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We consider generalized self-duality equations for Uð2rÞ Yang-Mills theory on R8 with quaternionic

structure. We employ the extended ADHMmethod in eight dimensions to construct exact soliton solutions

of the low-energy effective theory of the heterotic string.
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I. INTRODUCTION

In [1], an exact multi–five-brane soliton solution of the
heterotic string theory was presented. This solution repre-
sented an exact extension of the three-level supersymmet-
ric five-brane solutions of [2]. Exactness is shown for the
heterotic solution based on algebraic effective action argu-
ments and (4,4) worldsheet supersymmetry. The gauge
sector of the heterotic solution possesses SUð2Þ instanton
structure in the four-dimensional space transverse to the
five-brane. An exact solution with SUð2Þ � SUð2Þ instan-
ton structure was found in [3]. This soliton preserves four
of the 16 supersymmetries. In [4] a one-brane solution of
heterotic theory was found, which is an everywhere smooth
solution of the equations of motion. The construction of
this solution crucially involves the properties of octonions.
One of the many bizarre features of this soliton is that it
preserves only one of the 16 space-time supersymmetries,
in contrast to previously known examples of supersymmet-
ric solitons which all preserve half of the supersymmetries.
A two-brane solution of heterotic theory was found in
[5,6]. This soliton preserves two of the 16 supersymmetries
and hence corresponds to N ¼ 1 space-time supersymme-
try in ð2þ 1Þ dimensions transverse to the seven dimen-
sions where the Yang-Mills instanton is defined. Some
generalization of one- and two-brane solutions was found
in [7,8]. All these solutions are conformal to a flat space. In
dimension six, the possibility of the existence of a non-
conformally flat solution on the complex Iwasawa mani-
fold was discussed in [9–11].

In all the above-named papers instanton solutions in
various dimensions are extended to heterotic string soli-
tons. In this paper we employ the extended ADHMmethod
in eight dimensions to construct exact soliton solutions of
the low-energy effective theory of the heterotic string.

II. GENERALIZED SELF-DUALITY ON R8

In the first place, we define a basis V� with ð�Þ ¼
ð�0; �1Þ on R8 ’ H �H as a collection of two quater-
nionic column vectors realized as 4� 2 matrices,

V�0
¼ ey�0

02

� �
and V�1

¼ 02
ey�1

� �
; (1)

where �k is a four-valued index and the matrices ðey�k
Þ ¼

ði�1; i�2; i�3; 1Þ. As in [12] we introduce the anti-
Hermitian matrices

N�� ¼ 1
2ðV�Vy

� � V�V
y
�Þ: (2)

Notice that for any�; � ¼ 1; . . . ; 8, we have N�� 2 spð2Þ.
To introduce generalized self-duality equations on R8, we
define the total antisymmetric tensor

T���� ¼ 1

12
trðVy

�V½�V
y
�V��Þ: (3)

Then by direct calculation one finds that the matrix-valued
tensorN�� is self-dual in the sense of [13] (see also [14]); i.

e. it satisfies the eigenvalue equations

1
2T����N�� ¼ N��: (4)

It is well known that the subgroup of SOð8Þ which pre-
serves the quaternionic structure and therefore (4) is iso-
morphic to Spð1Þ � Spð2Þ=Z2.
With the help of the tensor (3) one may introduce an

analog of the self-dual Yang-Mills equations for Uð2rÞ
gauge fields on R8. Indeed, if F�� is the suð2rÞ-valued
Yang-Mills field, then the generalized self-dual Yang-Mills
equation in eight dimensions is

1
2T����F�� ¼ F��: (5)

Obviously, Eq. (5) is invariant under Spð1Þ � Spð2Þ=Z2 �
SOð8Þ and any gauge field fulfilling (5) satisfies the
second-order Yang-Mills equations due to the Bianchi
identities. In four dimensions T���� reduces to "����
and, hence, (5) coincides with the standard self-dual
Yang-Mills equations.

III. ’T HOOFT-TYPE SOLUTIONS IN EIGHT
DIMENSIONS

Now we construct a solution of Eq. (5) (cf. [15]). In the
notations of the Appendix we choose n ¼ r ¼ 1 and k ¼
2. For the ADHM ingredients a, bi, and�, we propose the
ansatz*ek.loginov@mail.ru
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a ¼ �12
02

� �
; bi ¼ 02

12

� �
; and � ¼ �0

�1

� �
; (6)

where � is a real constant and i ¼ 0, 1. With this selection
we obtain

�y� ¼ ð�2 þ xyxÞ � 12; (7)

where x ¼ x1 þ x2 and xi ¼ x�iey�i
. It is obvious that the

conditions (A2) and (A3) are satisfied. Next, Eq. (A4)
becomes

��0 þ xy�1 ¼ 02; (8)

which is solved by the solutions

�0 ¼ ’�1=212 and �1 ¼ �x �

xyx
’�1=2; (9)

where the function ’ is fixed by the normalization condi-
tion (A5):

’ ¼ 1þ �2

xyx
: (10)

The relation (A6) is verified by direct calculation. Hence,
our ð�;�Þ satisfies all conditions (A2)–(A6), and we can
define a gauge potential via (A7) and obtain from (A8) a
self-dual gauge field on R8.

Now we choose r ¼ k ¼ n ¼ 2. For the ADHM ingre-
dients we propose the constant 8� 4 matrices

a ¼ �0 þ�1

Q0 þQ1

� �
; bi ¼ 0

�Ei
� �

; (11)

where �i is a real matrix, E ¼ E1 þ E2 is the identity
matrix, and i ¼ 0, 1. (Here and below, we use the symbols
S0 and S1 for the 4� 4 matrix of the form

s 0
0 0

� �
and

0 0
0 s

� �
; (12)

where s ¼ s�iey�i
, respectively). It is obvious that the

matrix

�y� ¼ �i�i þ ðQi � xiEiÞyðQi � xiEiÞ (13)

is real and nondegenerate. Hence, the conditions (A2) and
(A3) are true. In order to construct a solution of Eq. (5), we
must find a matrix � ¼ �ðxÞ satisfying the conditions
(A4)–(A6). Suppose

� ¼ X1
i¼0

�Ei
Ui

� �
Wi; (14)

where W0 and W1 are real 4� 4 matrices. Then by direct
calculation we get that the matrix (14) satisfies the con-
ditions (A4) and (A5) if and only if the nonzero elements
�i, qi, ui, and wi of the matrices �i, Qi, Ui, and Wi,
respectively, are connected by the following relations:

uyi ¼ �iðqi � xiÞ�1; (15)

w2
i ¼ ð1þ uyi uiÞ�1; (16)

where we do not sum on the recurring indices and the
difference qi � xi � 0. Using (15) and (16) we easily
prove the completeness relations (A6). Hence, our ð�;�Þ
satisfies all conditions (A2)–(A6), and we can obtain from
(A8) a self-dual gauge field on R8. Note that one may
restrict our solutions to a subspace R4 � R8. In this case
we get the ’t Hooft-type instanton solutions in four
dimensions.
Note that generalizations of the solution (9) have been

described in the papers [16,17]. The construction of a
solution which generalizes (14) can be found in [18].
However for our purposes this will not be necessary.

IV. HETEROTIC STRING SOLITONS

As in the Refs. [1–6] we search for a solution to lowest
nontrivial order in�0 of the equations of motion that follow
from the bosonic action

S ¼ 1

2k2

Z
d10x

ffiffiffiffiffiffiffi�gp
e�2�

�
Rþ 4ðr�Þ2

� 1

3
H2 � �0

30
TrF2

�
; (17)

where the three-form antisymmetric field strength is re-
lated to the two-form potential by the familiar anomaly
equation

H ¼ dBþ �0ð!L
3 ð�Þ � 1

30
!YM

3 ðAÞÞ þ . . . ; (18)

where !3 is the Chern-Simons three-form and the connec-
tion �M is a non-Riemannian connection related to the
usual spin connection ! by

�AB
M ¼ !AB

M �HAB
M : (19)

We are interested in solutions that preserve at least one
supersymmetry. This requires that in ten dimensions there
exist at least one Majorana-Weyl spinor � such that the
supersymmetry variations of the fermionic fields vanish for
such solutions,

	
 ¼ FMN�
MN�; (20)

	� ¼ ð�M@M�� 1
6HMNP�

MNPÞ�; (21)

	 M ¼ ð@M þ 1
4�

AB
M �ABÞ�; (22)

where 
, �, and  M are the gaugino, dilatino, and gravitino
fields, respectively.
Let us now show that our instanton solutions can be

extended to a solitonic solution of the heterotic string.
Consider the action of the ten dimensional low-energy
effective theory of the heterotic string. The bosonic part
of this action is (17). If we have the solution (9), then we
can construct a five-brane solution. Indeed, the supersym-
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metry variations are determined by a positive chirality the
Majorana-Weyl SOð9; 1Þ spinor �. Because of the five-
brane structure, it decomposes under SOð9; 1Þ �
SOð5; 1Þ � SOð4Þ as

16 ! ð4þ; 2þÞ � ð4�; 2�Þ; (23)

where � subscripts denote the chirality of the representa-
tion. Then the ansatz

g�� ¼ e2�	��; (24)

H��� ¼ ������@��; (25)

with the constant chiral spinor � solves the supersymmetry
equations with zero background Fermi fields provided the
Yang-Mills gauge fields satisfy the instanton self-dual
condition (5). Substituting the explicit gauge field strength
(A8) for the instanton (9) into the anomalous Bianchi
identity

dH ¼ �0
�
trR ^ R� 1

30
TrF ^ F

�
; (26)

one obtains the following dilaton solution (cf. [1]):

e�2� ¼ e�2�0 þ 8�0 ðxyxþ 2�2Þ
ðxyxþ�2Þ2 þOð�02Þ: (27)

Note that the obtained string solution is not identical to [2].
Indeed, the translation x�i

! x�i
þ q�i

introduces eight

location parameters in our solution. Four parameters local-
ize the instanton in the subspace R4 � R8. The other four
parameters restrict the choice of R4 in R8. Since the five-
brane is transverse toR4, it follows that its selection inM9;1

is not arbitrary. The solution in [2] does not have these
restrictions.

If we have the soliton solution (14), then we can con-
struct a double-instanton string solution analogue of (27).
In this case the Majorana-Weyl SOð9; 1Þ spinor � decom-
poses under SOð9; 1Þ � SOð1; 1Þ � SOð4Þ � SOð4Þ for the
M9;1 ! M1;1 �M4 �M4 decomposition. The ansatz

g�i�i ¼ e2�	�i�i ; (28)

Hminipi ¼ �"minipi
si@si�; (29)

where i ¼ 0 or 1, solves the supersymmetry equations with
zero background Fermi fields. Substituting the gauge field
strength (A8) for the ansatz (14) into (26), we get the
following dilaton solution:

e�2� ¼ e�2�0 þ 8�0 ðx2i þ 2�2
i Þ

ðx2i þ �2
i Þ2

þOð�02Þ; i ¼ 0; 1:

(30)

If we restrict the solutions (27) and (30) to a subspace
R4 � R8, then we recover the heterotic string solitons as
derived in [2].

Note also that there are different solutions with more
worldsheet supersymmetry (cf. [1,3]). These symmetric
solutions are characterized, from the spacetime point of
view, by dH ¼ 0. This condition requires, according to
(26), that the curvature Rð�Þ should cancel against the
instanton Yang-Mills field F. Both the algebraic effective
action arguments and the (4, 4) worldsheet supersymmetry
arguments of [1] can be used in essentially the same
manner to demonstrate exactness of the string solutions.
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APPENDIX

Here, we give an extended ADHM construction of an
n-instanton solution for uð2rÞ-valued gauge fields in 4k
dimensions (see [7]). This construction is based on a com-
plex ð2nþ 2rÞ � 2r matrix � and a complex ð2nþ 2rÞ �
2n matrix

� ¼ aþ Xk�1

i¼0

biðxi � 1nÞ; (A1)

where a and bi are constant ð2nþ 2rÞ � 2n matrices and
xi ¼ x�iey�i

is a 2� 2 matrix. These matrices must satisfy

the following conditions:

�y� ¼ f�1; (A2)

½�y�; V� � 1n� ¼ 0; (A3)

�y� ¼ 0; (A4)

�y� ¼ 12r; (A5)

��y þ �f�y ¼ 12nþ2r: (A6)

The relation (A6) means that ��y and �f�y are projec-
tors onto orthogonal complementing subspaces of C2nþ2r.
For ð�;�Þ satisfying (A2)–(A6) the gauge potential is
chosen in the form

A ¼ �yd�: (A7)

Indeed, after straightforward calculation the components
of the gauge field F then take the form

F�� ¼ 2�ybN��fby�; (A8)

where the ð2nþ 2rÞ � 2nk matrix b ¼ ðb0 . . . bk�1Þ and
�; � ¼ 0; . . . ; k� 1. It is obvious that for k ¼ 2 the field
strength (A8) satisfies the self-dual Yang-Mills
equations (5).
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