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In this paper, we present topological black holes of third order Lovelock gravity in the presence of

cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric

parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons,

an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat

solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first

law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the

finite action and conserved quantities of these class of solutions by using the counterterm method. We

compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area

law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and

the charge, and compute temperature, angular velocities, and electric potential and show that these

thermodynamic quantities coincide with their values which are computed through the use of geometry.

Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-

canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature

terms has no effect on the stability of the black branes, and they are stable in the whole phase space.

DOI: 10.1103/PhysRevD.77.104025 PACS numbers: 04.40.Nr, 04.20.Jb, 04.70.Bw, 04.70.Dy

I. INTRODUCTION

Over the last few years, several extra-dimensional mod-
els have been introduced in an attempt to deal with the
hierarchy problem. These models can lead to rather unique
and spectacular signatures at Terascale colliders such as
the LHC and ILC. In higher dimensions, it is known that
the Einstein-Hilbert (EH) Lagrangian, R, can only be
regarded as the first order term in an effective action, so
one may on general grounds expect that as one probes
energies approaching the fundamental scale, significant
deviations from EH expectations are likely to appear.
This motivates one to consider the more general class of
gravitational action:

IG ¼ 1

16�

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p

F ðR;R��R
��; R����R

����Þ:

The presence of higher curvature terms can also be seen in
the renormalization of quantum field theory in curved
spacetime [1], or in the construction of low energy effec-
tive action of string theory [2]. Among the higher curvature
gravity theories, the so-called Lovelock gravity is quite
special, whose Lagrangian consist of the dimensionally
extended Euler densities. This Lagrangian is obtained by
Lovelock as he tried to calculate the most general tensor
that satisfies properties of Einstein’s tensor in higher di-
mensions [3]. Since the Lovelock tensor contains deriva-
tives of metrics of order not higher than two, the

quantization of linearized Lovelock theory is free of ghosts
[4]. Thus, it is natural to study the effects of higher curva-
ture terms on the properties and thermodynamics of black
holes.
Accepting the nonlinear terms of the invariants con-

structed by Riemann tensor on the gravity side of the
action, it seems natural to add the nonlinear terms in the
matter action too. Thus, in the presence of an electromag-
netic field, it is worthwhile to apply the action of Born-
Infeld [5] instead of the Maxwell action. In this paper, we
generalize static and rotating black hole solutions of third
order Lovelock gravity in the presence of Maxwell field
[6,7] to the case of these solutions in the presence of
nonlinear electromagnetic fields. Indeed, it is interesting
to explore new black hole solutions in higher curvature
gravity and investigate which properties of black holes are
peculiar to Einstein gravity, and which are robust features
of all generally covariant theories of gravity. The first aim
to relate the nonlinear electrodynamics and gravity has
been done by Hoffmann [8]. He obtained a solution of
the Einstein equations for a pointlike Born-Infeld charge,
which is devoid of the divergence of the metric at the origin
that characterizes the Reissner-Nordström solution.
However, a conical singularity remained there, as it was
later objected by Einstein and Rosen. The spherically
symmetric solutions in Einstein-Born-Infeld gravity with
or without a cosmological constant have been considered
by many authors [9,10], while the rotating solutions of this
theory is investigated in [11]. Also, these kinds of solutions
in the presence of a dilaton field have been introduced in
[12]. The static black hole solutions of Gauss-Bonnet-
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Born-Infeld gravity have been constructed in Ref. [13], and
the rotating solution of this theory has been considered in
[14].

The outline of our paper is as follows. We present the
topological black holes of third order Lovelock gravity in
the presence of Born-Infeld field in Sec. II. In Sec. III, we
calculate the thermodynamic quantities of asymptotically
flat solutions and investigate the first law of thermodynam-
ics. In Sec. IV we introduce the rotating solutions with flat
horizon and compute the thermodynamic and conserved
quantities of them. We also perform a stability analysis of
the solutions both in canonical and grand canonical en-
semble. We finish our paper with some concluding
remarks.

II. TOPOLOGICAL BLACK HOLES

The action of third order Lovelock gravity in the pres-
ence of nonlinear Born-Infeld electromagnetic field is

IG ¼ 1

16�

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p ð�2�þL1 þ �2L2

þ �3L3 þ LðFÞÞ; (1)

where � is the cosmological constant, �2 and �3 are the
second and third order Lovelock coefficients, L1 ¼ R is
just the Einstein-Hilbert Lagrangian,L2 ¼ R����R

���� �
4R��R

�� þ R2 is the Gauss-Bonnet Lagrangian,

L 3 ¼ 2R���	R�	�
R
�


�� þ 8R��
��R

�	
�
R

�

�	

þ 24R���	R�	��R
�
� þ 3RR���	R�	��

þ 24R���	R��R	� þ 16R��R��R
�
�

� 12RR��R�� þ R3 (2)

is the third order Lovelock Lagrangian, and LðFÞ is the
Born-Infeld Lagrangian given as

LðFÞ ¼ 4�2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2�2

s �
: (3)

In the limit � ! 1, LðFÞ reduces to the standard Maxwell
form LðFÞ ¼ �F2, where F�� ¼ @�A� � @�A�. Varying

the action (1) with respect to the metric tensor g�� and

electromagnetic vector field A� the equations of gravita-

tion and electromagnetic fields are obtained as:

Gð1Þ
�� þ�g�� þ �2G

ð2Þ
�� þ �3G

ð3Þ
��

¼ 1

2
g��LðFÞ þ

2F��F
�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F2

2�2

q ; (4)

@�

� ffiffiffiffiffiffiffi�g
p

F��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2�2

q �
¼ 0; (5)

where Gð1Þ
�� is the Einstein tensor, and G

ð2Þ
�� and G

ð3Þ
�� are the

second and third order Lovelock tensors given as [15]:

Gð2Þ
�� ¼ 2ðR��	
R�

�	
 � 2R����R
�� � 2R��R

�
�

þ RR��Þ � 1
2L2g��; (6)

Gð3Þ
�� ¼ �3ð4R
��	R�	��R

�
�
� � 8R
�

��R
�	


�R
�
��	 þ 2R�


�	R�	��R
��


� � R
��	R�	
�R�� þ 8R

���R

�	

�R

�
	

þ 8R�
�
	R


�
��R

	
� þ 4R�


�	R�	��R
�

 � 4R�


�	R�	
�R
�
� þ 4R
��	R�	
�R�� þ 2RR�

	
�R
�	�

þ 8R

���R

�
�R

�

 � 8R�

�
�R


�R

�
� � 8R
�

��R
�

R�� � 4RR


���R
�

 þ 4R
�R�
R�� � 8R


�R
�R
�
�

þ 4RR��R
�
� � R2R��Þ � 1

2
L3g��: (7)

Here we want to obtain the ðnþ 1Þ-dimensional static solutions of Eqs. (4) and (5). We assume that the metric has the
following form:

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2; (8)

where

d�2 ¼
8><
>:

d
21 þ
P

n�1
i¼2

Q
i�1
j¼1 sin

2
jd

2
i k ¼ 1

d
21 þ sinh2
1d

2
2 þ sinh2
1

P
n�1
i¼3

Q
i�1
j¼2 sin

2
jd

2
i k ¼ �1P

n�1
i¼1 d�2

i k ¼ 0

9>=
>;

M.H. DEHGHANI, N. ALINEJADI, AND S.H. HENDI PHYSICAL REVIEW D 77, 104025 (2008)

104025-2



represents the line element of an ðn� 1Þ-dimensional hy-
persurface with constant curvature ðn� 1Þðn� 2Þk and
volume Vn�1.

Using Eq. (5), one can show that the vector potential can
be written as

A� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ
2n� 4

s
q

rn�2
F ð�Þ�0

�; (9)

where q is an integration constant which is related to the
charge parameter and

� ¼ ðn� 1Þðn� 2Þq2
2�2r2n�2

:

In Eq. (9) and throughout the paper, we use the following
abbreviation for the hypergeometric function

2F1

��
1

2
;
n� 2

2n� 2

�
;

�
3n� 4

2n� 2

�
;�z

�
¼ F ðzÞ: (10)

The hypergeometric function F ð�Þ ! 1 as � ! 0 (� !
1) and therefore A� of Eq. (9) reduces to the gauge

potential of Maxwell field. One may show that the metric
function

fðrÞ ¼ kþ r2

�
ð1� gðrÞ1=3Þ; (11)

gðrÞ ¼ 1þ 3�m

rn
� 12��2

nðn� 1Þ
�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p � �

2�2

þ ðn� 1Þ�
ðn� 2Þ F ð�Þ

�
(12)

satisfies the field equations (4) in the special case

�2 ¼ �

ðn� 2Þðn� 3Þ ; �3 ¼ �2

72ðn�2
4 Þ ;

where m is the mass parameter. Solutions of Gauss-Bonnet
gravity are not real in the whole range 0 � r <1 and one
needs a transformation to make them real [14,16]. But,
here the metric function fðrÞ is real in the whole range 0 �
r <1.

In order to consider the asymptotic behavior of the
solution, we put m ¼ q ¼ 0 where the metric function
reduces to

fðrÞ ¼ kþ r2

�

�
1�

�
1þ 6��

nðn� 1Þ
�
1=3

�
: (13)

Equation (13) shows that the asymptotic behavior of the
solution is AdS or dS provided �< 0 or �> 0. The case
of asymptotic flat solutions (� ¼ 0) is permitted only for
k ¼ 1.
As in the case of black holes of Gauss-Bonnet-Born-

Infeld gravity [13,14], the above metric given by Eqs. (8),
(11), and (12) has an essential timelike singularity at r ¼ 0.
Seeking possible black hole solutions, we turn to looking
for the existence of horizons. The event horizon(s), if there
exists any, is (are) located at the root(s) of grr ¼ fðrÞ ¼ 0.
Denoting the largest real root of fðrÞ by rþ, we consider
first the case that fðrÞ has only one real root. In this case
fðrÞ is minimum at rþ and therefore f0ðrþÞ ¼ 0. That is,

ðn� 1Þk½3ðn� 2Þr4þ þ 3ðn� 4Þk�r2þ þ ðn� 6Þk2�2�
þ 12r6þ�2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �þ
p Þ � 6�r6þ ¼ 0: (14)

One can find the extremal value of mass, mext, in terms of
parameters of metric function by finding rþ from Eq. (14)
and inserting it into equation fðrþÞ ¼ 0. Then, the metric
of Eqs. (8), (11), and (12) presents a black hole solution
with inner and outer event horizons provided m>mext, an
extreme black hole form ¼ mext [temperature is zero since
it is proportional to f0ðrþÞ] and a naked singularity other-
wise. It is a matter of calculation to show that mext for k ¼
0 becomes

mext ¼ 2ðn� 1Þq2ext
n

�
�ð�� 4�2Þ

2ðn� 1Þðn� 2Þ�2q2ext

�ðn�2Þ=ð2n�2Þ

� F

�
�ð�� 4�2Þ

4�4

�
: (15)

The Hawking temperature of the black holes can be
easily obtained by requiring the absence of conical singu-
larity at the horizon in the Euclidean sector of the black
hole solutions. One obtains

Tþ ¼ f0ðrþÞ
4�

¼ ðn� 1Þk½3ðn� 2Þr4þ þ 3ðn� 4Þk�r2þ þ ðn� 6Þk2�2� þ 12r6þ�2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p Þ � 6�r6þ
12�ðn� 1Þrþðr2þ þ k�Þ2 : (16)

It is worthwhile to note that Tþ is zero for m ¼ mext.

III. THERMODYNAMICS OF ASYMPTOTICALLY
FLAT BLACK HOLES FOR k ¼ 1

In this section, we consider the thermodynamics of
spherically symmetric black holes which are asymptoti-
cally flat. This is due to the fact that only the entropy of
asymptotically black holes of Lovelock gravity is well

known [17]. Usually entropy of black holes satisfies the
so-called area law of entropy which states that the black
hole entropy equals one-quarter of the horizon area [18].
One of the surprising and impressive features of this area
law of entropy is its universality. It applies to all kinds of
black holes and black strings of Einstein gravity [19].
However, in higher derivative gravity the area law of
entropy is not satisfied in general [20]. It is known that
the entropy of asymptotically flat black holes of Lovelock
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gravity is [17]

S ¼ 1

4

X½ðn�2Þ=2�

k¼1

k�k

Z
dn�1x

ffiffiffi
~g

p
~Lk�1; (17)

where the integration is done on the ðn� 1Þ-dimensional
spacelike hypersurface of the Killing horizon, ~g�� is the

induced metric on it, ~g is the determinant of ~g��, and
~Lk is

the kth order Lovelock Lagrangian of ~g��. Thus, the

entropy for asymptotically flat black holes in third order
Lovelock gravity is

S ¼ 1

4

Z
dn�1x

ffiffiffi
~g

p ð1þ 2�2
~Rþ 3�3ð ~R���	

~R���	

� 4 ~R��
~R�� þ ~R2ÞÞ; (18)

where ~R���� and ~R�� are Riemann and Ricci tensors and ~R

is the Ricci scalar for the induced metric ~gab on the ðn�
1Þ-dimensional horizon. It is a matter of calculation to
show that the entropy of black holes is

S ¼ Vn�1

4

�
r4þ þ 2ðn� 1Þ

n� 3
�r2þ þ n� 1

n� 5
�2

�
rn�5þ : (19)

The charge of the black hole can be found by calculating
the flux of the electric field at infinity, yielding

Q ¼ Vn�1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

2

s
q: (20)

The electric potential �, measured at infinity with respect
to the horizon, is defined by

� ¼ A��
�jr!1 � A��

�jr¼rþ ; (21)

where � ¼ @=@t is the null generator of the horizon. One
finds

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ
2ðn� 2Þ

s
q

rn�2þ
F ð�þÞ: (22)

The Arnowitt-Deser-Misner (ADM) mass of black hole
can be obtained by using the behavior of the metric at
large r. It is easy to show that the mass of the black hole is

M ¼ Vn�1

16�
ðn� 1Þm: (23)

We now investigate the first law of thermodynamics.
Using the expression for the entropy, the charge, and the
mass given in Eqs. (19), (20), and (23), and the fact that
fðrþÞ ¼ 0, one obtains

MðS;QÞ ¼ ðn� 1Þ
16�

�
2rnþ

nðn� 1Þ
�
2�2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ=

p

þ ðn� 1Þ=
ðn� 2Þ F ð=Þ

�
��

�

� rn�2þ þ �rn�4þ � �2rn�6þ
3

�
; (24)

where

= ¼ 16�2Q2

�2r2n�2þ
:

In Eq. (24) rþ is the real root of Eq. (19) which is a
function of S. One may then regard the parameters S and
Q as a complete set of extensive parameters for the mass
MðS;QÞ and define the intensive parameters conjugate to
them. These quantities are the temperature and the electric
potential

T ¼
�
@M

@S

�
Q
; � ¼

�
@M

@Q

�
S
: (25)

Computing @M=@rþ and @S=@rþ and using the chain rule,
it is easy to show that the intensive quantities calculated by
Eq. (25) coincide with Eqs. (16) and (22), respectively.
Thus, the thermodynamic quantities calculated in Eqs. (16)
and (22) satisfy the first law of thermodynamics,

dM ¼ TdSþ�dQ: (26)

IV. THERMODYNAMICS OF ASYMPTOTICALLY
ADS ROTATING BLACK BRANES WITH FLAT

HORIZON

Now, we want to endow our spacetime solution (8) for
k ¼ 0 with a global rotation. These kinds of rotating
solutions in Einstein gravity have been introduced in
[21]. In order to add angular momentum to the spacetime,
we perform the following rotation boost in the t��i

planes

t � �t� ai�i; �i � ��i � ai
l2
t (27)

for i ¼ 1 . . . ½n=2�, where ½x� is the integer part of x. The
maximum number of rotation parameters is due to the fact
that the rotation group in nþ 1 dimensions is SOðnÞ and
therefore the number of independent rotation parameters is
½n=2�. Thus the metric of an asymptotically AdS rotating
solution with p � ½n=2� rotation parameters for flat hori-
zon can be written as

ds2 ¼�fðrÞ
�
�dt�Xp

i¼1

aid�i

�
2þ r2

l4
Xp
i¼1

ðaidt��l2d�iÞ2

þ dr2

fðrÞ�
r2

l2
Xp
i<j

ðaid�j�ajd�iÞ2

þ r2
Xn�1

i¼pþ1

d�i; (28)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

k
i a

2
i =l

2
q

. Using Eq. (5), one can show

that the vector potential can be written as
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A� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ
2n� 4

s
q

rn�2
F ð�Þð��0

� � �i
�aiÞ

ðno sum on iÞ:
(29)

One can obtain the temperature and angular momentum
of the event horizon by analytic continuation of the metric.
One obtains

Tþ ¼ f0ðrþÞ
4��

¼ rþ
2ðn� 1Þ�� ð2�2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �þ
p Þ ��Þ;

(30)

�i ¼ ai
�l2

; (31)

where �þ ¼ �ðr ¼ rþÞ. Next, we calculate the electric
charge and potential of the solutions. The electric charge
per unit volume Vn�1 can be found by calculating the flux
of the electric field at infinity, yielding

Q ¼ 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

2

s
�q: (32)

Using Eq. (21) and the fact that � ¼ @t þP
k
i �i@�i

is the

null generator of the horizon, the electric potential � is
obtained as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ
2ðn� 2Þ

s
q

�rn�2þ
F ð�þÞ: (33)

A. Conserved quantities of the solutions

Here, we calculate the action and conserved quantities of
the black brane solutions. In general the action and con-
served quantities of the spacetime are divergent when
evaluated on the solutions. A systematic method of dealing
with this divergence for asymptotically AdS solutions of
Einstein gravity is through the use of the counterterms
method inspired by the anti-de Sitter conformal field the-
ory (AdS/CFT) correspondence [22]. For asymptotically
AdS solutions of Lovelock gravity with flat boundary,

R̂abcdð�Þ ¼ 0, the finite action is [7,23]

I ¼ IG þ 1

8�

Z
@M

dnx
ffiffiffiffiffiffiffiffi��

p fL1b þ �2L2b þ �3L3bg

þ 1

8�

Z
@M

dnx
ffiffiffiffiffiffiffiffi��

p �
n� 1

L

�
; (34)

where L is

L ¼ 15l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

5l2 þ 9�� l2�2 � 4l2�
; (35)

� ¼
�
1� 3�

l2

�
1=3

: (36)

One may note that L reduces to l as� goes to zero. The first

integral in Eq. (34) is a boundary term which is chosen
such that the variational principle is well defined. In this

integral L1b ¼ K, L2b ¼ 2ðJ � 2Ĝð1Þ
abK

abÞ and
L3b ¼ 3ðP� 2Ĝð2Þ

abK
ab � 12R̂abJ

ab þ 2R̂J

� 4KR̂abcdK
acKbd � 8R̂abcdK

acKb
eK

edÞ;
where ��� and K are induced metric and trace of extrinsic

curvature of boundary, Ĝð1Þ
ab and Ĝð2Þ

ab are the n-dimensional

Einstein and second order Lovelock tensors [Eq. (6)] of the
metric �ab and J and P are the trace of

Jab ¼ 1

3
ð2KKacK

c
b þ KcdK

cdKab � 2KacK
cdKdb

� K2KabÞ; (37)

and

Pab ¼ 1

5
f½K4 � 6K2KcdKcd þ 8KKcdK

d
eK

ec

� 6KcdK
deKefK

fc þ 3ðKcdK
cdÞ2�Kab

� ð4K3 � 12KKedK
ed þ 8KdeK

e
fK

fdÞKacK
c
b

� 24KKacK
cdKdeK

e
b þ ð12K2 � 12KefK

efÞ
� KacK

cdKdb þ 24KacK
cdKdeK

efKbfg: (38)

Using Eqs. (1) and (34), the finite action per unit volume
Vn�1 can be calculated as

I ¼ � 1

Tþ

�
rnþ

16�l2
� rnþ�2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �þ
p � 1Þ

4nðn� 1Þ�

þ ðn� 1Þq2
8n�rðn�2Þ

þ
F ð�þÞ

�
: (39)

Using the Brown-York method [24], the finite energy-
momentum tensor is

Tab ¼ 1

8�

�
ðKab � K�abÞ þ 2�2ð3Jab � J�abÞ

þ 3�3ð5Pab � P�abÞ þ n� 1

L
�ab

�
; (40)

and the conserved quantities associated with the Killing
vectors @=@t and @=@�i are

M ¼ 1

16�
mðn�2 � 1Þ; (41)

Ji ¼ 1

16�
n�mai; (42)

which are the mass and angular momentum of the solution.
Now using Gibbs-Duhem relation

S ¼ 1

T

�
M�Q��Xk

i¼1

�iJi

�
� I; (43)

and Eqs. (33), (39), (41), and (42) one obtains
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S ¼ �

4
rn�1þ (44)

for the entropy per unit volume Vn�1. This shows that the
entropy obeys the area law for our case where the horizon
is flat.

B. Stability of the solutions

Calculating all the thermodynamic and conserved quan-
tities of the black brane solutions, we now check the first
law of thermodynamics for our solutions with flat horizon.
We obtain the mass as a function of the extensive quantities
S, J, and Q. Using the expression for charge mass, angular
momenta, and entropy given in Eqs. (32), (41), (42), and
(44) and the fact that fðrþÞ ¼ 0, one can obtain a Smarr-
type formula as

MðS; J; QÞ ¼ ðnZ� 1ÞJ
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðZ� 1Þp ; (45)

where J ¼ jJj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

k
i J

2
i

q
and Z ¼ �2 is the positive real

root of the following equation:

Z1=2ðn�1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Z� 1

p ¼ ½4l2�2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p Þ þ nðn� 1Þ�Sn=ðn�1Þ

ðn� 1Þ�lJ

þ
4�lQ2F ð�2Q2

�2S2
Þ

ðn� 2ÞJð4SÞðn�2Þ=ðn�1Þ : (46)

One may then regard the parameters S, Ji’s, and Q as a
complete set of extensive parameters for the mass

MðS; J; QÞ and define the intensive parameters conjugate
to them. These quantities are the temperature, the angular
velocities, and the electric potential

T ¼
�
@M

@S

�
J;Q

; �i ¼
�
@M

@Ji

�
S;Q

; � ¼
�
@M

@Q

�
S;J
:

(47)

Straightforward calculations show that the intensive quan-
tities calculated by Eq. (47) coincide with Eqs. (30), (31),
and (33). Thus, these quantities satisfy the first law of
thermodynamics:

dM ¼ TdSþXk
i¼1

�idJi þ�dQ:

Finally, we investigate the local stability of charged
rotating black brane solutions of third order Lovelock
gravity in the presence of nonlinear electrodynamic
Born-Infeld field in the canonical and grand canonical
ensembles. In the canonical ensemble, the positivity of
the heat capacity CJ;Q ¼ Tþ=ð@2M=@S2ÞJ;Q and therefore

the positivity of ð@2M=@S2ÞJ;Q is sufficient to ensure the

local stability. Using the fact that
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2
;
3n� 4

2n� 2
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5n� 6

2n� 2

�
;�z

�

¼ ð3n� 4Þ
ðn� 1Þz

�
F

�
�2Q2

�2S2

�
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�
;

it is easy to show that

@2M

@S2
¼ 2½ðn� 1Þðn� 2Þ2q2 ��rð2n�2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p þ 2�2rð2n�2Þ
þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �þ
p � 1Þ�

ðn� 1Þ2��2rð3n�4Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p

� 8ð�2 � 1Þ�ð�r2n�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p ðnðn�1Þ
2 þ 2�2l2Þ þ ðn� 1Þðn� 2Þ�l2q2 þ 2�3l2rð2n�2Þ

þ Þ2
�ml2�2�2ðn� 1Þ4ð4�2 þ 1Þð1þ �þÞrð4n�6Þ : (48)

Both of the two terms of Eq. (48) are positive, and therefore the condition for thermal equilibrium in the canonical
ensemble is satisfied.

In the grand canonical ensemble, the positivity of the determinant of the Hessian matrix ofMðS;Q; JÞ with respect to its
extensive variables Xi, H

M
XiXj

¼ ð@2M=@Xi@XjÞ, is sufficient to ensure the local stability. It is a matter of calculation to

show that the determinant of HM
S;Q;J is:

jHM
SJQj ¼

64�ð2ðn� 2Þ�2�þ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p þ 2�2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p � 1ÞÞ
ðn� 2Þðn� 1Þ3ml2�6r2ðn�2Þ

þ ½ðn� 2Þ�2 þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ

p F ð�þÞ þ 8ðn� 1Þ�
rþ

Tþ: (49)

Equation (49) shows that the determinant of the Hessian
matrix is positive, and therefore the solution is stable in the
grand canonical ensemble too. The stability analysis given
here shows that the higher curvature and nonlinear
Maxwell terms in the action have no effect on the stability
of black holes with flat horizon, and these kinds of black

holes are thermodynamically stable as in the case of toroi-
dal black holes of Einstein-Maxwell gravity [25]. This
phase behavior is also commensurate with the fact that
there is no Hawking-Page transition for a black object
whose horizon is diffeomorphic to Rp and therefore the
system is always in the high temperature phase [26].

M.H. DEHGHANI, N. ALINEJADI, AND S.H. HENDI PHYSICAL REVIEW D 77, 104025 (2008)

104025-6



V. CLOSING REMARKS

In this paper we considered both the nonlinear scalar
terms constructing from the curvature tensor and electro-
magnetic field tensor in gravitational action, which are on
similar footing with regard to the string corrections on
gravity and electrodynamic sides. We presented static to-
pological black hole solutions of third order Lovelock
gravity in the presence of Born-Infeld gravity, which are
asymptotically AdS for negative cosmological constant, dS
for positive �. For the case of solutions with positive
curvature horizon (k ¼ 1), one can also have asymptoti-
cally flat solutions, provided � ¼ 0. The topological solu-
tions obtained in this paper may be interpreted as black
holes with two inner and outer event horizons for m>
mext, extreme black holes for m ¼ mext or naked singular-
ity otherwise. We found that these solutions reduce to the
solutions of Einstein-Born-Infeld gravity as the Lovelock
coefficients vanish, and reduce to the solutions of third
order Lovelock gravity in the presence of Maxwell field as
� goes to infinity [6]. We consider thermodynamics of
asymptotically flat solutions and found that the first law
of thermodynamics is satisfied by the conserved and ther-
modynamic quantities of the black hole. We also consider

the rotating solution with flat horizon and computed the
action and conserved quantities of it through the use of
counterterm method. We found that the entropy obeys the
area law for black branes with flat horizon. We obtained a
Smarr-type formula for the mass of the black brane as a
function of the entropy, the charge, and the angular mo-
menta, and found that the conserved and thermodynamics
quantities satisfy the first law of thermodynamics. We also
studied the phase behavior of the ðnþ 1Þ-dimensional
rotating black branes in third order Lovelock gravity and
showed that there is no Hawking-Page phase transition in
spite of the angular momenta of the branes and the pres-
ence of a nonlinear electromagnetic field. Indeed, we cal-
culated the heat capacity and the determinant of the
Hessian matrix of the mass with respect to S, J, and Q of
the black branes and found that they are positive for all the
phase space, which means that the brane is locally stable
for all the allowed values of the metric parameters.
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