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In this paper we review the problem of time delay of photons propagating in a spacetime with a metric

that explicitly depends on the energy of the particles (gravity-rainbow approach). We show that

corrections due to this approach—which is closely related to the double special relativity proposal—

produce for small redshifts (z � 1) smaller time delays than in the generic Lorentz invariance violating

case.
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I. INTRODUCTION

The idea that relativistic symmetry might not be pre-
served at all energy scales has been a subject of an intense
debate and study during last years. Proposals of how to
modify the Lorentz symmetry and models implementing
this idea, from which measurable consequences can be
obtained, have been investigated by large [1].

In very general grounds, these proposals can be divided
in two types: (a) those where Lorentz symmetry is broken
by choosing a preferred reference frame and (b) those were
Lorentz symmetry is deformed and the relativistic princi-
ple is preserved. In the present paper we will focus on the
consequences for the time of flight of photons in case (b).

Double special relativity (DSR) [2] models fall in
case (b). Generically, they are nonlinear realizations of
the Lorentz group that incorporate a second invariant scale
(momentum or energy scale) in order to solve the following
problem: if Lorentz symmetry is valid only up to certain
energy (or momentum) scale, then this scale must be
invariant for all observers on inertial reference frames.

Even if this idea has concrete realizations for the case of
one particle in the momentum space, a consistent approach
in spacetime and multiparticle sector is still a matter of
intense debate [3].

A possible solution to spacetime problem is the so-
called rainbow gravity [4,5]. Here, a spacetime is intro-
duced that is dual to the momentum space where Lorentz
group has a nonlinear realization: as a result, the metric of
this spacetime is energy dependent. This approach admits
also curved spacetimes which are solutions of (modified)
Einstein equations. We will refer to this space (curved and
energy dependent) as rainbow spacetime [4].

The problem we address here is related with this mod-
ifications of spacetime structure and the possibility of test-
ing it by redshift and/or time-of-flight measurements.
Specifically, we are interested in the modification of pho-
ton redshifts generated by DSR-like changes in the disper-
sion relation.

Let us briefly review the standard case. In the cosmo-
logical standard model, the metric of the universe is given
by the Friedman-Robertson-Walker line element

ds2 ¼ dt2 � aðtÞ2
�

dr2

1� kr2
þ d�2

�
; (1)

where t, r, �,� are the usual cosmological coordinates and
k is the three-dimensional space curvature (which we will
take equal to zero from here on).
Redshift z is a wavelength (or frequency) shift due to the

fact that light signals propagate in background (1) and
relates the wavelength of the photon at emission (�) with
the wavelength �0 of the photon today (in cosmological
terms), namely

z � �0 � �

�
¼ �0

�
� 1 (2)

or in terms of energy

E ¼ E0ðzþ 1Þ: (3)

All these definitions are still valid in the deformed case
since they do not depend on details of propagation. The
relation between z and the scale factor aðtÞ, however,
depends indeed of those details. In concrete, from the
fact that metric has the shape (1),—see for example
[6])—since the space is a maximally symmetric one and
then spatial coordinates can be chosen as a comoving
reference system, one has

a0
a

¼ �0

�
¼ zþ 1; (4)

with a0 ¼ ajz¼0. In the next section we will discuss how
this property changes and explore the consequences for the
calculation of proper distances and time delay of photons.
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II. RAINBOW REDSHIFT

Consider now an energy-dependent metric1

ds2 ¼ �f�2ðEÞdt2 þ g�2ðEÞa2ðtÞd�2; (5)

with d�2 ¼ �ijdx
idxj is the spatial line element. Even if it

is possible to perform calculations for general functions f
and g, in the present paper wewill focus on the propagation
on this spacetime up to first order in M�1

Pl , that is, we will

take functions with the shape

fðEÞ � 1þ�
E

MPl

; gðEÞ � 1þ �
E

MPl

(6)

where �, � are numerical constants of order 1. For ex-
ample, for a DSR1 deformation (following the classifica-
tion in [7]) we have � ¼ 0, � ¼ 1=2, while for DSR2 we
have f ¼ g to all orders in E=MPl and therefore � ¼ �.

Note that the definition of redshift (2) does not change,
however its relation with a [Eq. (4) in the standard case]
does. Indeed, if the relation between wavelength and mo-
mentum remains unchanged one has, considering the
modified dispersion relation

E2f2ðEÞ � p2g2ðEÞ ¼ 0 ¼ E2f2ðEÞ � 1

�2ðEÞg
2ðEÞ

and

fðE0Þ
fðEÞ

gðEÞ
gðE0Þ

aðt0Þ
aðtÞ ¼ E

E0

:

The last equality is an assumption, depending on the (un-
known) QM in rainbow space-time. It is however natural,
since it produces wavelengths approaching the Plank
length when energies approach the Planck mass.

Using the definition of z we can write previous expres-
sion as

aðzÞ
a0

¼ fðE0Þ
gðE0Þ

gðE0ðzþ 1ÞÞ
fðE0ðzþ 1ÞÞ

1

zþ 1
: (7)

To summarize, the definition of redshift in this rainbow
spaces is still (2), and this just says that to a measured
energy E0 corresponds an emitted energy E at redshift z.
Equation (7), on the other hand, says that to this redshift z
corresponds a given value of a, which is determined by
equations of motion.

Notice that in this framework [4] photons of different
energies see a different expansion.

In the following section we will use both relations to
calculate the proper distance traveled by a photon that is
received, at present, with energy E0.

A. Photons proper distances

The comoving (proper) distance is the integral of equa-
tions of motion and for simplicity we will consider only
radial trajectories, that is

rðz; E0Þ ¼
Z t0

t

gðEÞ
fðEÞ

dt0

aðt0Þ :

Here, the speed of photons is energy dependent through f
and g; the constant factor c has been chosen unity. The
previous equation can be rewritten as an integral in z as in
the standard case. From (7) we have

rðz; E0Þ ¼ g0
f0a0

Z z

0

gðE0ðz0 þ 1ÞÞ
fðE0ðz0 þ 1ÞÞ

d

dz0

�
�
ðz0 þ 1Þ fðE0ðz0 þ 1ÞÞ

gðE0ðz0 þ 1ÞÞ
�

dz0

Hðz0Þ ;

where f0 ¼ fðE0Þ, g0 ¼ gðE0Þ, a0 ¼ aðt0Þ and HðzÞ ¼
_aðtÞ=aðtÞ and it is given by [4]

H ¼
�
8�

3
GðEÞ �

f2
þ�ðEÞ

3

�
1=2

: (8)

G and � can be, in principle, functions of the energy.
It is possible to rewrite rðz; E0Þ in order to show explic-

itly the modifications due to the energy dependence of the
metric. A direct calculation allows us to write

rðz; E0Þ ¼ g0
f0a0

Z z

0

�
1� ðz0 þ 1Þ d

dz0
ln

�
g

f

��
dz0

Hðz0Þ ; (9)

where f, g, and H are evaluated in E0ðz0 þ 1Þ.
This last expression is valid for any symmetry deforma-

tion, however in this general form is not useful to extract
information about possible physical consequences. Since
we are interested in linear corrections, we can circumvent
this problem by considering deformations of the type (6),
namely,

GðEÞ �G

�
1þ �

E

MPl

�
; �ðEÞ ��

�
1þ �

E

MPl

�
;

(10)

with G, � the Newton and cosmological constants (in the
limit MPl ! 1) and �, �, numerical constants of order 1.
With (6) and (10) we can calculate explicitly first order

corrections to proper distances in (9), namely

rðz; E0Þ ¼ 1

a0

Z z

0

dz0

Hstðz0Þ �
E0

MPla0

Z z

0

dz0

Hstðz0Þ
�

�
z0ð���Þ þ ðz0 þ 1Þ�H

2ðz0Þ
2H2

stðz0Þ
�
; (11)

where Hst is the standard Hubble parameter [that is f ¼ 1,
GðEÞ ¼ G, �ðEÞ ¼ � in (8)] while �H2 is the first order
correction due to the dependences on E1Here we follow the notation of Magueijo and Smolin in [4]
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�H2 ¼ 8�

3
G�ð�� 2�Þ þ��

3
: (12)

Let us consider the example of DSR1. We have

rDSR1ðz; E0Þ ¼ 1

a0

Z z

0

dz0

Hstðz0Þ �
E0

2MPla0

Z z

0

dz0

Hstðz0Þ
�

�
z0 þ ðz0 þ 1Þ�H

2ðz0Þ
H2

stðz0Þ
�
: (13)

Note that the behavior of this function depends on func-
tions G, �. In fact, if we consider (a very conservative
approach) � ¼ 0 ¼ �, we have

rDSR1ðz; E0Þ ¼ 1

a0

Z z

0

�
1� z0

E0

2MPl

�
dz0

Hstðz0Þ : (14)

which is different from one obtained recently by Jacob and
Piran [8] and the reason, in this particular case, is that they
use the standard relation between a and z while for us, it is
given by (7). In our case, this introduces an extra factor g0,
which cancels the 1 in z0 þ 1. For this particular example
our result coincides with that in [8] only for z � 1.
However, a rather different behavior appears if we consider
nonvanishing � and �. In fact, since they are of the order 1,
then the last term in (13) is of order one, that is

�H2ðz0Þ=2Hð
stz

0Þ � 1 and then a correction similar to the
one obtained in [8] is obtained. An illustrative case is � ¼
� � 	 and it gives

rDSR1ðz; E0Þ ¼ 1

a0

Z z

0

�
1� E0

2MPl

ðz0 þ ðz0 þ 1Þ	Þ
�

dz0

Hstðz0Þ :
(15)

We will return to that in the discussion section.
For DSR2, instead, the only possible corrections, in the

present approach, come from functions GðEÞ, �ðEÞ. In
fact, we have in (11)

rðz; E0Þ ¼ 1

a0

Z z

0

dz0

Hstðz0Þ �
E0

MPla0

Z z

0

dz0

Hstðz0Þ ðz
0 þ 1Þ

� �H2ðz0Þ
2H2

stðz0Þ
: (16)

and for � ¼ 0 ¼ � no corrections are obtained. Instead, for
the other case discussed before � ¼ � � 	 we have a
correction of the type obtained in [8].

B. Photons time delay

The time of flight of a photon that travels between two
points labeled by t and t0 is

�t ¼
Z t

t0

dt0 ¼
Z z

0

da

Hðz0Þa ;

where we have chosen t0 as the present time. Using (7) the
lookback time is

�t ¼
Z z

0

�
� 1

zþ 1
þ d

dz0
ln

�
g

f

��
dz0

Hðz0Þ ; (17)

where f and g are evaluated in E0ðz0 þ 1Þ. This expression
gives the time that a photon takes to travel from a source at
a given z to the present (with z ¼ 0) if the energy measured
now is E0 [what means of course that the energy at the
emission time were E0ðzþ 1Þ].
Consider now two photons produced at z with different

energies there, arriving at present time (z ¼ 0) (of course,
with different energies). In the standard case, only the first
term in the RHS of (17) is present and it does not depend on
energy, therefore the difference on time of flight between
these two photons will be zero, as is well known. However,
in the present case, due to the dependence on the final
energy [second term in RHS of (17)] we will have the
following difference for the lookback time

�t ¼
Z z

0
�

�
1

Hðz0Þ
d

dz0
ln

�
g

f

��
dz0; (18)

with

�

�
1

Hðz0Þ
d

dz0
ln

�
g

f

��
� 1

Hð1Þ
d

dz0
ln

�
gðEð1Þ

0 ðz0 þ 1ÞÞ
fðEð1Þ

0 ðz0 þ 1ÞÞ
�

� 1

Hð2Þ
d

dz0
ln

�
gðEð2Þ

0 ðz0 þ 1ÞÞ
fðEð2Þ

0 ðz0 þ 1ÞÞ
�
;

where Eð1Þ
0 and Eð2Þ

0 are the energies of the two photons,

measured at z ¼ 0 and HðiÞ is H defined in (8) evaluated in

EðiÞ
0 , for i ¼ 1, 2.
The previous expression is valid for general functions f,

g, G, �. In order to analyze the behavior of it we will
consider again only first order contributions, namely, (6)
and (10). Note that, since the derivative of lnðg=fÞ is of the
order E=MPl, then contributions due to � and � will not be
present. In fact, a straightforward calculation shows that, in
the linear approach, (18) becomes

�t ¼ ���

MPl

Z z

0
�

�
1

Hstðz0ÞE0

�
dz0;

but Hst does not depend on the energy of particles, then

�t ¼ �E0ð���Þ
MPl

Z z

0

dz0

Hstðz0Þ ; (19)

We see again that, for DSR2 there will be no (energy
dependent) delay while for DSR1 we have

�t ¼ �E0

2MPl

Z z

0

dz0

Hðz0Þ ; (20)

which coincides with the result of [9]. Corrections due to
the dependence of G and � on E turn out to be second
order in E=Mpl.

A similar question can be formulated about differences
on proper distances. Namely, two photons produced by a
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source at z, but with different energies there—and there-
fore with different energies at z ¼ 0—will they have a shift
on their proper distances? The answer for this rainbow
spacetime can be obtained directly from (9), but it is not
so illuminating and therefore we will consider again the
linear approach, that is (11). It is straightforward to see that
in this case

�rðz; E0Þ ¼ �E0

MPla0

Z z

0

dz0

Hstðz0Þ
�

�
z0ð���Þ þ ðz0 þ 1Þ�H

2ðz0Þ
2H2

stðz0Þ
�
;

Clearly we can define a time delay ��t ¼ a0�rðz; E0Þ, and
then

��t ¼ �E0

MPl

Z z

0

dz0

Hstðz0Þ
�
z0ð���Þ þ ðz0 þ 1Þ�H

2ðz0Þ
2H2

stðz0Þ
�
:

(21)

Some comments are in order here. First, the fact that a time
delay can be defined proportional to the proper distance
depends also on the relation between a and z, which in our
case is not the standard one; however this gives rise to
second order corrections in 1=MPl, which have been dis-
carded in the examples considered in the present paper.
Second, we would like to call the attention on the fact that

�t in (19) and ��t in (21) are different because they
measure different physical properties. The first is related
to actual measurements of times while the second is based
on measurements of proper distances.

To finalize the present discussion, let us point out that
our results are strongly dependent on the choice of GðEÞ,
�ðEÞ.

III. DISCUSSION AND CONCLUSIONS

In this paper we have explored the consequences on the
determination of (energy dependent) proper distances and
arrival times of photons produced by sources at redshift z
in doubly special relativity models with modified disper-
sion relations.

The major problem in performing this kind of calcula-
tion is the still uncertain knowledge of the spacetime
structure compatible with this symmetry deformation. As
we pointed out in the introduction, this is an open problem,
even if much work (and progress) has been done.

On the other hand there exist (partial) proposals (for
instance [4]) that allow us to treat, at least in a self-

consistent way, the problem of the propagation of particles
in cosmological spacetimes.
For the discussion carried out in the present paper, we

have used the proposal of Magueijo and Smolin where the
spacetime metric depends on the energy of the particle that
probes this spacetime (the so called ‘‘rainbowmetric’’) and
satisfies (modified) Einstein equations for some matter
distribution. In this approach photons move on a modified
geodesics as a consequence of the modification of the
dispersion relation, and experience a modified and
energy-dependent cosmological expansion.
In this context we find that (at least for photons emitted

at small z) the effects of the modifications on the photon
geodesics and of the scale factor do compensate and one
obtains for the time delay of photons of different energies
emitted at same z the result reported by Ellis et al. in [9], in
the particular case of DSR1 photons propagating in a
(deformed) FRW universe with constant G and �.
As was pointed out in previous section, our results

depend strongly on the functional form of GðEÞ and
�ðEÞ [as well as that of fðEÞ and gðEÞ]; this just reflects
the strong dependence of the time delay on the structure of
spacetime.
In conclusion, we have shown that, in this model, for G

and � constant, the DSR1 approach and Ref. [8], give
different results for small z, while they coincide for large
values of redshift [see relation (7). On the other hand, with
linear corrections to G and �, the modifications can com-
pensate and then a similar result to [8] is obtained. For
DSR2, instead, possible corrections arise only from this
last effect.
For the lookback time, corrections from the dependence

of G, � on the energy of photons, are second order effects
in M�1

Pl and then only relation (7) is relevant. We have

shown that time delays calculated in this way coincide with
results in [9].
Finally, we would like to emphasize that our result is

different from that recently reported by Jacob and Piran
[8], but there different hypotheses on the spacetime struc-
ture are made. This in principle leaves open the possibility
of experimentally distinguishing among different phe-
nomenological consequences of quantum gravity.
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