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We have studied extreme mass-ratio inspirals (EMRIs) in spacetimes containing a rotating black hole
and a non-self-gravitating torus with a constant distribution of specific angular momentum. We have found
that the dissipative effect of the hydrodynamic drag exerted by the torus on the satellite is much smaller
than the corresponding one due to radiation reaction, for systems such as those generically expected in
active galactic nuclei and at distances from the central supermassive black hole (SMBH) which can be
probed with the Laser Interferometer Space Antenna (LISA). However, given the uncertainty on the
parameters of these systems, namely, on the masses of the SMBH and of the torus, as well as on its size,
there exist configurations in which the effect of the hydrodynamic drag on the orbital evolution can be
comparable to the radiation reaction one in phases of the inspiral which are detectable by the Laser
Interferometer Space Antenna. This is the case, for instance, for a 106M� SMBH surrounded by a
corotating torus of comparable mass and with radius of 103–104 gravitational radii, or for a 105M� SMBH
surrounded by a corotating 104M� torus with radius of 105 gravitational radii. Should these conditions be
met in astrophysical systems, EMRI-gravitational waves could provide a characteristic signature of the
presence of the torus. In fact, while radiation reaction always increases the inclination of the orbit with
respect to the equatorial plane (i.e., orbits evolve towards the equatorial retrograde configuration), the
hydrodynamic drag from a torus corotating with the SMBH always decreases it (i.e., orbits evolve towards
the equatorial prograde configuration). However, even when initially dominating over radiation reaction,
the influence of the hydrodynamic drag decays very rapidly as the satellite moves into the very strong-field
region of the SMBH (i.e., p & 5M), thus allowing one to use pure-Kerr templates for the last part of the
inspiral. Although our results have been obtained for a specific class of tori, we argue that they will be
qualitatively valid also for more generic distributions of the specific angular momentum.
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I. INTRODUCTION

One of the most exciting prospects opened up by the
scheduled launch of the space-based gravitational-wave
detector known as the Laser Interferometer Space
Antenna (LISA) [1] will be the possibility of mapping
accurately the spacetime of the supermassive black holes
(SMBHs) which are believed to reside in the center of
galaxies [2]. Among the best candidate sources for this
detector there are extreme mass-ratio inspirals (EMRIs),
i.e. stellar-mass black holes (m � 1–10M�) or compact
objects orbiting around the SMBH and slowly inspiraling
due to the loss of energy and angular momentum via
gravitational waves (radiation reaction). In order for the
signal to fall within the sensitivity band of LISA, the
SMBH must have a mass M � 105–107M�, i.e., the low
end of the SMBH mass function.

It is currently expected that a number of such events
ranging from tens to perhaps 1000 could be measured
every year [3], but since they will have small signal-to-
noise ratios, their detection and subsequent parameter ex-
traction will require the use of matched-filtering tech-

niques. These basically consist of cross correlating the
incoming gravitational-wave signal with a bank of theo-
retical templates representing the expected signal as a
function of the parameters of the source.

This will not only allow one to detect the source, but also
to extract its properties. For instance, the accurate model-
ing of the motion of a satellite in a Kerr spacetime will
allow one to measure the spin and the mass of the SMBH.
Although producing these pure-Kerr templates has proved
to be a formidable task, particularly because of the diffi-
culty of treating rigorously the effect of radiation reaction
(see Ref. [4] for a detailed review), considerable effort has
gone into trying to include the effects of a deviation from
the Kerr geometry. These attempts are motivated by the
fact that possible ‘‘exotic’’ alternatives to SMBHs have
been proposed (e.g., boson stars [5], fermion balls, [6] and
gravastars [7]), although the presence of these objects
would require to modify radically the mechanism with
which galaxies are expected to form. On the other hand,
non-pure-Kerr templates might allow one to really map the
spacetimes of SMBHs and to test experimentally the Kerr
solution.

Different approaches to this problem have been consid-
ered in the literature. EMRIs in a spacetime having arbi-*barausse@sissa.it
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trary gravitational multipoles should be considered in order
to maintain full generality [8], but this method does not
work very well in practice and would only apply to vacuum
spacetimes. For this reason, alternative approaches have
been proposed and range from EMRIs around nonrotating
boson stars [9], to EMRIs in bumpy black hole spacetimes
[10] (i.e., spacetimes which are almost Schwarzschild and
require naked singularities or exotic matter), or in quasi-
Kerr spacetimes [11] (i.e., spacetimes consisting of Kerr
plus a small quadrupole moment).

Interestingly, none of these methods is suitable for tak-
ing into account the effect of the matter which is certainly
present in galactic centers. SMBHs can indeed be sur-
rounded by stellar disks (as in the case of the Galactic
center [12]) or as in the case of active galactic nuclei
(AGNs) [13], in which we are most interested, by accretion
disks of gas and dust which can be even as massive as the
SMBH [14]. While the gravitational attraction of a disk can
have important effects on EMRIs if this disk is very
massive and close to the SMBH [15], an astrophysically
realistic accretion disk can influence an EMRI only if the
satellite crosses it, thus experiencing a ‘‘hydrodynamic’’
drag force.

This drag consists of two parts. The first one is due to the
accretion of matter onto the satellite black hole (this was
studied analytically by Bondi and Hoyle [16] and subse-
quently confirmed through numerical calculations [17–
19]). This transfers energy and momentum from the disk
to the satellite, giving rise to a short-range interaction. The
second one is instead due the gravitational deflection of the
material which is not accreted, which is therefore far from
the satellite, but which can nevertheless transfer momen-
tum to it. This long-range interaction can also be thought of
as arising from the gravitational pull of the satellite by its
own gravitationally induced wake (i.e., the density pertur-
bations that the satellite excites, by gravitational interac-
tion, in the medium), and is often referred to as ‘‘dynamical
friction.’’ This effect was first studied in a collisionless
medium by Chandrasekar [20], but acts also for a satellite
moving in a collisional fluid [17,21–25].

The effect of this disk-satellite interaction on EMRIs has
been studied by different authors for a number of disk
models. More specifically, in a series of papers Karas,
Subr and Vokrouhlicky considered the interaction between
stellar satellites and thin disks [26–28]. In Ref. [28], in
particular, Subr and Karas found that the effect of the star-
disk interaction on EMRIs dominates over radiation reac-
tion for thin disks, both for nonequatorial orbits crossing
the disk only twice per revolution and for equatorial orbits
embedded in the disk. The only exceptions to these con-
clusions come if the satellite is very compact (a neutron
star or a black hole) or the disk has a low density (e.g., in
the region close to the SMBH if the flow becomes
advection-dominated). These results agree with those
found by Narayan [29], who focused on advection-

dominated accretions flows, which were believed to de-
scribe accretion onto ‘‘normal’’ galactic nuclei (i.e., ones
much dimmer than AGNs).1 Overall, he found that for
compact objects and white dwarfs the effect of the hydro-
dynamic drag is negligible with respect to radiation reac-
tion, whereas it is not negligible for main sequence and
giant stars. More recently, Levin [31] has proposed a
scenario in which massive stars form in a thin accretion
disk in an AGN, ultimately producing stellar-mass black
holes embedded in the disk. The small black holes are then
dragged towards the (nonrotating) SMBH, but if this is
accreting at a rate comparable to the Eddington limit, the
drag from the accreting gas will not affect the final part of
the inspiral (i.e., at radii smaller than 10 Schwarzschild
radii) significantly. Finally, Chakrabarti [32] studied in-
stead the orbital evolution of a satellite black hole on a
circular equatorial orbit embedded in a disk with a non-
Keplerian distribution of angular momentum, and found
that the exchange of angular momentum between the disk
and the satellite can lead to significant orbital
modifications.

All of these studies have been carried out within a
Newtonian or pseudo-Newtonian description of gravity
(with the partial exception of Ref. [26], in which the orbits
are Kerr geodesics, but the disk model and the hydrody-
namic drag is not relativistic). In this paper, instead, we
provide a first relativistic treatment for satellite black holes
moving on generic orbits around a rotating SMBH sur-
rounded by a thick disk (i.e., a torus). We consider the torus
to have constant specific angular momentum and neglect
its self-gravity (i.e., we consider the metric to be pure
Kerr). Under these assumptions, an analytical solution
exists for this system [33,34]. This configuration can be
proved to be marginally stable with respect to axisymmet-
ric perturbations [35] (i.e., if perturbed, such a torus can
accrete onto the SMBH), and is expected to be a good
approximation at least for the inner parts of the accretion
flow [33,34].

We have found that for a system composed of a SMBH
with massM � 106M� and a torus with massMt & M and
outer radius rout � 105M, the effect of the hydrodynamic
drag on the motion of the satellite black hole is much
smaller than radiation reaction at those distances from
the SMBH which can be probed with LISA (i.e., �10M
forM � 106M�). Although these values forM,Mt and rout

are plausible for AGNs, an overall uncertainty is still
present and has motivated an investigation also for differ-
ent masses and sizes of the torus. In this way we have found
that the effect of the torus can be important in the early part

1Accretion onto normal galactic nuclei is now believed to be
better described by advection-dominated inflow-outflow solu-
tions [30]. However, this is not expected to change significantly
Narayan’s results since advection-dominated inflow-outflow so-
lutions (ADIOS), like advection-dominated accretions flows
(ADAF), have very low densities in the vicinity of the SMBH.
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of the inspiral and that it could leave an observable imprint
in the gravitational waveforms detected by LISA, if the
radius of the torus is decreased to rout � 103–104M or,
even for rout � 105M and Mt & M, if M � 105M�. In this
latter case, in fact, LISA could detect an EMRI event at
distances as large as r� 45M from the SMBH, although
the event needs to be sufficiently close to us because the
amplitude of the gravitational-wave signal decreases as
M=r.

In addition, if non-negligible, the effect of the hydro-
dynamic drag would have a distinctive signature on the
waveforms. Radiation reaction, in fact, always increases
the inclination of the orbit with respect to the equatorial
plane (i.e., orbits evolve towards the equatorial retrograde
configuration) [36]. The hydrodynamic drag from a torus
corotating with the SMBH, on the other hand, always
decreases this angle (i.e., orbits evolve towards the equa-
torial prograde configuration). Should such a behavior be
observed in the data, it would provide a strong qualitative
signature of the presence of the torus. However, it is
important to point out that even for those configurations
in which the hydrodynamic drag plays a major role, this is
restricted to the initial part of the inspiral detectable by
LISA, whereas its effect rapidly vanishes in the very
strong-field region of the SMBH (i.e., p & 5M). As a
result, the pure-Kerr templates would provide a faithful
description of the last part of the inspiral even in these
cases.

The rest of the paper is organized as follows. In Sec. II
we review the equilibrium solutions that we used for the
orbiting torus. In Sec. III A we present the equations gov-
erning the interaction between the satellite black hole and
the torus, while in Sec. III B we apply the adiabatic ap-
proximation to the hydrodynamic drag. Results are then
discussed in Sec. IVA for equatorial circular orbits and in
Sec. IV B for generic (inclined and eccentric) orbits.
Finally, the conclusions are drawn in Sec. V. Throughout
this paper we use units in which G � c � 1.

II. MODELING THE TORUS

The properties of non-self-gravitating, stationary, axi-
symmetric and plane-symmetric toroidal fluid configura-
tions in Kerr spacetimes are well known in astrophysics but
are less well known within the community working on
EMRIs. Because of this, in this section we briefly review
the basic facts, referring the interested reader to
Refs. [33,34,37–39] for additional information.

Let us consider a perfect fluid with 4-velocity ufluid,
which is described by the stress-energy tensor

 T�� � ��� p�u�fluidu
�
fluid � pg

��

� �0hu
�
fluidu

�
fluid � pg

��; (1)

where p, �0, �, and h 	 �p� ��=�0 are the pressure, rest-
mass density, energy density, and specific enthalpy of the

fluid. In what follows we will model the fluid with a
polytropic equation of state p � ���

0 � �0"��� 1�,
where " � �=�0 � 1 is the internal energy per unit rest-
mass, and � and � are the polytropic constant and index,
respectively. Because we are neglecting the self-gravity of
the fluid, we can also consider g as given by the Kerr metric
in Boyer-Lindquist coordinates, which reads [40]
 

ds2 � �

�
1�

2Mr
�

�
dt2 �

�

�
dr2 � �d�2

�

�
r2 � a2 �

2Ma2r
�

sin2�
�

sin2�d�2

�
4Mar

�
sin2�dtd�; (2)

where

 � 	 r2 � a2cos2�; � 	 r2 � 2Mr� a2: (3)

The fluid is assumed to be in circular nongeodesic
motion with 4-velocity

 u fluid � A�r; ��
�
@
@t
���r; ��

@
@�

�
� U�r; ��
�dt� ‘�r; ��d��; (4)

where the second equals sign underlines that the vector and
the 1-form are each the dual of the other. Here, � 	

u�fluid=u
t
fluid is the angular velocity, A 	 utfluid is called the

redshift factor, U 	 �ufluid
t is the energy per unit mass as

measured at infinity, and ‘ 	 �ufluid
� =ufluid

t is the specific
angular momentum as measured at infinity (i.e., the angu-
lar momentum per unit energy as measured at infinity).
Note that ‘ is conserved for stationary axisymmetric flows,
as can be easily shown using Euler’s equation. The specific
angular momentum and the angular velocity are trivially
related by

 � � �
gt� � gtt‘

g�� � gt�‘
; ‘ � �

gt� � g���

gtt � gt��
; (5)

while the normalization condition ufluid � ufluid � �1 gives

 U �

��������������������������������������������
$2

gtt‘
2 � 2gt�‘� g��

vuut ; (6)

 A �

�����������������������������������������������
�1

gtt � 2gt��� g���2

s
; (7)

 AU �
1

1��‘
; (8)

where $2 � g2
t� � gttg�� � �sin2�. Note that in this

paper we will always consider ‘ > 0 (torus rotating in
the positive � direction), while we will allow the spin
parameter a of the black hole to be either positive (black

INFLUENCE OF THE HYDRODYNAMIC DRAG FROM AN . . . PHYSICAL REVIEW D 77, 104027 (2008)

104027-3



hole corotating with the torus) or negative (black hole
counterrotating with respect to the torus).

To calculate the structure of the torus, we need to use
Euler’s equation, which in its general form reads

 a�fluid � �
�g�� � u�fluidu

�
fluid�@�p

p� �
; (9)

where a�fluid is the 4-acceleration of the fluid. In particular,
if the pressure is assumed to depend only on r and � and if
the equation of state is barotropic [i.e., if � � ��p�],2 from
Eq. (9) one easily gets that the 4-acceleration can be ex-
pressed as the gradient of a scalar potential W�p�:

 afluid
� � @�W; W�p� � �

Z p dp0

p0 � ��p0�
: (10)

On the other hand, from the definition of 4-acceleration
(a�fluid � u�fluidr�u

�
fluid), Eqs. (4), (7), and (8), and the

Killing equation r����� � 0 for � � @=@t and � �
@=@�, one easily gets

 afluid
� � @�W � �

@�p

p� �
� @� lnU�

�

1��‘
@�‘:

(11)

In particular, taking the derivative of this equation, anti-
symmetrizing and using the trivial fact that @
���W �
@
���‘ � @
���U � 0, we obtain that @
��@��‘ � 0. This
implies r� / r‘ and thus that ‘ and � have the same
contour levels [i.e., � � ��‘�]. Using this fact, we can
then write Eq. (11) in an integral form:

 W �Wout � �
Z p

0

dp0

p0 � ��p0�

� lnU� lnUout �
Z ‘

‘out

��‘0�d‘0

1���‘0�‘0
; (12)

where Wout and ‘out are the potential and specific angular
momentum at the outer edge of the torus.3

In the case of a torus with constant specific angular
momentum [i.e., ‘�r; �� � const], Eq. (12) provides an
analytical solution, because once ‘ has been fixed the
integral on the right-hand side is zero and Eq. (6) gives
an analytical expression for U:

 W �Wout � �
Z p

0

dp0

p0 � ��p0�
� lnU� lnUout: (13)

Note that if one requires that W ! 0 when r! �1 (i.e.,
W � 0 for an equipotential surface closing at infinity), this
equation gives W � lnU: W > 0 then corresponds to open
equipotential surfaces, while W < 0 corresponds to closed
equipotential surfaces. Interestingly, the potential well can

present a minimum and a saddle point. Because of the
plane symmetry, these points are located in the equatorial
plane, thus corresponding to local extremes of W�r; � �
�=2�, and mark two important positions, respectively, the
center of the torus (i.e., the point where the density reaches
its maximum) and its cusp (i.e., the mass-shedding point).
Noticeably, these points are located at the radii where the
specific angular momentum of the torus ‘ coincides with
that of the geodesic circular equatorial orbit (the
‘‘Keplerian’’ orbit) corotating with the torus,

 ‘K�r; a� �
r2 � 2a

�������
Mr
p

� a2

�r� 2M�
����������
r=M

p
� a

: (14)

This immediately follows from the fact that at the extremes
of the function W one has @�W � 0, which leads, through
Eq. (10), to a�fluid � 0 (in other words, at the center and at
the cusp the pressure gradients are zero and only gravita-
tional forces act).

In this paper we will indeed consider constant-‘ tori. A
detailed classification of these models depending upon the
values of ‘ and of Wout can be found in Refs. [33,34,37].
Here we simply recall that in order to have a closed
equipotential surface with a cusp, one needs to have a
value of ‘ between the specific angular momenta ‘ms and
‘mb of the marginally stable and marginally bound equa-
torial geodesic (i.e., Keplerian) orbits corotating with the
torus. This can be easily understood by noting, from
Eq. (13), that the potential W�r; � � �=2� is simply the
effective potential describing the equatorial motion of a
test particle around a Kerr black hole. As such, ‘ms and ‘mb

can be calculated easily using Eq. (14) and the formulas for
the radii of the marginally stable and marginally bound
circular equatorial orbits in Kerr rotating in the positive �
direction (i.e., corotating with the torus):

 ‘ms � ‘K�rms�; ‘mb � ‘K�rmb�; (15)

 rms=M � 3� Z2 � sgn�~a�
��������������������������������������������������
�3� Z1��3� Z1 � 2Z2�

q
;

(16)

 rmb=M � 2� ~a� 2
������������
1� ~a
p

; (17)

 Z1 � 1� �1� ~a2�1=3
�1� ~a�1=3 � �1� ~a�1=3�; (18)

 Z2 �
�������������������
3~a2 � Z2

1

q
; (19)

where ~a � a=M.
In order to pick up a particular solution having both an

inner and an outer radius, one needs also to choose a
negative value for the ‘‘potential barrier’’ at the inner
edge of the torus,

 �W � Win �Wcusp � Wout �Wcusp 
 0: (20)

If �W < 0, the inner radius of the torus is larger than the

2This is of course the case for a polytropic equation of state,
because � � p=��� 1� � �p=��1=�.

3Of course, Wout and ‘out can be replaced by the values of W
and ‘ at the inner edge of the torus if this is present.
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radius at which the cusp occurs (rin > rcusp), while if the
potential barrier �W reduces to zero, the torus exactly fills
its outermost closed equipotential surface and rin �

rcusp 
 rms. Note that because of the considerations that
we have made above about the value of ‘, for constant-‘
tori we have rcusp � rmb (with rcusp � rmb only if ‘ � ‘mb)
and rcenter � rms (with rcenter � rms only if ‘ � ‘ms). If
instead �W > 0, the fluid overflows the outermost closed
equipotential surface and mass transfer is possible at the
cusp: for a polytropic equation of state, the accretion rate
can be shown to be _M / �W�=���1�.

The integral Euler equation for constant-‘ tori [Eq. (13)]
further simplifies if the equation of state is polytropic,
because in this case

 

Z p

0

dp0

p0 � ��p0�
� ln

h
hout

; (21)

where hout is the specific enthalpy at the outer edge of the
torus. Since for a polytropic equation of state the enthalpy
is given by

 h � 1�
�

�� 1
����1

0 ; (22)

it is clear that hout � 1 (because p � �0 � 0 at the outer
edge of the torus), and Eqs. (13) and (21) give

 �0�r; �� �
�
�� 1

�


eWout�W�r;�� � 1�

�

�
1=���1�

: (23)

Once the rest-mass distribution is known, the total rest-
mass of the torus is given by

 Mt;0 �
Z
�0

�������
�g
p

utd3x; (24)

where
�������
�g
p

� � sin� and d3x � drd�d� is the coordi-
nate 3-volume element, while the mass-energy reads
 

Mt �
Z
�Trr � T

�
� � T

�
� � T

t
t�

�������
�g
p

d3x

� 2�
Z
�0>0

� g�� � gtt‘
2

g�� � 2gt�‘� gtt‘2 �0h� 2P
�

� �r2 � a2cos2�� sin�drd�: (25)

Clearly, the smaller the ratio between the mass of the torus
and that of the SMBH, the better the approximation of
neglecting the self-gravity of the torus.

III. MODELING THE ORBITAL MOTION

This section is dedicated to the discussion of the hydro-
dynamic drag on the satellite black hole. Although the two
aspects are closely interrelated, we first discuss the equa-
tions governing the interaction between the satellite black
hole and the torus and then describe their use in the
calculation of the changes of the orbital parameters within
the adiabatic approximation.

A. Hydrodynamic drag

As already mentioned in Sec. I, the hydrodynamic drag
acting on the satellite black hole can be written as the sum
of a short-range part, due to accretion, and a long-range
part, due to the deflection of the matter which is not
accreted or, equivalently, to the gravitational interaction
of the satellite with the density perturbations gravitation-
ally induced by its own presence:

 

dp�sat

d	
�
dp�

d	

��������accr
�
dp�

d	

��������defl
; (26)

where 	 is the proper time of the satellite.
Accretion onto a moving black hole was studied analyti-

cally in a Newtonian framework by Bondi and Hoyle [16],
who found the rest-mass accretion rate to be

 

dm0

d	
�

4�
m2�0

�v2 � v2
s�

3=2
; (27)

where m is the mass of the black hole, v and vs are,
respectively, the velocity of the black hole with respect to
the fluid and the sound velocity, and 
 is a dimensionless
constant of the order of unity, which for a fluid with
polytropic equation of state and polytropic index � has
the value [41]

 
 �
�
1

2

�
���1�=
2���1��

�
5� 3�

4

�
��5�3��=
2���1��

: (28)

Subsequent numerical work [17–19] treated instead the
problem of accretion in full general relativity, and showed
that Eq. (27), with 
 given by Eq. (28), is correct provided
that it is multiplied by a factor �5–25 when v and vs
become relativistic (cf. Table 3 of Ref. [18]). However,
because a fit for this correction factor is, to the best of our
knowledge, not yet available and the published data are not
sufficient for producing one, we use the Bondi accretion
rate [Eqs. (27) and (28)], bearing in mind that it could
slightly underestimate the drag at relativistic velocities v
and vs.

4 Once the accretion rate is known, the short-range
part of the drag reads [17]

 

dp�

d	

��������accr
� h

dm0

d	
u�fluid ; (29)

where we recall that h is the specific enthalpy of the fluid.
Note that this equation basically follows from the conser-
vation of the total 4-momentum of the satellite and the
fluid.

4As we will see in Sec. IV, v and vs can become relativistic
only for orbits counterrotating with respect to the torus and very
close to the SMBH. For these orbits the dominant part of the
hydrodynamic drag is the long-range one, and the relativistic
correction factor to the Bondi accretion rate (which is roughly 5–
10 for these orbits, as can be seen comparing the middle panel of
Fig. 1 with Table 3 of Ref. [18]) does not change this conclusion.
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The long-range drag is instead more complicated. The
gravitational interaction of a body with the density pertur-
bations that it excites gravitationally in the surrounding
medium was first studied by Chandrasekhar [20] in the
case of a collisionless fluid, and is also known as ‘‘dynami-
cal friction.’’ Although less well recognized, dynamical
friction acts also for a body moving in a collisional me-
dium [17,21–25]. In particular, a satellite moving on a
circular planar orbit (e.g., a circular orbit around a
Schwarzschild black hole or a circular equatorial orbit
around a Kerr black hole) experiences a drag in the tan-
gential direction [17,21–23] and one in the radial direction
[24]:

 

dp�

d	

��������defl
�
dp
d	

��������tang

defl
�� �

dp
d	

��������rad

defl
��; (30)

where � is a unit spacelike vector orthogonal to usat and
pointing in the direction of the motion of the fluid,

 � �
ufluid � 
usat���������������


2 � 1
p (31)

(the Lorentz factor 
 � �ufluid � usat encodes the relative
motion of the satellite with respect to the fluid of the torus),
and

 � � �
usat
r usat � �r� � @=@r


grr � �usat
r �

2=�
2 � 1��1=2
; (32)

is a unit spacelike vector, orthogonal to both usat and � and
pointing in the radial direction. In particular, the tangential
and radial drags are given by [24,25]

 

dp
d	

��������tang

defl
�

4��p� ��m2
2�1� v2�2

v2 Itang; (33)

 

dp
d	

��������rad

defl
�

4��p� ��m2
3�1� v2�2

v2 Irad; (34)

where Itang and Irad are complicated integrals. Fits to the
numerically computed steady-state5 values for these inte-
grals are given in Ref. [24]:

 

Itang �

8>><
>>:

0:7706 ln� 1�M
1:0004�0:9185M� � 1:4703M forM< 1:0

ln
330�r=rmin��M� 0:71�5:72M�9:58� for 1:0 
M< 4:4

ln
�r=rmin�=�0:11M� 1:65�� forM � 4:4;

(35)

and

 Irad �

8><>:
M2103:51M�4:22 forM< 1:1
0:5 ln
9:33M2�M2 � 0:95�� for 1:1 
M< 4:4
0:3M2 forM � 4:4;

(36)

where r is the radius of the circular orbit, rmin � 2m�1�
v2�=v2 is the capture impact parameter of the satellite
black hole, while M � v=vs is the Mach number.

These fits are valid for r� rmin and are accurate within
4% for M< 4:4 and within 16% for M> 4:4. However,
the fit for Itang does not go to zero when M goes to zero,
while Irad goes to zero only as M2 in this limit: these
behaviors would give a nonzero radial drag and a diverging
tangential drag for v! 0 [cf. Eqs. (33) and (34)]. This is
clearly a spurious behavior: dynamical friction must vanish
for v � 0, since in this case the pattern of the density
perturbations is spherically symmetric around the body
(as there is no preferred direction). However, as we will
see in Sec. III B, the effect of the radial drag vanishes if one
uses the adiabatic approximation (as it is usually done in
EMRI studies [42–45]), and therefore this artifact of the fit
(36) cannot cause any harm in our numerical code. This is
instead not the case for the tangential drag: in order to
eliminate its spurious divergence, we have approximated
Itang with its straightline functional form at low Mach
numbers. Since the dynamical friction drag for straightline
subsonic motion is given by Eq. (33) with Itang �

1=2 ln
�1�M�=�1�M�� �M �M3=3�M5=5, we
can assume that Itang is given, for M< 0:1, by

 Itang � 0:9563
�
M3

3
�

M5

5

�
; (37)

where the factor 0.9563 is introduced to match the above fit
at M � 0:1.

Note that although Eq. (30) is strictly valid only for
circular planar motion (i.e., in the case of a Kerr spacetime,
for circular equatorial orbits), we expect it to be a good
approximation also for generic orbits around a Kerr black
hole. Indeed, thanks to the choice of the unit vectors � and
�, Eq. (30) gives a tangential drag parallel the direction of
the flow and a drag in the radial direction perpendicular to
the direction of the flow. Both of these components are
expected to be present also for generic orbits. In particular,
the tangential drag should be given approximately by

5Fortunately, the steady-state values for these integrals are
reached over time scales which are comparable with either the
sound crossing time r=vs, r being the radius of the circular orbit,
or with the orbital period.
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Eqs. (33) and (37) if the radius r appearing in Eq. (35) is
replaced by the semilatus rectum p of the orbit [see
Eq. (52) for the definition of this quantity].6 Although
this prescription is not exact, the results of Ref. [24] sug-
gest that the relevant length scale in the Coulomb loga-
rithm appearing in the second and third lines of Eq. (35)
should be one characterizing the orbit, rather than the size
of the medium, as commonly assumed in most of the works
on dynamical friction predating Refs. [22,24] (see the
introduction of Ref. [24] and references therein for more
details about this point). Of course, this length scale could
be different from the semilatus rectum of the orbit, but
different choices for it would have only a slight impact on
the results because of the logarithmic dependence.

The extrapolation of the radial drag given by Eqs. (34)
and (36) from circular planar to generic orbits is instead a
bit more problematic, although one expects it to be a good
approximation at least for orbits with small eccentricities
and small inclinations with respect to the equatorial plane.
At any rate, as we have mentioned earlier, in Sec. III B we
will show that the effect of this radial drag on the orbital
evolution averages to zero when adopting the adiabatic
approximation. (Note that this agrees with Ref. [24], which
found that the effect of the radial drag on the orbital
evolution was subdominant with respect to that of the
tangential drag.) Nevertheless, a nonzero effect may still
be present in cases in which the adiabatic approximation is
not valid (i.e. if the hydrodynamic drag acts on a time scale
comparable to the orbital period), or possibly even in the
adiabatic approximation if more rigorous expressions for
the radial drag should be derived in the future.

The rate of change of the mass of the satellite with
respect to the coordinate time t follows immediately
from p�satp

sat
� � �m

2: denoting the derivative with respect
to t with an overdot, we have

 

_m � �
usat
�

utsat

dp�sat

d	
� �

usat
�

utsat

dp�accr

d	
�
h

utsat

dm0

d	
: (38)

It is well known [46] that Kerr geodesics can be labeled,
up to initial conditions, by three constants of motion, the
dimensionless energy ~E and the angular momentum ~Lz as
measured by an observer at infinity,

 

~E � �usat
t ; ~Lz � usat

� =M; (39)

and the dimensionless Carter constant [46] ~Q,

 

~Q �
�
usat
�

M

�
2
� ~a2cos2��1� ~E2� � cot2� ~L2

z ; (40)

where ~a � a=M. We will now derive expression for the
rates of change of these quantities.

To this purpose, let us first introduce the tetrad
�usat; e1 � �; e2 � �; e3� based in the position of the sat-
ellite and write the change in the 4-velocity due to accre-
tion and deflection of the flow as

 �u�sat � �u�t�satu
�
sat � �u

�i�
sate

�
�i�; (41)

where �u�t�sat and �u�i�sat are the components with respect to
the tetrad. In particular, perturbing��u�t�sat�

2 � �iju
�i�
satu

�j�
sat �

�1 to first order one easily gets �u�t�sat�u
�t�
sat �

�iju
�i�
sat�u

�j�
sat � 0, and using then the fact that u�i�sat � 0 to

zeroth order, one obtains �u�t�sat � 0. Using now �u�i�sat �

�p�i�sat=m, e�i� � usat � 0 and e�i� � e�j� � �ij (i � 1; 2; 3),
Eq. (41) becomes

 �u�sat �

�
�m0h
m

u�fluid�� �
�ptang

defl

m

�
�� �

�prad
defl

m
��

�

�
�m0h
m
�

�ptang
defl

m
���������������

2 � 1

p �
�u�fluid � 
u

�
sat� �

�prad
defl

m
��:

(42)

Using now Eqs. (4), (39), and (42), we immediately obtain

 

_~E
~E
�

�
_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p ��
U
~E
� 


�
�

_prad
defl

m ~E
�t; (43)

 

_~Lz
~Lz
�

�
_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p ��
‘U

M ~Lz
� 


�
�

_prad
delf

mM ~Lz
��:

(44)

In order to calculate instead the rate of change of the
dimensionless Carter constant ~Q, let us note that from
Eq. (42) it follows that the variation of u� in a short time
interval �t due to accretion and deflection of the flow is

 �usat
� �

�
�


�
_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
� �

_prad
defl

m
��

�
�t:

(45)

We can then write _usat
� as the sum of a term coming from

the gravitational evolution (i.e., the geodesic equation) and
one coming from collisions with the surrounding gas:

 

_u sat
� � ����u

sat
� _x�sat � 


�
_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
� �

_prad
defl

m
��:

(46)

The evolution of ~Q therefore follows from Eq. (40):

6Note that the tangential drag given by Eqs. (33), (35), and
(37) is approximately correct also for straightline motion, if r
replaced in Eq. (35) by vt� t being the time for which the
satellite has been active [22,25]—as long as vt is smaller than
the size of the medium, and by a cutoff length of order of the size
of the medium at later times. To see this, compare Eqs. (35) and
(37) to the functional form of Itang for straightline motion, which
is Itang � 1=2 ln
�1�M�=�1�M�� �M for subsonic motion
and Itang � 1=2 ln�1� 1=M2� � ln�vt=rmin� for supersonic mo-
tion [22,25].
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_~Q �
@ ~Q
@�

_�sat �
@ ~Q
@usat

�
����u

sat
� _x�sat �

@ ~Q

@ ~E
_~E�

@ ~Q

@ ~Lz
_~Lz

�
@ ~Q
@usat

�


�

_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
� �

@ ~Q
@usat

�

_prad
defl

m
��

�
@ ~Q

@ ~E
_~E�

@ ~Q

@ ~Lz
_~Lz �

@ ~Q
@usat

�


�

_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
�

�
@ ~Q
@usat

�

_prad
defl

m
��; (47)

where the partial derivatives are meant to be calculated
with Eq. (40). Note that the first and the second term of the
first line cancel out because ~Q is conserved for geodesic
motion.

A useful alternative form for the evolution rate of ~Q can
be obtained by rewriting Eq. (40) using the normalization
condition usat � usat � �1:
 

~Q � ~��1
 ~E�~r2 � ~a2� � ~a ~L�2

� � ~L� ~a ~E�2 � ~r2 � ~��usat
r �

2; (48)

where ~r � r=M and ~� � �=M2. Proceeding as above and,
in particular, using the fact that

 _u sat
r � ��r�usat

� _x�sat � 

�

_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
r �

_prad
defl

m
�r

(49)

[from Eqs. (4) and (42)], one easily gets
 

_~Q �
@ ~Q
@r

_rsat �
@ ~Q
@usat

r
��r�usat

� _x�sat �
@ ~Q

@ ~E
_~E�

@ ~Q

@ ~Lz
_~Lz

�
@ ~Q
@usat

r


�

_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
r �

@ ~Q
@usat

r

_prad
defl

m
�r

�
@ ~Q

@ ~E
_~E�

@ ~Q

@ ~Lz
_~Lz �

@ ~Q
@usat

r


�

_m0h
m
�

_ptang
defl

m
���������������

2 � 1

p �
usat
r

�
@ ~Q
@usat

r

_prad
defl

m
�r; (50)

where the partial derivatives are now calculated with
Eq. (48). Note that for circular orbits Eq. (50) becomes

 

_~Q �
@ ~Q

@ ~E
_~E�

@ ~Q

@ ~Lz
_~Lz (51)

[use Eq. (48) and the fact that usat
r � 0 for circular orbits].

This condition ensures7 that circular orbits keep circular

under the hydrodynamic drag and in the adiabatic approxi-
mation, as it happens for radiation reaction.

Finally, let us note that the rates of change of ~E, ~Lz and
~Q [Eqs. (43), (44), (47), and (50)] go smoothly to zero as
the velocity of the satellite relative to the fluid goes to zero.
This is easy to check using the fact that, when v approaches
zero, _ptang

defl � O�v� [cf. Eqs. (33) and (37)], _prad
defl ! 0,


2 � 1 � O�v2�, ur � O�v�, u� � O�v�, ‘U�M ~Lz �
O�v� and U� ~E � O�v2�, and using the fact that � keeps
finite in this limit [in particular, from Eqs. (31) and (32) it
follows �t � O�v�, �� � O�1�, �� � O�1�, and �r �
O�1�]. Note that this is indeed the result that one would
expect. First of all, a body comoving with the fluid clearly
does not experience any dynamical friction and the only
active mechanism is accretion. The body then accretes
mass and consequently energy and angular momentum
(because the fluid carries a specific energy and a specific
angular momentum). However, the dimensionless con-
stants of motion ~E, ~Lz, and ~Q entering the geodesic equa-
tion cannot change because of the weak equivalence
principle. Pictorially, one may think of a satellite comoving
with a gaseous medium. Consider a sphere centered in the
satellite, with radius small enough to ensure that the gas
contained in the sphere has approximately the same veloc-
ity as the satellite. Suppose now that all the gas in this
sphere is accreted by the satellite. The velocity of the
satellite will clearly be unaffected, because of the conser-
vation of momentum: for the weak equivalence principle
this is enough to ensure that the orbit of the satellite will be
unaffected, in spite of its increased mass.

B. Adiabatic approximation

At the heart of our approach is the calculation of the
changes of the orbital parameters experienced by Kerr
geodesics as a result of the hydrodynamic drag, and their
comparison with the corresponding changes introduced by
radiation reaction. To this purpose, let us recall that up to
initial conditions Kerr geodesics can be labeled by a set of
three parameters, the semilatus rectum p, the eccentricity
e, and the inclination angle �inc. These are just a remap-
ping of the energy, angular momentum, and Carter constant
introduced in Sec. III A, and are defined as [49]

 p �
2rarp

ra � rp
; e �

ra � rp

ra � rp
; �inc �

�
2
�D�min;

(52)

where ra and rp are the apastron and periastron coordinate
radii, �min is the minimum polar angle � reached during the
orbital motion and D � 1 for orbits corotating with the
SMBH whereas D � �1 for orbits counterrotating with
respect to it. Note that in the weak-field limit p and e
correspond exactly to the semilatus rectum and eccentricity
used to describe orbits in Newtonian gravity, and that �inc

goes from �inc � 0 for equatorial orbits corotating with the

7Note, in particular, that the proof presented in Ref. [47],
which was concerned mainly with radiation reaction, applies
also to the case of the hydrodynamic drag. Note also that the
resonance condition which was found in Ref. [47] as the only
possible case that could give rise to a noncircular evolution for
an initially circular orbit is never satisfied in a Kerr spacetime
[48].
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black hole to �inc � 180 degrees for equatorial orbits
counterrotating with respect to the black hole, passing
through �inc � 90 degrees for polar orbits.

In order to fix the initial conditions of a geodesic, let us
first parametrize it with the Carter time 
, which is related
to the proper time by [46]

 

d	
d

� �: (53)

This is a very useful choice because it makes the geodesic
equation separable [46]:

 

�
dr
d


�
2
� Vr�r�;

dt
d

� Vt�r; ��;�

d�
d


�
2
� V����;

d�
d

� V��r; ��;

(54)

with
 

Vt�r; ��=M2 � ~E
�
�~r2 � ~a2�2

~�
� ~a2sin2�

�

� ~a ~Lz

�
1�

~r2 � ~a2

~�

�
; (55)

 

Vr�r�=M4 � 
 ~E�~r2 � ~a2� � ~a ~Lz�2

� ~�
~r2 � � ~Lz � ~a ~E�2 � ~Q�; (56)

 V����=M2 � ~Q� ~L2
zcot2�� ~a2�1� ~E2�cos2�; (57)

 V��r; ��=M � ~Lzcsc2�� ~a ~E
�

~r2 � ~a2

~�
� 1

�
�

~a2 ~Lz
~�

:

(58)

This means, in particular, that the r and � motions are
periodic in 
. The initial conditions of the geodesic can
then be characterized by the values t0 and �0 of the
coordinates t and � when 
 � 0, the value 
r0 of the
Carter time nearest to 
 � 0 at which r�
r0� � rp, and
the value 
�0 of the Carter time nearest to 
 � 0 at which
��
�0� � �min [42].

Let us first fix the geodesic under consideration by
choosing the parameters p, e, and �inc so as to obtain a
bound and stable orbit (see Ref. [49] for details) and by
choosing the initial conditions as described above. One
could in principle use Eqs. (43), (44), and (47) [or (50)]
to compute the rates of change of ~E, ~Lz, and ~Q due to the
hydrodynamic drag as a function of the Carter time 
.
However, because the time scale of the orbital evolution
due to the interaction with the torus is much longer than the
orbital period, we can apply the adiabatic approximation

and compute instead the averages of _~E, _~Lz, and _~Q over
times much longer than the orbital periods. This approxi-
mation is routinely adopted when studying the effect of
radiation reaction on EMRIs [42–45], and it is easy to

implement when one considers instead the effect of the
hydrodynamic drag. Denoting, respectively, with hit and
hi
 the average over an infinite coordinate time and the
average over an infinite Carter time, we can write [42]

 h _�it �
hd�=d
i

hdt=d
i


; (59)

where � is a placeholder for either ~E, ~Lz, or ~Q.
Using now Eq. (4) (with the assumption that the torus is

symmetric with respect to the equatorial plane) in
Eqs. (43), (44), and (47) [or (50)], it is easy to show that
d ~E=d
, d ~Lz=d
, and d ~Q=d
 depend, once fixed ~E, ~Lz, and
~Q, only on the r and cos2� of the geodesic under consid-
eration—i.e., r � r�
; 
r0� and cos2� � cos2��
; 
�0�—
and on the sign of usat

r , which we will denote by �r. [The
dependence on this sign arises because of the terms due to
the radial drag, as the quantity usat

r appearing in the defi-
nitions of� and � can be expressed in terms of r and cos2�
using Eqs. (53)–(58) only up to such a sign.] Similarly,
dt=d
 is given by the geodesic equation (54) and depends,
once fixed ~E, ~Lz, and ~Q, only on the r and cos2� of the
geodesic [cf. Eq. (55)].

Using now the fact that the r and � motions are periodic
when expressed in the Carter time, we can expand the
functions d ~E=d
, d ~Lz=d
 and d ~Q=d
, and dt=d
 appear-
ing in Eq. (59) in a Fourier series. Noting that the oscillat-
ing terms average out, one can then write these equations
using only averages of these functions over the r and �
periods. More precisely, writing the r and � motions as
r�
; 
r0� � r̂�
� 
r0� and ��
; 
�0� � �̂�
� 
�0� (where
we have denoted with a ‘‘hat’’ a fiducial geodesic having
the same ~E, ~Lz, and ~Q as the geodesic under consideration
and 
r0 � 
�0 � 0), using the fact that d ~E=d
, d ~Lz=d
,
and d ~Q=d
 depend on r, cos2�, and �r, and using the fact
that dt=d
 depends only on r and cos2�, we can easily
write Eq. (59) as [42]

 h _�it �

R�r
0 d
r

R��=4
0 d
�d�=d
�r̂�
r�; cos2�̂�
��; �r�R�r

0 d
r
R��=4

0 d
�Vt�r̂�
r�; cos2�̂�
���
;

(60)

where � is again a placeholder for either ~E, ~Lz, or ~Q. Note
that here �r and �� are the r and � periods and that
d ~E=d
, d ~Lz=d
 and d ~Q=d
, and dt=d
 are expressed
using Eqs. (43), (44), (47) [or (50)], and (54)–(58).
Using now the definitions of � and � [Eqs. (31) and
(32)], it is easy to check that the changes of ~E, ~Lz, and ~Q
arising from the radial drag average out in the above
equation because of the presence of the sign �r (in particu-
lar �t, ��, �� / �r). As a result, one can assume _prad

defl � 0
ab initio when computing Eq. (60) and benefit from an-
other small simplification since, as we have already men-
tioned, d ~E=d
, d ~Lz=d
, and d ~Q=d
 would depend only
on r and cos2� if it were not for the radial drag, which
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brings in the dependence on �r. With this assumption, all of
the integrals appearing in (60) can therefore be performed
over 
r 2 
0;�r=2� rather than over 
r 2 
0;�r�. Finally,
note also that the rates of change (60) do not depend on the
initial conditions 
r0 and 
�0 of the geodesic.

In order to reduce Eq. (60) to a form suitable for nu-
merical integration, we can express our fiducial geodesic
with the phase variables  and �, defined by [45,49,50]

 r̂� � �
p

1� e cos 
; (61)

 cos�̂��� � z� cos�: (62)

Note that  and � change by 2� during, respectively, an r
and a � period. Inserting then these definitions into the
geodesic equation (54) one gets [45,49,50]

 

d 
d

�

p

1� e2

����������
J� �

q
; (63)

 

d�
d

� M

�������������������������������������
��z� � z�cos2��

q
; (64)

where
 

J� � � �1� ~E2��1� e2� � 2
�
1� ~E2 �

1� e2

~p

�

� �1� e cos � � �1� e cos �2
�
�1� ~E2�

3� e2

1� e2

�
4

~p
�

1� e2

~p2 ��� ~L2
z � ~Q�

�
; (65)

 � � ~a2�1� ~E2�; (66)

 z� �
~Q� ~L2

z � ��
������������������������������������������������
� ~Q� ~L2

z � ��
2 � 4� ~Q

q
2�

; (67)

with ~p � p=M. Note that d =d
 and d�=d
, differently
from dr=d
 and d�=d
, are nonzero at the inversion points
of the r and � motions, making  and � very useful for
numerical integration.

Changing the integration variables 
r and 
� to  and �,
Eq. (60) becomes
 

h _�it�
Z �

0
d 

Z �=2

0
d�

�
d�=d
j _prad

defl�0�r̂� �;cos2�̂�����1� e2�

p
����������������������������������������������
J� ���z�� z�cos2��

p
�

�Z �

0
d 

Z �=2

0
d�

Vt�r̂� �;cos2�̂�����1� e2�

p
����������������������������������������������
J� ���z�� z�cos2��

p �
�1
:

(68)

Note that the two-dimensional integrals involved in these
expressions can be easily computed numerically (e.g.,

iterating Romberg’s method [51]) once fixed the orbital
parameters p, e, �inc of the geodesic under consideration.

IV. RESULTS

In this section we will consider constant-‘ tori around
Kerr SMBHs and compare their influence on EMRIs with
that of gravitational wave emission (i.e., radiation reaction)
in the adiabatic approximation. In particular, we will com-
pute the rates of change (68) of the energy, angular mo-
mentum and Carter constant due to the hydrodynamic drag,
for circular equatorial orbits (Sec. IVA) and for generic
(inclined and eccentric) orbits (Sec. IV B). Since ~E, ~Lz, and
~Q can be expressed analytically as functions of the orbital
parameters p, e, and �inc [49], it is then easy to compute the
rates of change dp=dt, de=dt, and d�inc=dt due to the
hydrodynamic drag. For the same orbits, we will consider
also the radiation reaction, for which we will use the
kludge fluxes d ~E=dt, d ~Lz=dt, and d ~Q=dt of Ref. [52] to
compute dp=dt, de=dt, and d�inc=dt. Note that these
kludge fluxes are a good approximation to the fluxes
computed rigorously in the adiabatic approximation with
the Teukolsky-Sasaki-Nakamura formalism [45,53]. In
fact, since they are based on a post-Newtonian expansion
corrected with fits to fluxes computed with the Teukolsky-
Sasaki-Nakamura formalism for circular orbits, these
kludge fluxes are accurate within 3% for circular orbits
and their accuracy is expected to be within 10–15% also
for generic orbits with p * 6M. Moreover, they are ex-
pected to be off at most by 25–30% even for smaller values
of the semilatus rectum p (cf. Ref. [52], Table I).

The mass of the SMBH is fixed to M � 106M� while its
spin parameter a ranges from �0:998M to 0:998M (note
that jaj � 0:998M is a reasonable upper limit for the spin
attainable as the result of mass accretion [54] or binary
black hole mergers [55,56]), and the mass of the satellite
black hole is instead m � 1M�. The constant-‘ torus is
assumed to be composed of an isentropic monatomic gas
(i.e., a � � 5=3 polytrope) and is considered to be exactly
filling its outermost closed equipotential surface (�W �
0), so as to present a zero accretion rate _M onto the
SMBH.8 Once assumed �W � 0 and � � 5=3, the specific
angular momentum of the torus is uniquely fixed by choos-
ing the outer radius. A reasonable outer radius for a real-
istic accretion disk is given by rout � 105M [14], and this is
indeed the value that we will use for most of our analysis,
although we will briefly consider also different values for

8While realistic thick disks are generally expected to accrete
onto the SMBH, these configurations are clearly nonstationary
and cannot therefore be reproduced within our framework.
However, it is easy to show that if one cuts off a torus solution
with _M> 0 at r � rcusp, the effect of the satellite-torus interac-
tion will be enhanced with respect to the _M � 0 solution having
the same mass and outer radius: the choice _M � 0 is thus useful
to obtain at least a lower limit for the effect of the satellite-torus
interaction on EMRIs.
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rout in order to study the impact of this parameter on the
final results. The polytropic constant � of the equation of
state is finally fixed by the requirement that Mt � 0:1M.
While this could be a reasonable value for the mass of a
realistic accretion disk in AGNs [14], we will see that our
results scale proportionally to Mt, thus allowing one to
extrapolate them easily to the case Mt � M, which is
certainly an astrophysically plausible value, but one for
which our test-fluid approach is no longer valid.

We should stress, however, that our results, when ex-
pressed in terms of the dimensionless orbital parameters
p=M, e, and �inc are approximately independent of the
mass M of the SMBH and of the mass m of the satellite
black hole (provided thatMt=M and rout=M are maintained
constant). Indeed, since the ratios between the rates of
change dp=dt, de=dt, and d�inc=dt due to the hydrody-
namic drag and radiation reaction are of course dimension-
less, it is not restrictive to fix M � 1, because this simply
corresponds to choosing a system of units. Note, in par-
ticular, that this means that systems with differentm andM
but equal mass ratio m=M give exactly the same ratios
between the rates of change dp=dt, de=dt, and d�inc=dt
due to the hydrodynamic drag and radiation reaction.
Moreover, these rates of change are proportional to m (in
the case of the hydrodynamic drag this can be seen from
Eqs. (27), (33), (34), (43), (44), and (47), while in the case
of radiation reaction see for instance Ref. [52]), so this
dependence on m cancels out when taking the ratio. The
only dependence on m arises from the cutoff rmin �
2m�1� v2�=v2 appearing in Eq. (35), but this dependence
clearly comes about only for supersonic velocities and is a
logarithmic one. As such, the results which we present in
this paper, although derived in the case of m � 1M� and
M � 106M�, are also valid for m � 0:1M� and M �
105M� (exactly) or for m � 1M� and M � 105M� (ex-

actly for subsonic motion, and approximately—with an
error comparable with those affecting the fit (35) or the
kludge fluxes—for supersonic motion).

In all of our analysis we will focus on the region close to
the SMBH (r & 50M), which contains only a small frac-
tion of the mass of the torus (e.g., in the case of the model
A1 of Table I, the mass contained in a radius r � 50M
amounts to about 2:9� 10�5Mt, and this fraction scales
approximately as r�3=2

out when considering tori with differ-
ent outer radii). This is the region relevant for
gravitational-wave experiments like LISA. In particular,
an EMRI’s signal is expected to be detectable by LISA
when its frequency (which is twice the orbital frequency)
increases above � 2 mHz (below this frequency, in fact,
there is a strong unresolvable foreground noise due to
double white-dwarf binaries in our Galaxy [57]). This
translates into a distance from the SMBH of r � 10M for
M � 106M�, and to r � 45M for M � 105M�.

It should be noted, however, that the amplitude of an
EMRI’s signal scales with the distance from the SMBH:
for a circular orbit of radius r, the Keplerian frequency is
2�� � M1=2=�r3=2 � aM1=2� � M1=2=r3=2 and the ampli-
tude of the signal is h� �m=D��2��M�2=3 � �m=D��M=r�
[58], where D is the distance from the observer to the
source. As such, an EMRI around a 105M� SMBH will
have a gravitational-wave amplitude that at r� 45M is
about 10 times smaller than at r� 5M. Therefore, to see
the details of the waveforms at r� 45M the source must be
�10 times closer to us, which translates into a detection
volume decreased by a factor �1000. Nevertheless, this
decrease of the detection volume may be compensated (at
least partly) by the fact that the event-rate estimates con-
sider only EMRIs in the strong-field region of the SMBH,
even when M � 105M� [3]. As such, since EMRIs in the
early part of the inspiral are more numerous than those in

TABLE I. Models analyzed in this paper: all of them have M � 106M�, � � 5=3 and are filling exactly their outermost closed
equipotential surface (i.e., they have �W � 0). All the parameters are defined in Sec. II, except the average rest-mass density �0avg �

Mt0=V, where V �
R
�0>0

�������
�g
p

d3x. Note that the specific angular momentum of the torus needs to be tuned with high accuracy in
order to obtain large outer radii such as those considered in these models, and for this reason we report ‘=M with 10 decimal digits.

Model a Mt=M rout=M � (CGS) ‘=M rin=M rcenter=M �center (g=cm3) �0avg (g=cm3)

A1 0.900 0.100 1:000� 105 4:198� 1022 2.632 450 053 6 1.732 46 3.609 63 4:060� 10�5 1:475� 10�11

A2 �0:900 0.100 1:000� 105 4:198� 1022 4.756 731 781 9 5.657 00 15.588 90 3:992� 10�6 1:476� 10�11

B1 0.998 0.100 1:000� 105 4:200� 1022 2.089 442 231 0 1.091 44 1.564 84 1:868� 10�4 1:474� 10�11

B2 0.500 0.100 1:000� 105 4:195� 1022 3.414 192 956 0 2.914 25 7.164 58 1:331� 10�5 1:475� 10�11

B3 0.000 0.100 1:000� 105 4:192� 1022 3.999 959 999 3 4.000 08 10.471 74 7:355� 10�6 1:475� 10�11

B4 �0:500 0.100 1:000� 105 4:190� 1022 4.449 429 131 3 4.949 62 13.395 47 5:034� 10�6 1:475� 10�11

B5 �0:998 0.100 1:000� 105 4:188� 1022 4.826 930 232 4 5.825 21 16.112 18 3:796� 10�6 1:476� 10�11

C1 0.900 0.100 1:000� 103 3:997� 1020 2.631 908 022 9 1.733 18 3.606 22 4:323� 10�2 1:507� 10�5

C2 �0:900 0.100 1:000� 103 3:607� 1020 4.749 056 106 7 5.675 40 15.497 60 4:775� 10�3 1:573� 10�5

C3 0.900 0.100 1:000� 104 4:170� 1021 2.632 400 747 8 1.732 53 3.609 32 1:295� 10�3 1:479� 10�8

C4 �0:900 0.100 1:000� 104 4:103� 1021 4.756 030 446 1 5.658 66 15.580 57 1:297� 10�4 1:489� 10�8

C5 0.900 0.100 1:000� 106 4:201� 1023 2.632 454 984 2 1.732 46 3.609 67 1:283� 10�6 1:475� 10�14

C6 �0:900 0.100 1:000� 106 4:199� 1023 4.756 801 952 6 5.656 83 15.589 74 1:258� 10�7 1:475� 10�14
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the strong-field region, one expects to see a number of
these events larger than the naive estimate given by the rate
expected for strong-field EMRIs around a 105M� SMBH
divided by the detection volume decrease factor�1000. Of
course, the event rates could be even larger if the satellite
were a black hole withm� 100M�, because the amplitude
of the signal is proportional to m, but too little is presently
known about these objects to draw any sound conclusions
(see for instance Ref. [59] for a review on intermediate-
mass black holes as possible sources for LISA).

A. Circular equatorial orbits

The evolution of circular equatorial orbits is very simple
in the adiabatic approximation. As mentioned in Sec. III A,
both the radiation reaction and the hydrodynamic drag
maintain circular orbits circular and, due to the symmetry
of the Kerr spacetime and of the torus with respect to the
equatorial plane, equatorial orbits will remain equatorial.
Therefore, the evolution of circular equatorial orbits under
both radiation reaction and hydrodynamic drag can be
characterized with only one quantity (the rate of change
of the radius dr=dt), to which the rates of change of the
energy and angular momentum, d ~E=dt � �d ~E=dr��dr=dt�
and d ~Lz=dt � �d ~Lz=dr��dr=dt�, are proportional. (d ~Q=dt
is instead identically zero for equatorial orbits.) Moreover,
one does not need to compute the infinite-time averages
(68), because the rates of change of ~E, ~Lz, and ~Q due to the
hydrodynamic drag, given by Eqs. (43), (44), and (47) [or
(50)], are already functions of the orbital radius alone.
(Note also that the 4-vector � reduces to � � �@r=

�������
grr
p

.)
The ratio between the rates of change of the orbital

radius due to hydrodynamic drag and radiation reaction
is a convenient measure of the ‘‘efficiency’’ of the hydro-
dynamic drag. Defining this quantity simply as � _r 	

�dr=dt�hydro=�dr=dt�GW, we show in the top plot of Fig. 1
the absolute value of � _r as a function of the radius r of
circular equatorial bound stable orbits. The two curves
refer to models A1 and A2 of Table I, and are labeled
with the spin parameter a of the SMBH. Note that in order
to present all the data in a single plot, a positive r refers to
orbits rotating in the positive � direction (‘‘prograde or-
bits’’ i.e., corotating with the torus), while a negative r
refers to orbits rotating in the negative � direction (‘‘retro-
grade orbits’’ i.e., counterrotating with respect to the to-
rus). The middle plot compares the velocity v of the
satellite in the rest frame of the fluid with the sound
velocity vs, while the bottom plot shows instead the energy
density � of the torus. Note that in all the plots the vertical
axis is drawn in logarithmic scale. As such, the vertical
asymptotes appearing in Fig. 1 (as well as in Figs. 2 and 3,
which are in logarithmic scale too) actually correspond to a
zero value for the quantity under consideration.

Note that if the torus is corotating with the black hole,
the radius of the innermost stable circular orbit (ISCO) is
always larger than the inner radius of the torus, both for

prograde and retrograde orbits. For prograde orbits, this
immediately follows from the considerations of Sec. II
(since our tori have �W � 0 and ‘ms < ‘ < ‘mb, we
have rin � rcusp < rms, and rms is exactly the radius of
the prograde ISCO), while for retrograde orbits it is suffi-
cient to note that the retrograde ISCO is located at a larger
radius than the prograde one. Bearing this in mind, it is
then easy to understand why none of the quantities plotted
in Fig. 1 for model A1 (a � 0:9M) goes to zero when
approaching the SMBH: although the density, the velocity
of the satellite relative to the torus, the sound velocity, and
�dr=dt�hydro are exactly zero at the inner radius of the torus,
this radius is smaller than that of the ISCO and therefore no
bound stable orbits exist there.

If instead the torus is counterrotating with respect to the
black hole (i.e., a < 0), the radius of the ISCO is larger
than rin for prograde orbits (this follows again from rin �

rcusp < rms), but it is not possible to conclude that the
radius of the ISCO is larger than rin also for retrograde
orbits. In fact, the ISCO counterrotating with respect to the
torus (i.e., the ‘‘retrograde’’ ISCO) is corotating with the
black hole and thus lies at a radius smaller than the ‘‘pro-
grade’’ ISCO. Indeed, for the model A2 (a � �0:9M)
considered in Fig. 1 the retrograde ISCO is at a radius
smaller than rin. As a consequence, the density, the sound
velocity, and �dr=dt�hydro for model A2 go to zero when the
radius of the retrograde orbits decreases, being in fact zero
at the inner edge of the torus. (Of course, the velocity of the
satellite relative to the fluid does not go to zero when the
radius of the retrograde orbits decreases, because the sat-
ellite and the torus are rotating in opposite directions.)

As it can be seen in the top plot, the ratio j� _rj is larger
for the retrograde orbits than for the prograde ones. The
reason can be easily understood from the middle plot,
which shows that the retrograde motion is always super-
sonic. As such, the long-range drag, which increases sig-
nificantly when passing from the subsonic to the
supersonic regime [cf. Eq. (35)], enhances the torus-
satellite interaction for the retrograde orbits. From the
middle plot one can also note that relativistic velocities
(v * 0:6) are reached in the case of retrograde orbits very
close to the SMBH, thus further enhancing the hydrody-
namic drag because of the relativistic correction factor

2�1� v2�2 appearing in Eq. (33). However, we should
note that when v reaches its maximum value (i.e., v� 0:8
for model A2) the effect of the relativistic correction factor
on the hydrodynamic drag is hindered by the small value of
the density, which goes to zero at the inner edge of the torus
(cf. the bottom plot).

As it can be easily understood from the formulas re-
viewed in Sec II, a change in the polytropic constant �
leaves all the parameters of the torus unchanged, except the
energy density �, the rest mass density �0, the pressure p
[all of which scale proportionally to ��1=���1�], and the
total mass energy and rest mass, Mt and Mt0 (which scale
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proportionally to �). For this reason, the bottom plot of
Fig. 1 scales linearly with the mass of the torus (cf. the
label of the vertical axis). Noting, from the formulas of
Sec. III A, that the rates of change of the ~E, ~Lz, and ~Q are
proportional to the energy density �, the same scaling
applies to the top plot. This is a very useful feature, because
although the value used for the figures of this paper—i.e.,

Mt � 0:1M—could be a plausible mass for the torus, very
little is known about these objects and larger or smaller
masses may be possible. In general, a different mass Mt

could have important effects. For instance, extrapolating to
the case Mt � M, in which our test-fluid approximation is
no longer valid, the ratio j� _rj would be enhanced by a
factor 10, and for orbits counterrotating with respect to the
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FIG. 1 (color online). The top plot shows the absolute value of the ratio � _r 	 �dr=dt�hydro=�dr=dt�GW between the rates of change of
the orbital radius due to hydrodynamic drag and radiation reaction, for circular bound stable orbits in the equatorial plane, as a function
of the radius r. For graphical reasons r is considered positive for orbits in the positive � direction (‘‘prograde orbits’’ i.e., corotating
with the torus) and negative for those in the negative � direction (‘‘retrograde orbits’’ i.e., counterrotating with respect to the torus).
Note that all the curves of this figure (including those of the middle and bottom plots) are terminated at the (prograde or retrograde)
ISCO. The middle plot compares the velocity v of the satellite in the rest frame of the fluid with the sound velocity vs, while the
bottom plot shows the energy density of the torus. The curves refer to the models A1 and A2 of Table I, which are labeled here with the
spin parameter a of the SMBH. Note that in all the plots the vertical axis is drawn in logarithmic scale. As such, the vertical asymptotes
appearing in these plots actually correspond to a zero value for the quantity under consideration.
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torus with r * 40M the effects of hydrodynamic drag and
radiation reaction would become comparable.9

It is also worth pointing out that at the center of the torus
�dr=dt�hydro changes sign for prograde orbits, being nega-
tive for r > rcenter and positive for r < rcenter. [�dr=dt�GW is
instead always negative because gravitational waves carry
a positive amount of energy away from the source.] This
change of sign corresponds, in the top plot of Fig. 1, to the
zero value for j� _rj. This behavior comes about because,
although the density reaches its maximum at the center, the
motion of the fluid is exactly Keplerian (geodesic) there,
and the relative velocity of the satellite is therefore exactly
zero (cf. the middle plot). This means, in particular, that
~E � �usat

t � �ufluid
t � U, which together with Eq. (43)

and �t � 0 gives _~E � 0 and therefore _r � 0 for prograde
orbits at r � rcenter. Moreover, if r > rcenter the specific
angular momentum of the satellite is larger than that of
the torus (cf. for instance Ref. [33], Fig. 5), and therefore
the satellite is slowed down by the interaction with the fluid
(i.e., _r < 0). On the other hand, if r < rcenter the specific
angular momentum of the satellite is smaller than that of
the torus, and the satellite is speeded up (i.e., _r > 0).

Figure 2 shows the absolute value of � _r as a function of
the radius r of circular equatorial bound stable orbits for

the models B1–B5 of Table I, whose spin parameter a goes
from �0:998M to 0:998M. As it can be seen, the situation
is qualitatively very similar to the one presented in the top
plot of Fig. 1. In particular, the effect of the hydrodynamic
drag can be comparable to that of radiation reaction, but
only if we extrapolate to Mt � M and, even in that case,
only for orbits counterrotating with respect to the torus and
with r * 40M.

We can also note that the effect of the spin a on the
results is negligible, except for the prograde orbits between
the center and the ISCO, for which j� _rj decreases as a
increases. The reason for this can be easily understood by
considering a satellite moving on a prograde circular equa-
torial orbit between the center and the inner edge of the
torus, and by recalling that the difference between ‘mb and
‘ms represents an upper limit for the deviation of the
specific angular momentum of the satellite away from
that of the torus (see Ref. [33], Fig. 5). Because this
deviation regulates the exchange of angular momentum
between the torus and the satellite [cf. Eq. (44), where
�� � 0 for circular orbits] and thus the rate of change of
the orbital radius, � _r must go to zero if ‘mb � ‘ms goes to
zero. Since it is easy to verify that ‘mb � ‘ms ! 0 as a!
M [cf. Eq. (15)], it is natural to find that j� _rj decreases as a
increases.

Finally, in Fig. 3 we plot again j� _rj, but for models A1–
A2 and C1–C6 of Table I, in which we have considered
different values for the outer radius rout of the torus, rang-
ing from 103M to 106M. The reason for this is that
although rout � 105M is a plausible value for the outer
radius, little is known about the size of astrophysical
accretion disks and larger or smaller outer radii may also
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FIG. 2 (color online). The same as the top plot of Fig. 1, but for the models B1–B5 of Table I, which are labeled here with the spin
parameter a of the SMBH.

9Note, however, that even values of j� _rj less than 1 can
produce features detectable by LISA, because the dephasing
time scales as �j _rGWj

�1=2 [60]. For instance, if j� _rj � 0:1 the
dephasing time between a waveform with only radiation reaction
included and one with also the effect of the hydrodynamic drag is
expected to be only �3 times larger than the dephasing time
between waveforms with and without radiation reaction
included.

ENRICO BARAUSSE AND LUCIANO REZZOLLA PHYSICAL REVIEW D 77, 104027 (2008)

104027-14



be possible. As it can be seen from Fig. 3, a different outer
radius will have significant effects for prograde orbits with
r * 20M and retrograde orbits with r * 10M, for which
the effect of the hydrodynamic drag can become compa-
rable to that of radiation reaction. In general, j� _rj progres-
sively increases as the outer radius is decreased. This is
rather simple to explain: decreasing rout while keeping Mt

constant amounts to increasing the average rest-mass den-
sity and hence the hydrodynamic drag. When considered
from this point of view, the uncertainty on the value of rout

has an effect opposite to the uncertainty about the mass of
the torus: a decrease of rout (or an increase of Mt) induces
an increase of j� _rj. For circular orbits, this overall uncer-
tainty can be easily modeled in terms of a simple scaling of
the type

 � _r�rout� � � _rj5

�
105M
rout

�
3=2
; (69)

where � _rj5 is the efficiency for rout � 105M. Note that the
scaling power is not 3 as one may naively expect. This is
because � _r is most sensitive to the changes of the rest-mass
density in the inner part of the torus and this does not scale
simply as r�3

out .

B. Generic orbits

We will now extend the analysis of Sec. IVA to bound
stable generic (inclined and eccentric) orbits. Although
such an extension is in principle straightforward using
the formulas introduced in Sec. III B, the space of parame-
ters and results which one needs to examine greatly en-
larges. Not only are generic orbits characterized by the
three parameters p, e, �inc defined by Eq. (52), but one also

needs to consider three quantities describing the evolution
of each single orbit in the parameter space i.e., the rates of
change dp=dt, de=dt, and d�inc=dt.

To simplify our analysis, we will focus mainly on model
A1 of Table I, which could be a representative example of
an astrophysical torus in an AGN, and then examine how
the rates of change dp=dt, de=dt, and d�inc=dt due to the
hydrodynamic drag compare to those due to radiation
reaction throughout the space of parameters �p; e; �inc�.
The considerations that we will draw for model A1 can,
however, be extended simply to the cases of different
masses and radii for the torus. As in the case of circular
orbits, in fact, a larger (smaller) massMt for the torus when
rout is held constant would simply increase (decrease) the
rates dp=dt, de=dt, and d�inc=dt due to the hydrodynamic
drag by a factor Mt=�0:1M�. This scaling is exact (as long
as the torus is not self-gravitating) and comes about be-
cause the rates of change of ~E, ~Lz, and ~Q (and conse-
quently those of p, e, and �inc) are proportional to the
energy density � / Mt. Similarly, variations of rout will
result in an effect which is similar to the one discussed for
Fig. 3 in the case of circular orbits [cf. Eq. (69)], as we will
see at the end of this section.

All of the results presented in this section have been
computed by integrating numerically Eq. (68) using an
iterated Romberg method [51], with a typical accuracy,
depending on the parameters of the orbit under considera-
tion, of 10�7–10�4 and never worse than 4� 10�3.10
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FIG. 3 (color online). The same as the top plot of Fig. 1, but for the models A1–A2 and C1–C6 of Table I, which are labeled here
with the spin parameter a of the SMBH and the outer radius rout of the torus.

10Note that the accuracy of the numerical integration is cer-
tainly adequate, because it is considerably better than the errors
affecting the fit (35) as well as those affecting the kludge fluxes
that we use to study the effects of radiation reaction.
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We start by analyzing in detail orbits with eccentricity
e � 0:1, and we will then study the effect of a different
eccentricity on the results. In Figs. 4–6 the color code and
the contour levels show the base-10 logarithm of the ‘‘effi-
ciencies’’ of _p, _e, and _�inc, i.e., � _p 	 j�dp=dt�hydro=
�dp=dt�GWj, � _e 	 j�de=dt�hydro=�de=dt�GWj, and � _�inc

	

j�d�inc=dt�hydro=�d�inc=dt�GWj, as functions of p and �inc.
The dashed line marks the ‘‘edge of the torus’’ i.e., the
location in the �p; �inc� plane of the orbits having �inc �
�inc;t�p�, where �inc;t�r� is the function giving the angle
between the surface of the torus and the equatorial plane in
terms of the radius r. The blank part on the left portion of
these figures refers to the region where no bound stable
orbits exist, and we will refer to the line marking the
boundary of this region as the separatrix [61]

Each figure has been obtained by computing the quan-
tity under consideration using Eq. (68) for �5� 105

orbits irregularly distributed in the �p; �inc� plane, and
then linearly interpolating on a grid of 1500� 1500
nodes using a Delaunay triangle-based method. The
gridded data obtained in this way have been used to
draw the contour levels. Not surprisingly, Figs. 4–6
show somewhat the same trend as the results presented
in Sec. IVA for circular equatorial orbits, with the
effect of the torus becoming comparable to that of
the radiation reaction far away from the black hole
and becoming instead negligible in the strong-field
region of the black hole. However, these figures pre-
sent also a variety of features that we will now analyze in
detail.
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FIG. 5 (color online). The same as in Fig. 4, but for log10j� _ej.
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FIG. 4 (color online). log10j� _pj for inclined orbits with e � 0:1 as a function of the semilatus rectum p and of the inclination angle
�inc. The figure refers to the model A1 of Table I, but a larger (smaller) mass Mt for the torus would simply increase (decrease) the
absolute ratio j� _pj by a factor Mt=�0:1M�. The dashed line marks the edge of the torus.
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Figure 4, for instance, shows j� _pj and indicates that the
effect of the hydrodynamic drag is larger for orbits with
high inclination, for any given semilatus rectum p. This is
simply due to the fact that orbits with �inc > 90 degrees are
retrograde with respect to the torus, and the velocity of the
satellite relative to the fluid can easily become supersonic.
Indeed this effect is visible also in the figures of Sec. IVA.
(We recall that in those figures the retrograde orbits are
mapped to negative values of the orbital radius r.) The
transition between the subsonic and the supersonic regime
is marked by the sharp bend of the contour levels of Fig. 4
at �inc � 40 degrees. This bend corresponds to the passage
from orbits which are always subsonic (the orbits with �inc

smaller than the inclination angle at which the bend is
located) to orbits which are supersonic at least for a part
of their trajectory (the orbits with �inc larger than the
inclination angle at which the bend is located). Another
small dip is hardly noticeable in the contour levels at
inclination angles �inc just smaller than the edge of the
torus (and smaller than 90 degrees, corresponding there-
fore to prograde orbits); this feature corresponds to the
transition from orbits which are partly subsonic and partly
supersonic (‘‘below’’ the dip), to orbits which keep always
supersonic (‘‘above’’ the dip).11 From Fig. 4 one can also

note that j� _pj becomes lower than 10�8 in a narrow
‘‘strip’’ at p=M < 5. Indeed, �dp=dt�hydro changes sign
inside this strip, being positive inside the region between
the strip and the separatrix and negative outside, while
�dp=dt�GW is always negative. This behavior generalizes
that of circular equatorial orbits, for which �dr=dt�hydro

changes sign at the center of the torus (cf. Sec. IVA).
Also in this case, however, the very small values of j� _pj

cannot produce an observable imprint on the waveforms.
In a similar way, Fig. 5 shows the behavior of j� _ej. As it

can be seen, the influence of the torus is again larger at high
inclinations than at low ones, for any fixed semilatus
rectum. Also in this case, this happens because the orbits
counterrotating with respect to the torus can easily become
supersonic. As in Fig. 4, we can note the presence of a
sharp bend in the contour levels at �inc � 40 degrees, due to
the transition from orbits always subsonic to orbits partly
supersonic, and a dip in the contour levels near the edge of
the torus (at inclinations �inc < 90 degrees), more pro-
nounced than in Fig. 4 but again due to the transition
from orbits only partly subsonic to orbits always super-
sonic. Moreover, one can note the presence of three ‘‘val-
leys’’ where the efficiency j� _ej becomes very small. One
(‘‘valley 1’’) starts at �inc � 15 degrees, very close to the
separatrix, and extends as far as the right edge of the figure
(p=M � 50, �inc � 65 degrees) and beyond. A second
valley (‘‘valley 2’’) starts at the same point as valley 1,
but extends only until p=M � 12 and �inc � 60 degrees,
where it terminates together with a third valley (‘‘valley
3’’) starting on the separatrix at �inc � 30 degrees. Across
these valleys, the quantity �de=dt�hydro becomes zero and
changes sign, being negative under valley 1 and in the
region between the separatrix and valleys 2 and 3, and
positive in the rest of the �p; �inc� plane. Conversely, the
rate of change of the eccentricity due to radiation reaction
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FIG. 6 (color online). The same as in Fig. 4, but for log10j� _�inc
j.

11We note that in order to better understand the fine features in
the contour levels, we have built an auxiliary code computing the
quantities �dp=dt�hydro, �de=dt�hydro, and �d cos�inc=dt�hydro by
direct integration of Eqs. (43), (44), (47), and (50) along nu-
merically solved geodesics, averaging over a reasonably large
number of revolutions (� 30) for each geodesic. This has not
only validated the results which have been used to build the
figures and which have been obtained using Eqs. (68), but has
also allowed us to examine in detail the behavior of the geodesics
in the various regions of the parameter space �p; e; �inc�, thus
helping to interpret the complicated features of the figures shown
in this paper.
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is always negative, with the exception of orbits very close
to the separatrix [52]; this is apparent also in Fig. 5, where
the narrow strip corresponding to a ratio j� _ej * 10�3 and
running close and almost parallel to the separatrix is due to
a change in sign of �de=dt�GW. Despite this markedly
different behavior of �de=dt�hydro and �de=dt�GW, Fig. 5
shows that the effect of the hydrodynamic drag is always
much smaller than radiation reaction unless the semilatus
rectum of the orbit is increased to p=M * 50, or the mass
of the torus is increased at least by a factor 10 thus
extrapolating to Mt � M.12 However, while a larger semi-
latus rectum increases the efficiency � _e, it also reduces the
frequency and amplitude of the gravitational-wave signal,
moving it to a region of low sensitivity for LISA.

The effect of the hydrodynamic drag is somewhat
stronger when considered in terms of the efficiency
j� _�inc

j, as it is shown in Fig. 6. While the qualitative
behavior is similar to the one discussed for the two preced-
ing figures, it should be noted that the effect of the torus is
comparable to that of radiation reaction already for
p=M � 32 if �inc � 60 degrees, and the two effects remain
comparable down to p=M � 20 if the mass of the torus is
increased by a factor 10 thus extrapolating to Mt � M.
Moreover, while radiation reaction produces an increase in
the inclination �inc irrespective of the orbital parameters
[36], �d�inc=dt�hydro is always negative and thus a measure-
ment of the evolution of the inclination angle �inc in the
early stages of an EMRI could give important information
on the presence of a torus. If such a presence were to be

detected, it would not prevent high-precision tests of the
Kerr nature of the SMBH being performed in the strong-
field region, where the hydrodynamic drag becomes
negligible.

We should also note that the decrease of �inc due to the
hydrodynamic drag is not surprising for orbits with �inc >
90 degrees (i.e., orbits rotating in the opposite � direction
with respect to the fluid), because the hydrodynamic drag
clearly induces the orbits to rotate in the same � direction
as the torus. For orbits with �inc < 90 degrees, instead, the
decrease of �inc comes directly from Eq. (45) (we recall
that the effect of the radial drag averages out when adopt-
ing the adiabatic approximation), thus following directly
from the axis and plane symmetry of the system and being
independent of the use of constant specific angular mo-
mentum tori such as the ones considered in this paper.
Indeed, since the fluid of the torus does not move in the
� direction, Eq. (45) states that accretion conserves the
momentum of the satellite in the � direction, but it also
increases its mass, thus reducing the velocity in the �
direction. In addition, the dynamical friction will contrib-
ute to this reduction by damping further the oscillations
around the equatorial plane.

To illustrate how the above results depend on the eccen-
tricity, we show in Fig. 7 the efficiency j� _�inc

j for the model
A1 of Table I, but for different values of the eccentricity
i.e., e � 0, 0.4, and 0.8. (Equivalent figures could be made
also for j� _pj and j� _ej, but we omit them here because they
would be qualitatively similar to Fig. 7.) For each value of
the eccentricity, we have computed j� _�inc

j for �4� 104

orbits, and using the same technique employed for Figs. 4–
6 we have drawn the contours corresponding to values of
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12The test-fluid approximation of course breaks down in this
limit.
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0.01, 0.1, 1, and 10. Also in this case, a larger (smaller)
mass Mt for the torus would simply increase (decrease)
these absolute ratios by a factor Mt=�0:1M�.

Clearly, many of the features in this plot have been
discussed also for the previous figures. For instance, the
contour levels present sharp bends at low inclinations (i.e.,
�inc � 10 – 40 degrees) for e � 0 and e � 0:4, due the
transition from subsonic to partly supersonic orbits,
whereas the transition from partly supersonic to fully
supersonic orbits causes the appearance of a pronounced
‘‘kink’’ in the e � 0:4 contour levels, for inclinations
�inc < 90 degrees just above the edge of the torus. The e �
0:8 contour levels, on the other hand, are rather smooth and
less affected by the complex changes of regimes as the
satellite interacts with the torus. Most importantly, how-
ever, Fig. 7 suggests that the conclusions drawn when
discussing Fig. 6 for orbits with e � 0:1 are not altered
significantly by a change in the eccentricity. Indeed, even
for large eccentricities the influence of the torus on the
evolution of �inc can be comparable to that of radiation
reaction for p=M as small as 35–38, while the two effects
are still equal at p=M � 23–24 if the mass of the torus is
increased by a factor 10 thus extrapolating to Mt � M. As
a result, a measurement of the evolution of the inclination
angle �inc even for generic eccentric orbits could give
important information on the presence of a torus around
the SMBH.

This conclusion is finally confirmed by Fig. 8, in which
we show how j� _�inc

j changes if one considers different
values of the outer radius of the torus while keeping its
mass fixed. More specifically, Fig. 8 shows the location in
the �p; �inc� plane of the circular orbits for which j� _�inc

j �

1. Different curves refer to different values of the outer

radius, and, in particular, to the models A1, C1, C3 and C5
of Table I. As it is probably obvious by now, a different
massMt for the torus would simply make the curves of this
figure correspond to j� _�inc

j � Mt=�0:1M�. As expected
from the results of Sec. IVA, a modest variation of the
outer radius can easily cause the decrease of the inclination
angle due to the hydrodynamic drag to be dominant over
the increase due to radiation reaction for orbits with
p=M� 20 or smaller.

V. CONCLUSIONS

SMBHs are expected to be surrounded by matter, either
in the form of stellar disks, as in the case of normal galactic
centers, or in the form of accretion disks of gas and dust, as
in the case of AGNs. In order to assess under what con-
ditions and to what extent the interaction with matter could
modify the gravitational-wave signal from EMRIs in
AGNs, we have studied EMRIs in spacetimes containing
a SMBH surrounded by a non-self-gravitating torus. For
simplicity, and in order to handle the equilibrium solution
analytically, we have considered a torus with a constant
distribution of specific angular momentum, using as refer-
ence dimensions and masses those for the accretion disks
expected in AGNs, but bearing in mind that these also
come with rather large uncertainties. We have extrapolated
our results also to cases in which the mass of the torus is
comparable with that of the SMBH, although we stress that
in this limit our test-fluid approximation for the torus is no
longer valid.

Overall, we have found that the effect of the hydro-
dynamic drag exerted by the torus on the satellite black
hole can have important effects sufficiently far from the
central object, and that these effects are qualitatively differ-
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ent from those of radiation reaction. In particular, if the
torus is corotating with the SMBH, the hydrodynamic drag
always decreases the inclination of the orbits with respect
to the equatorial plane (i.e., orbits evolve towards the
equatorial prograde configuration), whereas radiation re-
action always increases the inclination (i.e., orbits evolve
towards the equatorial retrograde configuration). In the
case of a system composed of a SMBH with mass M �
106M� and a corotating torus with mass Mt & M, the
effect of the torus will be marginally observable by LISA
only if the radius of the torus is as small as rout �
103–104M. However, if the SMBH has a lower mass,
EMRIs will be detectable by LISA at larger distances
from the SMBH, and the effects of a torus will be more
evident. For instance, for a SMBH with M � 105M� and a
corotating torus with outer radius rout � 105M and mass
Mt � 0:1M (Mt � M), the inclination with respect to the
equatorial plane will decrease, due to the hydrodynamic
drag, for orbits with semilatus rectum p * 35M (p *

25M), while the EMRI signal will start being detectable
by LISA already at a distance of � 50M from the SMBH.
Note, however, that unless one considers as the satellite an
intermediate-mass black hole with m� 100M� around a
105M� SMBH (a configuration which may be possible but
about which too little is yet known), considering EMRIs at
such large distances from the SMBH has the obvious
drawback that the amplitude of the gravitational-wave
signal will be proportionally smaller. This will consider-
ably reduce the detection volume, although the decrease in
the event rate could be mitigated by the fact that weak-field
EMRIs are probably more numerous than strong-field
EMRIs, which are the ones accounted for in standard
calculations of event rates.

In general, we expect measurements of the evolution of
the inclination angle in the early phases of EMRIs to be a
potential source of important information about the pres-
ence of thick tori which could not be detected by other
techniques. Moreover, because for any astrophysically
plausible torus configurations the effect of the hydrody-
namic drag becomes rapidly negligible in the very strong-
field region of the SMBH (i.e., p & 5M), the presence of a
torus would not prevent high-precision tests of the Kerr
nature of the SMBH being performed.

Although obtained with a simple model for the torus
(i.e., with a constant specific angular momentum), the
important feature that distinguishes the hydrodynamic
drag from radiation reaction, namely, the decrease of the
inclination angle, cannot be affected by a change of the
specific angular momentum distribution (we recall that ‘
must be increasing with radius for stability). Such a fea-
ture, in fact, is simply due to the conservation of the
momentum of the satellite in the � direction during accre-
tion and to the dynamical friction of the fluid: both effects
force the satellite to smaller inclinations by reducing its �
velocity. However, the calculation of the magnitude of the

hydrodynamic drag and how it compares with radiation
reaction for more general disk models is not
straightforward.

Tori built with increasing distributions of specific angu-
lar momentum, in fact, would have two substantial differ-
ences with respect to those considered here. First, the
separation between the specific angular momentum of the
torus and the Keplerian specific angular momentum will
generally decrease for orbits corotating with the torus, thus
reducing the relative motion between the satellite and the
fluid and consequently the hydrodynamic drag, whereas it
will increase for orbits counterrotating relative to the torus,
thus enhancing the hydrodynamic drag. The magnitude of
this effect depends on the precise angular momentum
distribution considered and rough estimates can be made
assuming a power law for the specific angular momentum,
i.e., ‘=M� �r=M��, with �< 0:5 for the torus to have an
outer radius and a cusp [37,39]. Using the general formulas
reported in Sec. II, it is easy to check that for r between
20M and 50M and prograde orbits, the relative motion
decreases by �20–30% for � � 0:1 and by at least 95%
for � � 0:4 (this significant decrease is due to the fact that
for � � 0:4 the center moves to a radius rcenter � 27M, just
in the middle of the radial interval which we are consider-
ing). Conversely, in the same radial range the increase for
counterrotating orbits is of about 8–10% (30– 45%), for
� � 0:1 (0.4). Second, the density in the inner parts of the
torus will generally decrease. Using again the expressions
in Sec. II, it is easy to check that the density decreases by
about 18% (97%) at r� 20M and by about 11% (90%) at
r� 50M, for � � 0:1 (0.4).

Overall, therefore, the decrease of the inclination angle
due to the hydrodynamic drag could be detectable by LISA
also for nonconstant ‘ tori, especially if ‘ varies slowly
with the radius or, if ‘ varies rapidly with the radius, if the
EMRI is counterrotating relative to the torus.

Finally, let us comment on two further effects that can in
principle occur in the systems considered in this paper.
First, the motion of the satellite will be influenced by the
gravitational attraction exerted by the torus. This is clearly
a conservative effect, and cannot therefore influence the
infall of the satellite towards the SMBH, which is instead
regulated by the dissipative forces (radiation reaction and
hydrodynamic drag). However, this effect can in principle
cause the periastron to advance, thus introducing a phase
shift in the gravitational waveforms. (Note that a similar
advance is caused by the conservative part of the gravita-
tional self-force [62].) To calculate the order of magnitude
of this effect, let us consider for simplicity a thin disk with
outer radius rout, mass MD, and constant surface density,
and a satellite of mass m located on the equatorial plane at
a distance d� rout from the central SMBH, the mass of
which we denote byM. The potential energy of the satellite
due to the gravitational field of the disk can be easily
calculated to be, up to a constant and to leading order,
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 U �
mMDd2

2r3
out

: (70)

This potential energy can be used to compute the
Newtonian periastron precession of the satellite’s orbit
during a revolution [use for instance Eq. (1) of Ref. [63],
chapter 3, exercise number 3]:

 �� � �
3MD�d3

Mr3
out

(71)

for almost circular orbits. Using this equation and the well-
known Newtonian formula for the revolution period, it is
easy to check that, for orbits relevant for LISA, the total
phase shift accumulated in 1 yr is� 2� as long as rout *

104M and M � 105–106M�. Because LISA is not ex-
pected to detect phase lags less than 1 cycle over its life-
time,13 this periastron advance and the consequent phase

shift cannot be observed. On the other hand, for disks or
tori with rout � 103M, this effect could in principle be
marginally visible by LISA (especially if M � 105M�).

A second effect which could in principle affect EMRIs
in the presence of a torus is the spin of the satellite black
hole, which increases due to accretion of the torus material.
The satellite’s spin couples with the orbital angular mo-
mentum as well as with the spin of the SMBH, but its effect
on the motion is negligible over a time scale of 1 yr [64],
unless it is close to its maximal value (in which case it
might be marginally observable) [64].
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