3) l(1>_l<2>+w]
- 2

X ‘ZJl,nllsz,n2¢J3,n3,] = 0. (90)

Notice that this identity can be used to relate the vertex for
single-matrix states (highest-weight states with n; = 0) to
vertices of multimatrix states. In this sense, it provides a
generating mechanism for constructing nontrivial interac-
tions starting from the (simpler) 1/2 BPS sector of the
theory.

B. Interactions in AdS
We now move on to the case of real interest, interactions
in AdS X S. For simplicity we consider AdS, X S2. The
generators are given by

l. = i[cospd, + isinpd,], ly =19, (91)

and the eigenfunctions (denoted by ¢; to distinguish them
from those of the nonrelativistic model) by

éa(t, p) = c(d)

n!
o~ i N e+(7/2) XA
T + 2)\) (cosp)*C(sinp),
92)
with
r(A)221
c(A) = L 93)

NG

Starting from fdp[l(l)d)nl]cﬁ ,,3 at = 0 and integrat-
ing by parts with respect to p we find
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23 + i[dp Sinp[l(()2) + 15)3)
o lg)l)]él)l\: 25 »ot fdp[l(}) + 3

—IM@n i pni =0 (94)

We can eliminate the sinp terms from the recursion rela-
tion by using

i f dp sinp ! b2

. - l+
= 95
P ©3)
on the “1” leg to obtain:
j’dp[ 1(1) (l) ] _21 1)1‘2 fdp[l(z) N l(’;)
2(ny + A1
_ ) l(l)
_ l(l) 2| n fd [ :|
+]¢ 1 3 P 2(1’11 + /\1)
X[n1+)\1+n2+/\2+n3+/\3]d)nl 22—0
(96)

1. Use of the Ward identity

We can use this recursion relation to evaluate the overlap
integral of a product of any three eigenfunctions given the
overlap of highest-weight eigenfunctions. Inserting n; =
ny, ny = ny = 0 into the Ward identity and using (C} = 1,
CHx) = 2Ax)

I_¢p) =e i\m(m — 1+ 2A) m "
I_¢r=—e 1f(n+ 1)(n + 20 P2, , 97)
Lot = —eti\nin — 1+ 2101,

we obtain
1—n1—)\1+)t2+/\3
d =
f p¢n1+1 0 0 1+n1+A1+A2+A3

x \/nl(l’l] -1+ ZAI)
Vg + Dy +24y)

2zt/dp¢n1 | (/)\3' (98)

This relation allows us to determine fdpd),,l‘ 32¢33 for
any ny, once we know its value for n; = 0, 1. To obtain the
value when n; =1, insert n; = n, = n; = 0 into the
Ward identity. The resulting identity implies that
[dpdl 2> = 0. Next, set n,
n3 = 0. In this case, we find

alfdp(ﬁnlﬂ s’ T azfdp¢n1 X /\3
+%f@¢ MIM—, (99)

=n;, ny =n, and

PHYSICAL REVIEW D 77, 105005 (2008)

where
| Thn 4+ A +m+ A+ A
ay = —e i (n + D)(n; +24)— 2(; +i) 275
1 1
(100)
. L= ny = A +my+ A+ A
@z = eiyfmny — 1+ 24 U TR TR
(101)
ay = —e iyfmy(ny — 1 +2,). (102)
If we set n, = 1 we have
a [apdly ool + o [ dpd 878
+%fm@a N0, (103)

which (starting from n; = 0) determines [ dpgf)ﬁ} f‘z 83

for all n;. Next, set n, = 2 to obtain

a [apdly o200 + s [dpd)y 62}
ta [dpdliotey =0 a0k
which (starting from n, = 0) fixes [ dpn’ 33 for all

n;. Continuing in this way, it is clear that we can determine

[dpdn 2 dy®, for all ny, ny. Finally, set ny = ny, ny =
n, and n; = ns. In this case, we find
ay [dp¢nl+] ¢}'l'; + a2[dp¢nl 1 )‘2
+ a3[dp(5n; ,12 1¢r13 + a4[dp¢ ¢n3 1 =0,
(105)
where
ap = _€_”J(Vll + 1)(7’11 + 2)\1)
1+n1+)l1+n2+)12+n3+)t3 (106)
2(n + Ay) '
ay, = ei’\/nl(nl -1+ 2)\1)
l—nl—)tl+n2+/\2+n3+/\3
, 107
2(ny + Ay) (1om
ay = —e iyfmy(ny — 1 +2,), (108)
ay = —e yfny(ny — 1+ 25). (109)

If we take n, =0 and n3; =1 we can determine
[dpdn ¢p)2 ¢l for all ny. Setting n, =1 and ny = 1,
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we can find fdpgf)ﬁ]‘ 1’ i“ for all n,. Next, set n, = 2
and n3 = 1 to get fdp(/_Jﬁl‘ 2‘2(;’)?3 for all ny. Inching one
step at a time we can determine the full vertex.

2. Check of the Ward identity

To check the action of the generators we checked:

I_¢y = i[cospa, +lsmpa,](c(/\) F(;)\)

ef")‘(”(”/z))(cosp))‘) = (),

I_¢t = ifcospd, + isinp&](dMM

X ei(l+)t)(t+(77/2))(cosp)"Z)t sinp)

201+ 20 dhe

1.7 = ifcospd, — iSinpaz]<C(’\)\/%

X eV T/2) (cosp)A2A sinp))

= —\/Z—X(j_)())‘e”.

(110)

(111)

(112)
|
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As a partial check of the results of the previous section, we
will evaluate (98) for n; = 1 and explicitly verify that it is
correct. After setting n; = 1 we have

] Ao+ A5 — A
Noh g hy M 3 ]
fdp% 0 %o 2+,\1+A2+,\3

\/2(1 + 2/\ [d d)

(113)

Now,

/ dpd b dl = c(A)c(Ar)c(As)

2
% \/ T2 + 24T @A) 2Ny

% =il =M= A)(e+(1/2)7) L2it+(1/2)m)

X /dp((:osp))‘1 At A 021 (sinp).

(114)

Using

2! ! 1
\/r(z F2)TCALTA,) V(O + 2A1)2A1\/F(2A1)F(ZAZ)F(2A3)’

eZi(t+(1/2)7r) = —¢

2it
B

A(Ay —

—A3)

fdp(cosp)" INRERNE C’\l (sinp) =

it is trivial to verify the identity.

In conclusion, in this section we have demonstrated the
existence of [SL(2)] Ward identities. We have shown that
these identities contain the necessary information to spec-
ify the cubic interaction vertex for general states from the
knowledge of the vertex for the highest-weight states.
Since we have shown that the one-matrix collective field
theory correctly describes the latter case, we therefore have
a scheme of reconstruction of the full vertex. This discus-
sion was presented in the simplest AdS, framework; it is
clear, however, that this procedure is valid in general.
Nevertheless it will be important to develop the details in
the higher dimensional case. In particular, there should be
significant information on interactions in the 1/4 BPS
sector where progress has recently been accomplished at
the SUGRA level [20,26].

2+)t,+)l2+)\3

[dp(cosp)}““‘?“% (115)

[
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APPENDIX: THE VERTEX IN THE TWO
REPRESENTATIONS

In this appendix we show in some detail the origin of the
energy-conserving 6-function in the 3-point function in the
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original, nontilde representation. Recall that a typical cubic
term in the Hamiltonian takes the form

w3(w3 - W)

W1 WrW3

Hgn — A A A*[dDX\/ 28" Y s,

(AD)

where the integral is over the spatial coordinates only, and
the AdS,,; X S9! wave function is given by (x, y) =
S, f1(x)Y!(y). Here x and y denote AdS,,, and S*!
coordinates, respectively. Furthermore, in general we
have fx) = £t p, Qyy) = e V(p, Qyy).
Incorporating the (trivial) time dependence ¢ ~'®! into the
creation/annihilation operators of (A1), we see that the 3-
vertex

v = [@xy=ge i (A2)
can be written as
Vi = fddxmgffwquz@3 [ddﬂ)’\/g’;YleY&
= F123G23, (A3)
where we defined
Frs= fddxmg”\lfl\lfz\i@,
(A4)

Gus = '[ddﬂ)’\/gyﬁziy
For simplicity, we now restrict ourselves to AdS, X S2,
with (global coordinates) metric
ds®> = — secp?dt’ + secp’dp? + sinf?d¢p> + d6>.
(AS)
On the sphere one has
where  Y7(¢, 0) = N7 PT(cos), m = —j, —j+

I,...,j and N’” is the proper normalization. The AdS
wave functions Wthh satisfy the wave equation

(A6)

CAdS,f = cosp (=2 + 02)f = m>f (A7)
are given by
foalt,p) = N)_, e " (cosp)*C_, (sinp),
A A A (A3)
w=A+n, n=012....
Here C2 _, (sinp) are Gegenbauer polynomials, NA_, is a

normalization factor and A is related to the mass of the field
(also note 0 = p < 7). For chiral primaries the mass turns
out to be m> = j(j — 1), and the highest-weight state is
givenby A = jand n = 0:

Unw (8 p, &, 0) = N{;Nj:e*if’(cosp)feif"ﬁPj:(cosH). (A9)
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In order for the spherical harmonics and the Gegenbauer
polynomials to be §-function normalized we must take

25+ D(j — m)!
47(j + m)!

NA — T(A)22 12 [nl(n + A)
Y~ \/F(n +22)

For highest-weight states on AdS, X S? the overlap inte-
grals are (defining j = j; + j, + j3):

N7 =
(A10)

/2 -
j:jljzh = dp\/ _gAdszgn\le \sz \I}h
= N{NENG [ dpleospychicich

\/—F(ﬁ’))
2 T(1+19)

— NJ1N12N1%< (All)

gj]jzh = fd2y1 /82 YJ1 YLZ Yj;
NJZN“
W
X fﬂ do sin0P§1 P2 pJ3
0 17 20 I3

(Y J‘l—[(

"amr

=06(j1 +Jj2—J3)

=06(j; +Jjo— - 1)”]\7;:2)
F(l +f)

F(2 )

where we used C) = 1 and P(x) = (= 1)/(2j — DI!(1 —
x2)//2. Note the appearance of the 8(j, + j, — j;) term in
G, s> coming from the [depe'/®1*#2=93) integral. After
some Gamma function cancellations, we are left with the
following 3-vertex:

(A12)

(—1)im
:Fjljzjg gjlj2]3 8(]1 tia ) (2 )3/2
3 o 1
X [1@2j; — DUNGN) ——, (Al
1131(( Ji )ING jf)j+1’ (A13)

where we used I'(n/2)
ing
NI — T'(j)27\/j;
Oty

i PRit
NI = 1/ B,
s 2(2j)!

we find

= 27 (n — 2)!1127"/2, Finally, us-

(Al4)
(2j;)!
20i(j)V

and (25, — D! =
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2j; +1
27

(2j; — DUINJ NI = (A15)

The final expression for the 3-point function overlap is

V= :Fjljzjz gjl/2j3

=601 +j— j3)[ (-1

®m)(j + 1)

xyfeiy + e+ s + 1)

(A16)

Thus, (for the simple case of AdS, X S?) we have explic-
itly shown the origin of the delta-function term, and pre-
sented the final expression for the 3-point overlap. This
calculation can be repeated for the more general wave
functions given in (53). The 3-point overlap will then be
roughly of the form

PHYSICAL REVIEW D 77, 105005 (2008)
Vs~ fd¢ei(j|+jz—j3)¢ jer{LZL{ZL{Z

~8(j1 +j2 = Jj3) [erﬂl,LﬂzzLﬂz, (A17)

and still yield a conserving delta function. On the other
hand, in the case of the tilde representation the wave
functions are

Jlxy) = e CHIH (WH, (), (A1)
and the overlap integral takes the form
Vi [ dxe ™ H e (O, (O 0, ()
X [ dye > H, ()H,, (), ). (A19)

As one can verify, written in this basis the vertex no longer
has a conserving &-function.
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