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In a 4D chiral Thirring model we analyze the possibility that radiative corrections may produce

spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that

the chiral current � ���5 may assume a nonzero vacuum expectation value which triggers Lorentz and

CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically

induce a bumblebee-like model containing a Chern-Simons term.
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I. INTRODUCTION

The Lorentz invariance is one of the most well-
established symmetries in physics having survived a vari-
ety of stringent tests. Nevertheless, recently there has been
an active interest on the possibility that more fundamental
theories may induce small violations of Lorentz invariance
into the standard model, at levels accessible to high preci-
sion experiments [1]. The original motivation for this idea
arose from the fact that the spontaneous breaking of
Lorentz symmetry may appear in the context of string
theory [2] (in field theory the breaking was first studied
in [3]). To systematically investigate this possibility, a
standard model extension (SME) including all possible
terms which may violate Lorentz and/or CPT invariance,
was constructed [4].

The breaking of the Lorentz symmetry in the SME was
generated by a procedure analogous to the Higgs mecha-
nism in which a scalar field gains a vacuum expectation
value (VEV) to furnish masses for the standard model
particles. Nonzero expectation values for tensor fields
that contain Lorentz indices select specific directions in
the spacetime, breaking Lorentz invariance spontaneously.
As an example, let us consider a toy model whose
Lagrangian describes a vector field B� in such way to

induce spontaneous Lorentz and CPT violation [5–7],

L ¼ �1
4F��F

�� þ � ði6@�m� e 6B�5Þ 
� 1

4�ðB�B� � �2Þ2; (1)

where F�� ¼ @�B� � @�B�. The Maxwell form of the

kinetic part of B� can be justified by energy considerations

[8] without recourse to a gauge invariance principle. The
self-interaction in this ‘‘bumblebee’’ model triggers a
Lorentz and CPT-violating VEV hB�i ¼ ��. Very inter-

esting terms are obtained when we consider fluctuations

about the vacuum through the redefinitionB� ¼ �� þ A�,

where the shifted field is assumed to have a zero VEV,
hA�i ¼ 0. The Lagrangian (1) becomes

L ¼ � 1

4
F��F

�� þ � ði6@�m� 6b�5 � e 6A�5Þ 

� 1

4
�

�
A�A

� � 2

e
A � b

�
2
; (2)

with b� ¼ e��, presenting the term b� � ���5 which

violates the Lorentz and CPT symmetry. This term can
be used to produce through radiative corrections the Chern-
Simons Lagrangian [9],

L CS ¼ 1
2�

������A
�F��; (3)

with �� / b�, since they have the same C, P, and T

transformation properties. Both at zero [9–23] and at finite
temperature [24–28], in the non-Abelian case [29], and in
contexts which include gravity [30,31], this issue has been
carefully investigated.
In the present work, we will analyze the spontaneous

breaking of Lorentz and CPT symmetry [32] via the
Coleman-Weinberg mechanism [33]. Our objective is to
examine the possibility of causing a spontaneous Lorentz
and CPT symmetry breaking through radiative corrections
starting from the self-interacting fermionic theory given by
the Lagrangian

L 0 ¼ � ði6@�mÞ �G

2
ð � ���5 Þð � ���5 Þ; (4)

and dynamically inducing a bumblebee model with a
Chern-Simons term. A similar mechanism was proposed
a long time ago [34] as a way to generate the quantum
electrodynamics (QED) through radiative corrections
without invoking local Uð1Þ gauge invariance [35–37].
For some recent developments, see [38–40].
The model given by (4) is nonrenormalizable and must

be thought as a low energy effective theory arising from a
more fundamental, yet unknown theory, in the same sense
as the original proposal of Nambu and Jona-Lasinio (NJL)
[41] for QCD. As in the NJL model an ultraviolet (UV)
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cutoff will be present in the results, which will represent
our lack of knowledge of the physics beyond that scale. In
fact, we will use a variant of the dimensional regularization
prescription and the parameter � ¼ 4�D will be present
(a correspondence between � and a momentum cutoff � is
discussed in many places in the literature [42,43]).

This paper is organized as follows. In the Sec. II we
show that a Higgs-like potential may be induced through
radiative corrections from the Lagrangian (4), instead of
having been added from the start as in the bumblebee
model (1), leading to the appearance of a Lorentz- and
CPT-violating VEV h � ���5 i � 0. After taking into ac-

count fluctuations about this vacuum, the radiative correc-
tions at one loop are examined in Sec. III. Section IV
contains some final comments.

II. EFFECTIVE POTENTIAL

In order to eliminate the self-interaction term of Eq. (4),
it is convenient to introduce an auxiliary field B�, so that

the above Lagrangian can be rewritten as

L ¼ L0 þ g2

2

�
B� � e

g2
� ���5 

�
2

¼ g2

2
B�B

� þ � ði6@�m� e 6B�5Þ ; (5)

where G ¼ e2=g2. To verify the possibility that a bumble-
bee potential can be induced through radiative corrections
from this Lagrangian, we consider the generating func-
tional defined as

Zð �	;	Þ ¼
Z
DB�D D � ei

R
d4xðLþ �	 þ � 	Þ: (6)

By performing the fermionic integration we get

Zð �	;	Þ ¼
Z
DB� exp

�
iSeff½B�

þ i
Z
d4x

�
�	

1

i6@�m� e 6B�5

	

��
; (7)

where the effective action is given by

Seff½B� ¼ g2

2

Z
d4xB�B

� � iTr lnði6@�m� e 6B�5Þ:
(8)

The ‘‘Tr’’ stands for the trace over Dirac matrices as well as
the trace over the integration in momentum or coordinate
spaces. Thus, the effective potential turns out to be

Veff ¼ �g2

2
B�B

� þ i tr
Z d4p

ð2
Þ4 lnð6p�m� e 6B�5Þ;
(9)

where the classical field is in a coordinate independent
configuration. As we are interested in verifying the exis-
tence of a nontrivial minimum, we look for solutions of the

expression

dVeff

dB�

��������B¼�
¼ �g2

e
b� � i�� ¼ 0; (10)

where b� ¼ e�� � 0 and �� is the one-loop tadpole
amplitude:

�� ¼ tr
Z d4p

ð2
Þ4
i

6p�m� 6b�5

ð�ieÞ���5: (11)

To evaluate this integral we will follow the perturbative
route where now the propagator is the usual SðpÞ ¼ ið6p�
mÞ�1 and �i6b�5 is considered as insertions in this propa-
gator. At this point a graphical representation may be
helpful. With the conventions indicated in Fig. 1 the con-
tributions to �� are shown in Fig. 2. Our regularization
procedure, the dimensional reduction scheme [44], con-
sists in calculating the traces of the Dirac matrices in 4
dimensions and afterwards promoting the metric tensor
g�� and the integrals to D dimensions. Proceeding in this
way, we found that the first and third graphs as well as
graphs with more than three insertions vanish [45]. The
remaining contributions, i.e., the second and fourth graphs,
give

�� ¼
�
� im2e


2�
þ im2e

2
2
ln

�
m2

�02

�
� ib2e

3
2

�
b�; (12)

with � ¼ 4�D, �02 ¼ 4
�2e��, and � having been the
renormalization spot. Then, the expression (10) can be
rewritten as

�
� 1

GR

þ m2

2
2
ln

�
m2

�02

�
� b2

3
2

�
eb� ¼ 0; (13)

where we have introduced the renormalized coupling con-
stant

1

GR

¼ 1

G
þ m2


2�
: (14)

Therefore, we see that a nontrivial solution of this gap
equation is

b2 ¼ �3
2

�
1

GR

� m2

2
2
ln

�
m2

�02

��
: (15)

From this equation we see that a nontrivial minimum with
a timelike b� is possible if

FIG. 1. Feynman rules. Continuous and wave lines represent
the fermion propagator and the auxiliary field, respectively. The
cross indicates the �i6b�5 insertion in the fermion propagator
and the trilinear vertex corresponds to �ie���5.
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GR >
2
2

m2 lnðm2

�02Þ
; (16)

whereas a nonzero spacelike b� requires

GR <
2
2

m2 lnðm2

�02Þ
: (17)

The situation we are interested in is the case where the
effective potential possesses a nonzero minimum given by
Eq. (15), and therefore a VEV breaks the Lorentz invari-
ance, i.e., hB�i ¼ �� � 0. This breaking of Lorentz in-

variance implies in a modification of the dispersion
relation which may be useful in the study of ultrahigh
energy cosmic rays [46,47].

III. ONE-LOOP CORRECTIONS AND THE
INDUCED CHERN-SIMONS TERM

Let us now study the fluctuations, B� ¼ �� þ A�,

around the nontrivial minimum of the potential. We antici-
pate that, due to the breaking of the Lorentz and CPT
symmetry, Chern-Simons terms will occur. The generating
functional (7) expressed in terms of the shifted field is

Zð �	;	Þ ¼
Z
DA� exp

�
iSeff½A; b�

þ i
Z
d4x

�
�	

1

i6@�m� 6b�5 � e 6A�5

	

��
;

(18)

where the effective action is given by

Seff½A; b� ¼
Z
d4x

�
g2

2
A�A

� þ g2

e
A�b

� þ g2

2e2
b�b

�

�

� iTr lnði6@�m� 6b�5 � e 6A�5Þ: (19)

Up to a field independent factor which may be absorbed in
the normalization of the generating functional, we get

S0eff½A; b� ¼
Z
d4x

�
g2

2
A�A

� þ g2

e
A�b

�

�
þ SðnÞeff ½A; b�;

(20)

where

SðnÞeff ½A; b� ¼ iTr
X1
n¼1

1

n

�
i

i6@�m� 6b�5

ð�ieÞ6A�5

�
n
: (21)

The formally divergent contributions in this formula are

the tadpole, the self-energy, and the three and four point
vertex functions of the field A�. The tadpole is given by

Sð1Þeff½A; b� ¼ iTr
i

i6@�m� 6b�5

ð�ieÞ6A�5

¼ i
Z
d4x��A�; (22)

where �� was given in (12) due to (10).
The self-energy term, which corresponds to n ¼ 2,

yields

Sð2Þeff½A; b� ¼
i

2
Tr

i

i6@�m� 6b�5

ð�ieÞ6A�5

i

i6@�m� 6b�5

� ð�ieÞ6A�5

¼ i

2

Z
d4x���A�A�; (23)

where

��� ¼ tr
Z d4p

ð2
Þ4
i

6p�m� 6b�5

ð�ieÞ���5

� i

6p� i6@�m� 6b�5

ð�ieÞ���5: (24)

By expanding in powers of 6b�5, the above result can be
expressed graphically as in Fig. 3. The second and third
graphs are separately finite and furnish a nonlocal Chern-
Simons term. Similar to what happens in extended QED
[48–50] the coefficient of this generated Chern-Simons
term is ambiguous, i.e., different regularizations produce
distinct results; for example, by using the ’t Hooft-Veltman
prescription [51,52] the coefficient vanishes. The divergent
parts of the fourth, fifth, and sixth graphs cancel among
themselves (we have also verified that graphs with three
and four insertions of the vertex�i6b�5 vanish); so only the
first graph turns out to be divergent. We get

��� ¼ ie2g��
�
� m2


2�
þ m2

2
2
ln

�
m2

�02

�
� b2

3
2

�

� ie2

6
2�
ðg��h� @�@�Þ þ ie2

12
2

�
ln

�
m2

�02

�
þ 1

�

� ðg��h� @�@�Þ � ie2

6
2
�����b�@�

� ie2

12
2
@�@� � 2ie2

3
2
b�b�; (25)

valid for h=m2 � 1.

FIG. 2. Contributions to the tadpole ��.
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Notice that UV divergences may also appear in the third
term of the series in Eq. (21), as Furry theorem is not
applicable. For n ¼ 3 the expression (21) gives

Sð3Þeff½A; b� ¼
i

3
Tr

i

i6@�m� 6b�5

ð�ieÞ6A�5

i

i6@�m� 6b�5

� ð�ieÞ6A�5

i

i6@�m� 6b�5

ð�ieÞ6A�5

¼ i

3

Z
d4x����A�A�A�; (26)

where

���� ¼ tr
Z d4p

ð2
Þ4
i

6p�m� 6b�5

�ð�ieÞ���5

i

6p� i6@�m� 6b�5

�ð�ieÞ���5

i

6p� i6@� i6@0 �m� 6b�5

�ð�ieÞ���5; (27)

which, as a power series in 6b�5, is given by the graph
expansion of Fig. 4. In the above formula the derivatives 6@
and 6@ 0 act on A� and A�, respectively. Because of proper-

ties of the trace of Dirac matrices the first graph results
finite, whereas the divergent parts of the second, third, and
fourth graphs cancel among themselves, in the sameway as
what happens with some one-loop contributions to
Lorentz-violating QED [53]. The leading terms in the
expansion in h=m2 yield

���� ¼ ie3

12
2
ð�����@� � �����@0�Þ þ

ie3

3
2
ðg��b�

þ g��b� þ g��b�Þ: (28)

In principle the fourth term of the series in (21) may be
divergent but it results finite since the leading term is
similar to the one in QED where, as it is known, it is finite.
We obtain

Sð4Þeff ¼
e4

12
2

Z
d4xðA�A�Þ2 þO

�
h

m2

�
: (29)

The results obtained so far allow us to write the effective
Lagrangian as

L ¼ � 1

4Z3

F��F
�� þ e2

24
2
b������A

�F��

� e2

24
2
ð@�A�Þ2 þ e4

12
2

�
A�A

� � 2

e
A � b

�
2

þ e

2b2
A�A

�hA�ib� þ hA�iA�; (30)

where

1

Z3

¼ e2

6
2�
� e2

12
2

�
ln

�
m2

�02

�
þ 1

�
(31)

and

hA�i ¼
�
1

GR

� m2

2
2
ln

�
m2

�02

�
þ b2

3
2

�
eb�: (32)

The requirement that hA�i ¼ 0, such that B� acquires a

VEV hB�i � 0, was already studied in Eqs. (10)–(15),

with the solutions (16) and (17). By defining a renormal-

ized field A
�
R ¼ Z�1=2

3 A� and a renormalized coupling

constant eR ¼ Z1=2
3 e, we get

FIG. 4. Contributions to the three-point ����.

FIG. 3. Contributions to the vacuum polarization ���.
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L ¼ � 1

4
FR��F

��
R þ e2R

24
2
b������A

�
RF

��
R � e2R

24
2

� ð@�A�R Þ2 þ
e4R

12
2

�
AR�A

�
R � 2

eR
AR � b

�
2
: (33)

This Lagrangian is exactly the extended QED by the
Chern-Simons term, added of a gauge-fixing term and of
a potential that do not trigger a Lorentz and CPT violation.
We should stress that the (finite) Chern-Simons coefficient
is ambiguous and depends on the particular regularization
scheme used [48–50].

By substituting the expression (31) (Z3 ffi 6
2�=e2) into
the renormalized coupling constant, we obtain the result
e2R ffi 6
2� which is the same one for the induced QED
[34,35,38,42,43]. In the limit �! 0 we would have a
trivial free theory with vanishing coupling constant. But
as we remarked in the introduction we must keep � at some
small but nonvanishing value so that Eq. (33) has to be
interpreted as an effective theory. Bumblebee models of

this type have been discussed in flat and curved spacetime
[54,55].

IV. CONCLUSIONS

We have shown that a bumblebee potential can be in-
duced through radiative corrections from a 4D chiral
Thirring model, as the conditions (16) and (17) hold for
timelike and spacelike b�, respectively. By considering the

fluctuations on the minimum of the potential, the QED
extended by the Chern-Simons term is dynamically
generated.
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(1989); V.A. Kostelecký and R. Potting, Nucl. Phys.
B359, 545 (1991).

[3] S.M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41,
1231 (1990).

[4] D. Colladay and V.A. Kostelecký, Phys. Rev. D 55, 6760
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