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Hawking radiation of charged Dirac particles from a Kerr-Newman black hole
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Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using
Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time
are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the
Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out,
which can be treated as an explanation to the information loss paradox. The result can also be treated as a
quantum-corrected radiation temperature, which is dependent on the black hole background and the
radiation particle’s energy, angular momentum, and charge.
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L. INTRODUCTION

Hawking’s astonishing discovery that a black hole radi-
ates black body spectrum, which takes nothing out of the
black hole, has been a great development in the research of
black hole thermodynamics [1,2]. However, it also sets up
a disturbing and difficult problem about information con-
servation during black hole evaporation, which leads to the
so-called “‘information loss paradox” and the violation of
the underlying quantum unitary theory [3-6]. Since
Hawking’s significant discovery was published in 1970s,
there have been many works to solve the two problems.
From 2000 to now, at least three kinds of methods have
been proposed about the issue.

(1) In 2000, Parikh and Wilczek proposed a semiclas-
sical approach [7-10] to calculate the emission rate
by treating Hawking radiation as a tunneling process
and using WKB approximation. The barrier is cre-
ated by the outgoing particles themselves. When
self-gravitation of particles is considered, a cor-
rected spectrum is given. After that, Zhang and
Zhao extended this method to more general circum-
stances [11-15]. All of them can obtain the conclu-
sion that the spectrum is no longer precisely thermal
and some information can be taken out of the black
hole. A possible explanation for information loss
paradox and the loss of quantum unitary theory
can be obtained.

(2) Marco Angheben et al proposed another method to
investigate Hawking radiation [16—18]. By calculat-
ing the classical action / of emitting particles, which
satisfies the relativistic Hamilton-Jacobi equation,
the emission rate can also be obtained. In this
method, the same conclusion as the first method
can be drawn.

(3) Recently, Liu has proposed a new method about this
topic [19]. Using the Damour-Ruffini method [20],
Liu has investigated Hawking radiation of massive
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Klein-Gorden particles from a Reissner-Nordstrom
black hole. When energy conservation and the par-
ticles’ backreaction are taken into account, the same
conclusion as the previous works can be obtained.
We will extend Liu’s work to charged Dirac particles’
Hawking radiation from a Kerr-Newman black hole. The
original Damour-Ruffini method can give a proof to the
fact that black holes have thermal radiation only using
relativistic quantum mechanics in curved space-time.
Neither the thermal balance between the black hole inside
and outside, nor the collapse of the black hole is considered
there. The Kerr-Newman black hole is a more general
background to be investigated. Moreover, the massive,
charged Dirac radiation particle with any angular momen-
tum will be calculated. This is more complex than before.
According to some recent papers [21-23], the result can
also be treated as Hawking radiation at a quantum-
corrected temperature, which is dependent on not only
the black hole background, but also the radiation particle’s
energy, angular momentum, and charge.

II. DIRAC EQUATIONS IN A KERR-NEWMAN
SPACE-TIME

The line element of the Kerr-Newman black hole can be
written as

2Mr — Q2
(1 32

+ [(r2 +a%) +

2
ds? = — )dﬂ + %a’rz + 32d6?

2Mr — Q?)a’*sin’0
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dide, (D

ils.inzb’dgo2

22Mr — Q?)asin?6

_ 52
where A = 12 — 2Mr + a*> + Q2, 32 = r? + d’cos?0, in
which M, Q, a are the total mass, total charge, and angular

momentum per unit mass of the black hole, respectively.
The event horizon r. is given by

r« =M= \/MZ —a? - Q> 2)
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In a curved space-time, Dirac equations of a charged particle’s dynamics in Newman-Penrose formalism are given as
[24,25]

(D+s—p+ieﬁ-Z)Fl+(5+7r—a+iefi-nz1)F2=i\'l;—%G1,
(A+M—y+ieﬁ-ﬁ)F2+(5+ﬁ—r+ieﬁ-ﬁ1)F1=i$—%G2,

I . (3)
(D+e—p+ieA- )G, — (6 +7—a+ieA-mG,=i—=F,

A+p—y+ieA-D)G, —(5+B—7+ieA-m)G,=i
where . and e are rest mass and charge of the particle, respectively, and F;, F,, G, and G, are the four components of the

wave functions. D, A, 5, 8 are usual differential operators; «, B3, v, €, p, T, i, T are spin coefficients. They are given as
following

1
a = z(l’u;,,n'“r?z” — my,,,m*m’), p =1, ,m'm”, B = E(l’u;,,n”mV — my,,,m*m’),
— M TV — y78 2 A M 1,V — A M a V _1 My MLV (4)
= —n,,m"l, y = E(lw,n n’ —m,.,m*n”), M= —n,.,mm’, e = E(l#;,,n "= m,.,m*l"),
T =1,,m"n”, D = 1*9,, A =n*d,, 6 = mta,, o =mhd,;
|

A, 1is the four-dimensional electromagnetic potential. The contravariant forms of the basis vectors are

Since the electromagnetic field of the Kerr-Newman black 1

hole is axially symmetric, the coordinate components of * = K(r2 + a2 A, 0, a),

A, are irrelevant to the coordinates ¢ and ¢. They are

1
2 n* = 2—22(r2 + a2 —A, 0, a), o
Or Qrasin“0 1 i
Ay = — =, A=A, =0, Ay = ——i—. =_— [(igqi -
0 2 1 2 3 S2 mt \/ii (m sind, 0, 1, sinﬁ)’
)

1 i
o o= _ [ —igqi 1 ——
m \/52* ( iasing, 0, 1, sinﬁ)’

where 3. = r + iacosf and 3 = r — ia cos®.

Because (£)* and (%)“ are Killing vector fields in Kerr-
Newman space-time, we can put the four components of
the wave function as following

For a description of Kerr-Newman space-time in a
Newman-Penrose formalism, we first need to choose a
null tetrad frame. We can choose it as

1 . .
= K(A, —32,0, —aAsin’6), Fy = e @=m)(r — iacos6) ' f,(r, 0),
1 F, = —i(wt—mo) - 0),
n, = 2—22(A, 32,0, —aAsin?0), 27 ¢€ _ falr, ) 8)
) (©6) G, = e i@ me)e (1, 6),
m, = E(ia sind, 0, =22, —i(r* + a?)sinf), G, = e @ mO(r + i cos) ' g,(r, 0).
_ 1 o 5 .o Ny After calculating differential operators and spin coeffi-
my = Nk (—iasing, 0, =32, i(r* + a*) sinf). cients in Egs. (4) by using Egs. (6) and (7), we can obtain
the following equations by putting Egs. (4)—(8) into
Eq. (3):
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(-5 5o
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where K = (r? + a®)w — am — eQr, ¢ = aw sinf — 2,

smt‘)
By separating variables as
J1(r, 0) = R_(1)2)(r)S—(1/2(6) = R(r)S(6),
fo(r, 0) = Ry (1/2(r)S11/2)(6), (10)
81(r, 0) = R (12(r)S_(1/2)(0),
82(r, 0) = R_(12(1)S 4 (1/2)(0),

we can get the decoupled Dirac equations. R_; (1), i.e.,
R(r) and R (; /) (r), represent outgoing and ingoing waves,
respectively. We are only interested in the radial outgoing
wave equation, that is

N (\/—dR) ﬂd_R_I_I:Kz—l-i(r—M)K

dr A+iwr dr A
K
—2iwr + ieQ — 'u— — urr? - Az]R = 0.
A+iur

III. TORTOISE COORDINATE
TRANSFORMATION AND ANALYTIC EXTENSION

Tortoise coordinate transformation can be given as

r« =r+

ﬁ_:—@[@/[” — %QZ) ln%
- (Mr_ - %Qz)lnr :_“]

1 r—ry 1 r—r_

=r+ In In , 12
’ 2K, . ry 2K _ f r_ (12)

where k. = then we have

2(2 Z)a

dr, = dr. (13)

Then, the radial function Eq. (11) in the tortoise coor-
dinate system can be written as

K
A
iK 1 1 1
9, — — ——|dy + g+ = cotl = —(iuor — apmgcosd)f,,
( A)gz \/Q(e q 3 )81 \/E(MO Mo )f2
K
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At the horizon r = r,, Eq. (14) becomes
d’R dR
—(ry —M)(F2 + a®)—

dr? dr.,
+[K? + iK(r. — M)]R =0, (15)

(r2 + d®)?*—

which is a wave equation. Its solution is

R = ei(w—jﬂ—evo)r* — ei(a)—wo)r* (16)

where wy = jQ + eV, ) = T = Vo=

() is the angular velocity of the horizon and VO is the static
electropotential of the horizon where 6 is equal to O or 7.
Therefore, the radial solution can be written as

2 + >, in which

— ,oiwtti(w—wy)r.
\Ifw =¢ ( 0) *

9’

where ““ +” corresponds to the outgoing wave and *“ —
represents the ingoing wave.
Letting 7 = “’;‘”" 1+, the radial solution becomes V',

e 0+ 7 Using the advanced Eddington coordinate v =
t + 7, in which the metric is well behaved and analytic over
the whole coordinate range 0 < r < +00, —00 < v < +00
including 7., the ingoing and outgoing waves are sepa-
rately

Win = ¢~iov, (17)

\Pg}" — e—iwv+i2(w—w0)r*' (18)

While Eq. (17) corresponds to a wave purely ingoing on r
and can be extended inside r < r, Eq. (18) represents an
outgoing wave and has an infinite number of oscillations as
r— r, and therefore cannot be straightforwardly ex-
tended to the region inside r,. We will in the following
use and generalize to analytic curved spaces the well-
known result of flat-space relativistic wave theories: The

104021-3



SHIWEI ZHOU AND WENBIAO LIU

wave function ®(x) describing a particle state (positive
frequencies) can be analytically extended to complex
points of the form z = x + iy if y lies in the past cone;
similarly, for an antiparticle state (negative frequencies) y
has to lie in the future cone.

Since in advanced Eddington coordinates the vector % is
everywhere null and past-directed, the prescription r —
r — i0 will yield the unique continuation of Eq. (17) de-
scribing an antiparticle state. According to quantum field
theory, the ingoing negative frequency antiparticle is just
the outgoing positive frequency particle. Although Eq. (18)
has singularity on the horizon and therefore cannot be
extended straightforwardly to the region inside the horizon,
we can extend the outgoing wave Eq. (18) into the horizon
and yield the ingoing negative frequency antiparticle by
turning the (—r) angle through the negative half complex
plane. Let (r — r.) —| r—ry | e = (ry — r)e”"; the
outgoing wave function inside and outside of the horizon
are respectively [20]

YOU(p < p,) = e 00(p, — p)i/k )0 w0) glmw—wo)/i),

a +e; e )r;
]lQ +eV,0—]l (Q z) z+’ r;
++a

I+
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and
\I,(;ul(r > I”+) — e*iwv(r _ r+)(i/K+)(w7w0).

Therefore, thinking of Sannan’s work in Ref. [26], the
emission rate at the horizon is given by

WUty > r, )

Fo 1) 17 (2mw—wo)/x))
Vot(r <ry)

T =

19)

IV. BACKREACTION OF THE RADIATION

Now we consider that the emitting particles have back-
reaction on the space-time. When a particle with energy
w;, charge ¢;, and angular momentum j; comes out of the
black hole, M should be substituted by (M — w;), Q should
be substituted by (Q — ¢;), and a should be substituted by
a = %’ then
wi))/ Ki+

[; = e72m(oi= (20)

where

— (M~ w) = \/<M — WP —(Q—e) - (M“—_’)Z

M—a),-

iy —TI;—

YM = )% = (Q — e, — (F=?

Ki+

AR () O P Qe G + G

For many particles’ emission, thinking that they radiate one by one, we have

(—27(w;=wio))/ Kki+)
r= ]‘[r s T @1
If the emission is regarded as a continuous procession, the sum in Eq. (21) should be substituted by integration
[ =27 Jdo'~'aj~vide)/x',) _ e 27A (22)
where
_ [da) — Q'dj' — Vide
K
[ (M = ) +(M = 02 = (Q = &P = (FEDPP + GEh?
(000 V1 = P = (Q = &) — (Rl
oog (Q — )M — &) +4/(M — &P — (0~ &P — (IP)
_ M—w dil — \/ de'. (23)
VM = @7 = (Q — ¢ — Gty VM — P = (Q — &) — Gty

To make the calculation more simple, we do not need to do the integration directly. Instead we work on it in the
following way: making use of the entropy S of the black hole satisfying

1
S = ZA = m(r} + a?),

(24)
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where A is the area of the black hole horizon, and we can easily obtain that

AS=al(r'? +a?) — (2 + a?)]

= 72(M — ©)* = (Q — ¢)? + 2(M — W (M — ©P — (Q — e — a® —2M* + Q> — 2My|M? — Q% — o],

(25)
in which AS = S(M — 0, Q — ¢,a’) — S(M, Q, a) is the difference between the entropies of the black hole before and

after the emission. Then we have

aps) (M~ w)+ J — 0P — (@ — o) — (LdPy + ey
oo VM = w) = (0 — e — (ly ’
A(AS) (Ma 1)2
a7 J 0P (0o - =i (26)
a(AS) _ (Q —e)[(M — w) + \/(M — a,)Z (0 —e) — (Mai ,)2]
" 1 = 0P — (0~ ep — G

Comparing Eq. (23) with Eq. (26), we find that the
integration in Eq. (23) satisfies the total differential condi-
tion. So Eq. (23) can be calculated out as following

A— 1 flwe B(AS) 8(A'S) djl + 8(AS)d ,
27 Jooo Jo’ aj' de’
1 1
= - AS)=——A 2

so the emitting rate I' is given by I' = 5.

V. CONCLUSIONS AND DISCUSSIONS

Following Liu’s work [19], we calculated charged Dirac
particles’ Hawking radiation from a Kerr-Newman black
hole using the improved Damour-Ruffini method. In this
method, using the relativistic quantum mechanics in
curved space-time, we can study not only the static and
stationary black holes, but also dynamical ones.
Furthermore, this method can be used for both bosons
and fermions. In the 1980s, Zhao, Gui and Liu [27] proved
that Dirac particles radiate thermally in Kerr-Newman
space-time. In this paper, when energy conservation,
charge conservation, angular momentum conservation,
and the backreaction of emitting particles to the space-
time are taken into account, we have concluded that the
spectrum is not accurately thermal. To compare with the
purely thermal spectrum, by expanding the emission rate I"
in w, e, and j, we have

I = 25 = g~ Blo—wy)+o(we,))’ (28)

It is easy to find that the leading-order term gives the
Boltzman factor, and the higher-order terms of w, e, and

j are a deviation from a purely thermal spectrum. Some
information can be taken out of the black hole with the
corrected spectrum and an explanation to information loss
paradox can be obtained. The underlying unitary theory
will possibly be satisfied too.

Actually, we can treat Eq. (28) in another way. In
Refs. [21-23], the modified surface gravity and tempera-
ture due to one-loop backreaction effects are given for the
most simple Schwarzschild black hole. The results for a
Schwarzschild black hole are k(M) = ro(M)(1 + ;) and
T(M) = To(M)(1 + 55). Thinking of this modification
idea, we can change Eq. (28) into the following:

[ = ¢ Blo—w)+o(we))} — p=[B—(o(w.ej))/(@=w)lw—w)

= e‘ﬁ[l —(o(w,e.j)*)/(B(w —wo))]((u—wo)‘ (29)

So, we can treat

o(w, e, j)? ]
,B(w - wo)

as an inverse quantum-corrected temperature. After some
calculation, we find that this expression is not consistent
with Refs. [21-23] in detail in a simple way because the
corrections in prior references are not dependent on the
radiation mass, charge and angular momentum, but we can
see they are all something about corrected temperature.
Maybe this should be the clue for people to extend the
perfect black hole thermodynamics to general black hole
thermodynamics. This is just what we will investigate in
depth in the future.

Although we obtained the same conclusion as Zhang’s
work in [11], there are some differences between the two
methods. First, Zhang’s work is the development of
Parikh’s tunneling method. The dragging coordinate sys-
tem is used because the event horizon and the infinite red-

p=p1- (30)
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shift surface coincide with each other in this coordinate
system, which is necessary so that the WKB approximation
can be used. In our work, we do not need to use the
dragging coordinate system. Second, in Zhang’s method,
to conserve the symmetry of the space-time, the particle
should still be an ellipsoid shell during the tunneling
process, which means a should be taken as a constant.
However, we do not need to do the assumption and sub-

stitute a with a’ = %";{ )

PHYSICAL REVIEW D 77, 104021 (2008)
ACKNOWLEDGMENTS

We would like to give great thanks to Professor Zheng
Zhao for helpful discussions. We would also like to thank
the referees of this paper for the comments which were
very helpful for us to improve the presentation. This re-
search is supported by the National Natural Science
Foundation of China (Grant No. 10773002) and the
National Basic Research Program of China (Grant
No. 2003CB716302).

[1] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[2] S.W. Hawking, Nature (London) 248, 30 (1974).

[3] S.W. Hawking, Phys. Rev. D 72, 084013 (2005).

[4] J. Preskill, arXiv:hep-th/9209058.

[51 S.W. Hawking, in 17th International Conference on
General Relativity and Gravitation, Dublin, 2004, edited
by P. Florides, B. Nolan, and A. Ottewil (World Scientific,
Singapore, 2005).

[6] C.G. Callan and J. M. Maldacena, Nucl. Phys. B472, 591
(1996); arXiv:hep-th/9602043.

[71 M.K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042
(2000).

[8] M.K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004).

[91 M.K. Parikh, arXiv:hep-th/0402166.

[10] P. Kraus and F. Wilczek, Nucl. Phys. B433, 403 (1995);
Nucl. Phys. B437, 231 (1995).
[11] Jing-Yi Zhang and Zheng Zhao, Phys. Lett. B 638, 110

(2006).

[12] Jing-Yi Zhang and Zheng Zhao, J. High Energy Phys. 10
(2005) 055.

[13] Jing-Yi Zhang and Zheng Zhao, Phys. Lett. B 618, 14
(2005).

[14] Jing-Yi Zhang and Zheng Zhao, Mod. Phys. Lett. A 20,

1673 (2005).

[15] Jing-Yi Zhang and Zheng Zhao, Nucl. Phys. B725, 173
(2005).

[16] M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, J.
High Energy Phys. 05, 014 (2005).

[17] R. Kerner and R.B. Mann, Phys. Rev. D 73 104010
(2006).

[18] A.J.M. Medved and E.C. Vagenas, Mod. Phys. Lett. A
20, 2449 (2005).

[19] W.B. Liu, Acta Phys. Sin. 56, 6164 (2007).

[20] T. Damour and R. Ruffini, Phys. Rev. D 14, 332 (1976).

[21] J.W. York, Phys. Rev. D 31, 775 (1985).

[22] C.O. Lousto and N. Sanchez, Phys. Lett. B 212, 411
(1988).

[23] R. Banerjee and B. R. Majhi, Phys. Lett. B 662, 62 (2008).

[24] D.N. Page, Phys. Rev. D 14, 1509 (1976).

[25] Zheng Zhao, The Thermal Nature of Black Holes and the
Singularity of the Space-time (Beijing Normal University
Press, Beijing, 1999).

[26] S. Sannan, Gen. Relativ. Gravit. 20, 239 (1988).

[27] Z. Zhao, Y.X. Gui, and L. Liu, Acta. Phys. Sin. 1, 141
(1981).

104021-6



