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We use metric formalism in fðRÞ modified gravity to study the dynamics of various systems from the

solar system to the cosmological scale. We assume an ansatz for the derivative of action as a function of

distance and describe the Pioneer anomaly and the flat rotation curve of the spiral galaxies. Having the

asymptotic behavior of action, we propose the action of fðRÞ ¼ ðRþ�Þð1þ lnðR=RcÞ=ðR=R0 þ 2=�ÞÞ
where in galactic and solar system scales it can recover our desired form. The vacuum solution of this

action also results in a positive late time acceleration for the Universe. We fix the parameters of this

model, comparing with the Pioneer anomaly, rotation curve of spiral galaxies, and supernova type Ia gold

sample data.
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I. INTRODUCTION

Recent observations of the supernova type Ia and cosmic
microwave background (CMB) radiation indicate that the
Universe is under positive accelerating expansion [1]. This
accelerating expansion is one of the important puzzles of
the contemporary physics. A nonzero vacuum energy can
drive the Universe to accelerate however one can ask why
it is nonzero and why it is so small [2]. Adding a simple
cosmological constant term to the Einstein equations can
also accelerate the Universe. However, the problem with
the cosmological constant is explaining why the energy
density of matter and the cosmological constant are in the
same order at the present time?

A varying dark energy model can partially solve this
problem in which the density of dark energy traces the
density of matter from the early Universe to the present
time. Modified gravity can also provide an effective time
varying equation of state. In these models the Einstein-
Hilbert action is replaced with a generic form of fðRÞ
gravity [3]. In addition to the late time cosmic expansion,
early inflationary era also can be achieved by an extra term
to the action, as adding a cubic term to the 1=R gravity
model [4]. Modifying action not only affects the dynamics
of the Universe, it can also alter the dynamics at the
galactic or solar system scales.

There are two main approaches of metric and Palatini
formalism to extract the field equations from the action.
Considering the non-Levi-Civita connection associated
with the manifold, we can take the connection and the
metric as the independence geometrical quantities.
Varying the action with respect to these two parameters
(so-called Palatini formalism) results in the field equations
[5,6]. On the other hand in the metric formalism the
connection is the Levi-Civita connection and we do varia-
tion of action with respect to the metric to derive modified
gravity field equations. The advantage of the Palatini for-

malism is that the field equations are second order differ-
ential equations similar to the other parts of the physics.
One of the interesting issues in fðRÞ gravity is studying

the spherically symmetric solutions. In the case of Palatini
formalism the solution is Schwarzschild–de Sitter metric
with an effective cosmological constant. However in the
metric formalism the solution of non-Einstein-Hilbert ac-
tion suffers from a low-mass equivalent scalar field that is
incompatible with solar system tests of general relativity,
as long as the scalar field propagates over solar system
scales [7,8]. One of the solutions to avoid the solar system
tests is using action in such a way that reduces to the
Einstein-Hilbert action in the low curvature regime at the
solar system and, at the cosmological regime, acts as an
effective cosmological constant [9,10]. The other problem
in this issue is the consistency of the spherically symmetric
solutions in fðRÞ gravity [11] that will be addressed in this
paper.
In this work, we try to extract an appropriate action for

the modified gravity through the inverse solution. This
method has been applied in the previous works both in
the galactic [12] and cosmological scales [13]. Here we
extend the previous works to the solar system scale, study-
ing anomalies in the Pioneer acceleration, and obtain the
appropriate action in the solar system scale. On the other
hand following the method proposed by Capozziello et al.
[14] we extract an appropriate action to provide a flat
rotation curve in the spiral galaxies. Both the solar system
and the galactic scale solutions are consistent with the
modified gravity field equations in the first order of ap-
proximation. Finally we propose a generic function for the
action to cover all the mentioned scales and in addition to
provide a late time acceleration for the Universe. At the
end we use the observational data of the Pioneer anomalies
in solar system, rotation curve of the galaxies, and super-
nova type Ia in the cosmological scales to put constraint on
the parameters of the model.
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The organization of the paper is as follows: In Sec. II we
introduce the modified gravity in metric formalism. Using
an ansatz for the derivative of the action, we solve the field
equation for the spherically symmetric metric, and derive
the dynamics in solar system and galactic scales. We use
the observational data in the solar system as well as the flat
rotation curve of the spiral galaxies to constrain the pa-
rameters of the model. In Sec. III we propose a generic
action where in the small scales it reduces to the appro-
priate actions in the galactic and solar system scales.
Supernova type Ia gold sample data provide compatible
results with the other observations. The conclusion is
presented in Sec. IV.

II. SPHERICALLY SYMMETRIC SPACE

Let us take an action for the gravity that depends only on
the Ricci scalar as fðRÞwhere in the simple case of fðRÞ ¼
R, it is the so-called Einstein-Hilbert action. For a generic
fðRÞ, there are two main approaches to extract the field
equations. The first one is so-called ‘‘metric formalism’’ in
which the variation of action is performed with respect to
the metric. In the second approach, ‘‘Palatini formalism,’’
the connection and metric are considered independent of
each other and we do the variation for those two parameters
independently. In this work we will follow the metric
formalism.

A generic form of the action depending on the Ricci
scalar can be written as follows:

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Sm: (1)

Varying the action with respect to the metric results in the
field equations as

FðRÞR�� � 1

2
fðRÞg�� � ðr�r� � g��hÞFðRÞ ¼ �T��;

(2)

where F ¼ df=dR andh � r�r�. From Eq. (2), we take
the trace and obtain the action in terms of F and Ricci
scalar as

fðRÞ ¼ 1

2
ð3hFþ FR� �TÞ: (3)

By taking derivative from Eq. (3) with respect to r (radial
coordinate of the metric) we rewrite this equation in terms
of F and R as follows:

RF0 � FR0 þ 3ðhFÞ0 ¼ �T0; (4)

where 0 � d=dr and f0ðRÞ ¼ FðRÞR0.
Replacing fðRÞ in favor of FðRÞ, we obtain the field

equation in terms of FðRÞ

R�� � 1

4
g��R ¼ �

F

�
T�� � 1

4
g��T

�

þ 1

F

�
r�r�F� 1

4
g��hF

�
: (5)

Following the method introduced in [15], we solve the
time-independent spherical symmetric field equation in the
vacuum. Let us take a generic spherically symmetric met-
ric as

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d�2 þ r2sin2�d�2: (6)

Since the metric depends only on r, one can view Eq. (5) as
a set of differential equations for FðrÞ, BðrÞ, and AðrÞ. For
the spherically symmetric space both sides of Eq. (5) are
diagonal and we have two independent equations. We
rewrite Eq. (5) as

K½�� ¼
FR�� �r�r�F� �T��

g��

; (7)

where K½�� is an index independent parameter and K½�� �
K½�� ¼ 0 for all � and �. For the vacuum space T�� ¼ 0,

K½t� � K½r� ¼ 0 results in

2F
X0

X
þ rF0 X

0

X
� 2rF00 ¼ 0; (8)

where XðrÞ ¼ BðrÞAðrÞ. For K½t� � K½�� ¼ 0,

B00 þ
�
F0

F
� 1

2

X0

X

�
B0 � 2

r

�
F0

F
� 1

2

X0

X

�
B� 2

r2
Bþ 2

r2
X ¼ 0:

(9)

In the case of Einstein-Hilbert action (F ¼ 1) Eq. (8)
reduces to X ¼ 1 and Eq. (9) reduces to the
Schwarzschild solution. We note that for this case Eq. (4)
also reduces to 0 ¼ 0 identity. In the generic case having a
F as a function of distance or as a function of Ricci scalar,
we can obtain the metric elements from Eqs. (8) and (9).
Here we take an ansatz of FðrÞ ¼ ð1þ r=dÞ�� for the

derivative of action as a function of distance from the
center, where � is a small dimensionless constant (� �
1) and d is a characteristic length scale in the order of
galactic size. Similar to the case of F ¼ 1 we use Eqs. (8)
and (9) to derive X and A. We start with the Eq. (8), the
solution results in

XðrÞ ¼ X0

�
1þ r

d

��2ð1þ�Þ�
1þ 2� �

2

r

d

�½4ð1þ�Þ�=ð2��Þ
;

(10)

where X0 is a constant of integration and for � ¼ 0 we
recover Schwarzschild metric, which implies X0 ¼ 1.
In what follows we obtain the metric element BðrÞ by

solving the differential equation of (9) for the solar system
scales (r � d) and galactic scales (r > d). Once we derive
the metric, the Ricci scalar and the corresponding action
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can be obtained. Finally we will use Eq. (4) to check the
consistency of the solution.

A. Solar system scale (r � d)

In 1998 Anderson et al. [16] reported an unmodeled
constant acceleration towards the Sun of about aP ¼ 8:5�
10�10 m=s2 for the spacecrafts Pioneer 10 (launched 2
March 1972), Pioneer 11 (launched 4 December 1973),
Galileo (launched 18 October 1989) and Ulysses (launched
6 October 1990). In a subsequent report [17] they discussed
in detail many suggested explanations for the effect and
gave the value aP ¼ ð8:74� 1:33Þ � 10�10 m=s2 directed
towards the Sun. The data covered many years starting in
1980 when due to the large distance (20 AU) of Pioneer 10
from the Sun the solar radiation pressure became suffi-
ciently small. The data were collected up to 1990 for
Pioneer 11 (30 AU) and up to 1998 (70 AU) for Pioneer
10. In this section our aim is to explain this extra accelera-
tion by the modified gravity model.

We assume the range of r � d in our concern and
neglect all the higher terms of r=d and �r=d. FðrÞ in this
regime reduces to

FðrÞ ¼ 1� �

d
r: (11)

This expression is similar to adding the first order of the
perturbation of the action around the Einstein-Hilbert ac-
tion. From Eq. (10), expanding X up to the first order
results in X ¼ X0 ¼ 1.

Using (11) in the differential Eq. (9) we obtain BðrÞ as
follows:

BðrÞ ¼
�
1þ �

d
rþ

�
3

2
þ ln

��������
�

d
� 1

r

��������
�
�2

d2
r2
�
þ c1r

2

þ c2

�
1

3r
þ �

2d
þ �2

d2
rþ �3

d3
r2 ln

��������
�

d
� 1

r

��������
�
;

(12)

where c1 and c2 are the constants of the integration. For the
case of � ¼ 0 (Einstein-Hilbert action) we use the
Schwarzschild metric as the zero order which implies c1 ¼
0 and c2 ¼ �6m. Using Eq. (12) we can obtain the Ricci
scalar of this metric. We keep up to the first order of
perturbation in the metric as

BðrÞ ¼ 1� 2m

r
þ �

d
r: (13)

The Ricci scalar in the spherically symmetric space for a
generic case of X is:

R ¼ � 1

X

�
B00 þ 4

r
B0 þ 2

r2
B� X0

X

�
1

2
B0 þ 2

r
B

��
þ 2

r2
;

(14)

where substituting the metric elements, the corresponding
Ricci scalar up to the first order, obtains as

RðrÞ ¼ � 6�

rd
: (15)

Now to check the consistency condition, we apply the
metric element as well as the Ricci scalar in Eq. (4).
Here hF up to the first order reduce to

hF ¼ B

X

�
F00 þ 2

r
F0 � 1

2

X0

X
F0 þ B0

B
F0
�
; (16)

¼ � 2�

rd
: (17)

Doing simple algebra shows the consistency of the equa-
tion for the trace equation up to the first order of
perturbation.
Now we replace r in favor of RðrÞ in Eq. (11) and obtain

FðRÞ in terms of the Ricci scalar as

FðRÞ ¼ 1þ 6�2

Rd2
: (18)

Finally integrating (18) yields action as follows:

fðRÞ ¼ Rþ R0 ln
R

Rc

; (19)

where R0 ¼ 6�2=d2 and Rc is the constant of integration.
The equation of motion for a test particle from the metric

can be obtained. Using the weak field regime, we define an
effective potential as

�N ¼ �m

r
þ �

2d
r; (20)

where the acceleration of the particles from this potential is

a ¼ �m

r2
� �

2d
: (21)

The first term at the right-hand side of this equation is the
standard Newtonian gravity; however the second term is a
constant acceleration, independent of the mass. We may
correspond this extra term to the Pioneer anomalies and
constrain it with the observed value of aP ¼ ð8:74�
1:33Þ � 10�10 m=s2 which results in �=d ’ 10�26m�1.

B. Galactic scale (r > d)

Recently some of the authors have tried to explain the
dynamics of galaxies by the modified gravity instead of
assuming a dark matter halo for the galaxy [14]. We follow
the same method to extract the action with the ansatz of
FðrÞ ¼ ð1þ r=dÞ�� proposed in this work. We assume r
to be larger than the characteristic length scale of the model
d and write FðrÞ ¼ ð1þ r=dÞ�� for � � 1 as follows:

FðrÞ ’ ðr=dÞ�� ’ 1� � lnðr=dÞ: (22)

This action can be considered as perturbation around the
Einstein-Hilbert action. From Eq. (10)
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XðrÞ ¼
�
r

d

�
�
: (23)

We follow the same procedure as we did in the case of solar
system to extract the metric. Using Eqs. (22) and (23) in (9)
we obtain BðrÞ as

BðrÞ ¼
�
r

d

�
�
�

1

1� �
þ e1r

�ð1��=2Þ þ e2r
2ð1��=2Þ

�

¼ 1

1� �

�
r

d

�
�½1þ e01r

�ð1��=2Þ þ e02r
2ð1��=2Þ�; (24)

where ei’s are the constants of integration and e
0
i ¼ eið1�

�Þ for i ¼ 1; 2. For� ¼ 0 Eqs. (22) and (23) reduce toF ¼
1 and X ¼ 1 and we expect to recover Schwarzschild–
de Sitter metric which yields e01 ¼ �2m and e02 ¼ 1

12�,

where � is the cosmological constant. For generic case
when � � 0, from the dimensional analysis, the constants

of the integration obtain as e01 ¼ �ð2mÞ1��=2 and e02 ¼
ð�=12Þ1��=2. We rewrite the metric elements after fixing
e0i’s,

BðrÞ ¼ 1

1� �

�
1�

�
2m

r

�
1��=2 þ

�
�r2

12

�ð1��=2Þ��r
d

�
�
;

AðrÞ ¼ ð1� �Þ
�
1�

�
2m

r

�
1��=2 þ

�
�r2

12

�ð1��=2Þ��1
:

(25)

From the metric elements we get the following Ricci scalar

RðrÞ ¼ � 1

ð1� �Þr2
�
3�þ ð12� 3�Þ

�
�r2

12

�
1��=2

þ �2

2

�
1� 3

�
2m

r

�
1��=2

��
: (26)

We keep the Ricci scalar up to the first order term in � and
�, then (26) reduces to

RðrÞ ¼ � 3�

r2
��: (27)

Again to check the consistency of the solution in this space,
we substitute (22) and (27) in Eq. (4). The solution of this
space satisfies the trace equation up to the first order of
perturbation in terms of �. We note that in general, for the
nonperturbed case the solutions might be inconsistent.
Here the solution is valid only up to the first order of
perturbation.

Eliminating r in favor of R from Eq. (27) and using (22),
the derivative of action we obtain as

FðRÞ ¼
�
d2

3�
jRþ�j

�
�=2

; (28)

then

fðRÞ ¼ 1

1þ �=2

�
d2

3�

�
�=2jRþ�j1þ�=2: (29)

For simplicity let us write action as

fðRÞ ¼ f0jRþ�j1þ�=2: (30)

The dynamics of a test particle around this metric follow
the geodesic equation in weak field regime,

€rþ �r
tt ¼ 0; (31)

where substituting the corresponding metric elements we
get the following velocity for a particle rotating around the
center of a galaxy

v ¼ cffiffiffi
2

p
�
r

d

�
�=2

��
2m

r

�
1��=2 þ �

�
1=2

; (32)

where we ignored the �r2 term as it is 5 orders of magni-
tude smaller than 2m=r. For � ¼ 0we recover the standard
Newtonian law for the rotation velocity of a test particle, in
whichm ¼ GM=c2 andM is the mass of galaxy. The extra
term in Eq. (32) may provide contribution to the flat
rotation curve. Figure 1 compares the rotation curve of a
test particle around the center of a galaxy with an arbitrary
unit in the modified and standard Newtonian gravity. Here
we model the mass of the galaxy spherically distributed up
to 3.3 kpc and obtain the rotation curve up to 66 kpc. For a
typical spiral galaxy with the mass of M ¼ 1011M� and at
the large distances (e.g. r > d) from the center, v�
200 km s�1 which roughly constrains � ’ 10�6. In the
previous Section we had an estimation for �=d ’
10�26m�1 which provides the characteristic length scale
of the model, d ’ 10 kpc. We note that while Eq. (32)
provides a flat rotation curve for the galaxy it does not
support the Tully-Fisher relation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

r/d

v

FIG. 1. Comparing the rotation curve of a galaxy in Newtonian
gravity, v / 1=r (dashed line) with the rotation curve from the
modified gravity in the weak field regime (solid line), see
Eq. (32). The parameters of the galaxy are taken as M ¼
1011M� (mass of galaxy), � ’ 10�6, and d ’ 10 kpc.
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III. PROPOSING A GENERIC ACTION

In the previous Section we obtained the asymptotic
behavior of an action in the galactic and solar system
scales. Those two actions could describe the observations
in the corresponding length scales without need of dark
matter. The action for the small scale varies with a loga-
rithmic function and for the galactic scales with a power-
law function. This asymptotic behavior of the actions
guides us to guess a generic action which can cover also
those two scales. Here we propose the action of

fðRÞ ¼ Rþ�þ Rþ�

R=R0 þ 2=�
ln
Rþ�

Rc

: (33)

For the range of R 	 � and R=R0 	 2=�, the action
reduces to

fðRÞ ¼ Rþ R0 ln

�
R

Rc

�
: (34)

Comparing with (19) provides R0 ¼ 6�2=d2. Using
jRðrÞj ¼ 6�=rd and R=R0 	 1=� satisfies the solar sys-
tem range of r � d.

On the other hand for � � 1 and R ’ R0 ’ � the action
(33) can be written as

fðRÞ ¼ ðRþ�Þ
�
1þ �

2
ln

�
Rþ�

Rc

��
; (35)

where for small �, we write the action as

fðRÞ ¼ ðRþ�Þ1þ�=2

R�=2
c

: (36)

For � � 1, the action reduces to fðRÞ ¼ Rþ�. We ex-
pect the best parameters of the model from supernova type
Ia and CMB experiments should be around the �CDM
model. To see the consistency of this action with the matter
dominant epoch, we let R 	 � and R 	 R0. In this case
the action reduces to fðRÞ ! R (i.e. Einstein-Hilbert ac-

tion) and the scale factor changes as a / t2=3 with time.
In what follows we put constraint on the parameters of

the model in (35). The generic Friedmann-Robertson-
Walker (FRW) equation in modified gravity is

3H _Fþ 3H2F� 1

2
ðf� RFÞ ¼ ��m: (37)

We use supernova type Ia gold sample with considering flat
universe to constrain�m,��, and �. Using action of (35),
Eq. (37) is written as follows:

H2 ��

6
þ �

2

�
H2

�
R

Rþ�
þ ln

Rþ�

Rc

�
þ R2

Rþ�

þ Rþ 2�

ðRþ�Þ2 H
_R

�
¼ H2

0�ma
�3; (38)

where 3H2
0�m ¼ ��m. For � ¼ 0 we recover the standard

FRW equation,

H ¼ H0ð�ma
�3 þ��Þ1=2: (39)

On the other hand, variation of action with respect to the
metric preserves the conservation of energy momentum, so
the matter density changes as � ¼ �0a

�3.
From the constraint of the rotation curve of the spiral

galaxies in the previous Section, � ’ 10�6, we assume
� � 1 and this term is considered as a perturbation pa-
rameter in Eq. (38). We solve Eq. (38) by perturbing the

Hubble parameter around �CDM solution, H ¼
Hð0Þ þ �Hð1Þ, in which Hð0Þ obtains from Eq. (39) and

Hð1Þ is calculated from

Hð1Þ ¼ � 1

4

Hð0Þ

Rð0Þ þ�

�
Hð0ÞRð0Þ þ Rð0Þ þ 2�

Rð0Þ þ�
_Rð0Þ þ Rð0Þ2

6Hð0Þ

þHð0ÞðRð0Þ þ�Þ3 lnR
ð0Þ þ�

Rc

�
; (40)

where Rð0Þ and _Rð0Þ are the zero order terms obtained from

Hð0Þ and _Hð0Þ. The relevant parameter for comparing the
theoretical model with supernova type Ia data is the lumi-
nosity distance DL ¼ DLðz;�m; �; Rc;�; hÞ and is related
to the distance modulus of the supernovae as follows:

� ¼ m�M ¼ 5log10

�
DL

10pc

�
;

DL ¼ cð1þ zÞ
Z z

0

dz

Hðz;�m; �; Rc;�; hÞ ; (41)

where the K correction is included in the distance modulus
of the supernovae.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

34

36

38

40

42

44

46

z

µ

FIG. 2 (color online). Distance modulus of the supernova type
Ia new gold sample in terms of redshift. The solid line shows the
best fit values with the corresponding parameters of h ¼ 0:64,
�m ¼ 0:31, �� ¼ 0:69, and � � 10�3 with the corresponding
�2
min=Ndof ¼ 1:14.
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We do likelihood analysis using the Hubble parameter h,
the cosmological parameters�m and��, and � as the free
parameters to find the best values. The comparison be-
tween the observed and theoretical distance moduli is
done by �2 fitting as follows:

�2 ¼ X
i

½�obsðziÞ ��thðzi;�m; �; Rc;�; hÞ�2
	2

i

: (42)

The best value for �2, normalized to the number of degrees
of freedom is�2=Ndof ¼ 1:14 (see Fig. 2). The correspond-
ing best values for the parameters of the model are: �m ¼
0:31,�� ¼ 0:69, h ¼ 0:64, and� � 10�3. The constraint
on � is consistent with the results from the rotational
velocity of spiral galaxies, � ’ 10�6. Finally we should
point out that Rc is not sensitive to the supernova type Ia
data.

IV. SUMMARYAND DISCUSSION

In this work we tried to explain the anomalies in the
acceleration of the Pioneer spacecraft and flat rotation
curve of spiral galaxies in the framework of the modifica-
tion of the gravity. We started by assuming an ansatz for the

derivative of action in terms of distance from the center and
did the inverse procedure to derive the metric and action of
the space. In the solar system scale we extract a logarithmic
extra term to the Einstein-Hilbert action and in the galactic
scale we follow the same procedure and found a power-law
action. The solution in both two regimes obtained as
perturbation around the Einstein-Hilbert action and we
showed that within this approximation the solutions are
consistent with the modified gravity equations. We note
that in the generic case we may not find a consistent
solution in the spherical space [11]. Finally we proposed
a generic action where in the asymptotic regimes reduce to
our desired metric and actions in the solar system and
galactic scales. For the cosmological scales this action
provides a late time acceleration for the Universe. Finally
we used the Pioneer data, flat rotation curve of galaxies,
and the CMB and supernova type Ia gold sample to put
constraint on the parameters of the model.
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