
Two-dimensional topological field theories coupled to four-dimensional BF theory

Merced Montesinos*

Departamento de Fı́sica, Cinvestav, Avenida Instituto Politécnico Nacional 2508,
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Four-dimensional BF theory admits a natural coupling to extended sources supported on two-

dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence

with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological

field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world

sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet,

producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four

dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set

of solutions of these theories are contained in the set of solutions of Einstein’s equations if one allows

distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly

quantizable. In the context of quantum gravity, one important motivation to study these models is to

explore the possibility of constructing a background-independent quantum field theory where local

degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at

the fundamental level.
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I. INTRODUCTION

Topological field theories are simple examples of
background-independent field theories for which quantiza-
tion can be completely worked out. These theories are a
natural playground where conceptual as well as technical
issues in background-independent quantum theory can be
addressed in detail. Three-dimensional vacuum general
relativity is an important example of a topological field
theory. Interestingly, the topological nature of the theory
can be maintained if matter is added in the form of topo-
logical defects representing massive and spinning point
particles [1]. Interest in the quantization of 2þ 1 gravity
coupled to point particles has been revived in the context of
the spin foam [2] and loop quantum gravity [3] approaches
to the nonperturbative and background-independent quan-
tization of gravity. On the one hand, this simple system
provides a nontrivial example where the strict equivalence
between the covariant and canonical approaches can be
demonstrated [4]. On the other hand, intriguing relation-
ships with field theories with infinitely many degrees of
freedom have been obtained [5,6]. The generalization of
these models to higher dimensions has been studied in [7].
As it is shown there, membranelike defects of dimension

d� 3 are a natural form of matter that couples to
d-dimensional BF theory [8]. The resulting theory is in
turn also a topological theory and can be completely
quantized using the techniques of loop quantum gravity.
Among these higher dimensional models the four-
dimensional one (which couples to stringlike defects) is
of singular interest due to the special role played by 4-
dimensional BF theory in the construction of spin foam
models of four-dimensional quantum gravity.
At first look these strings are a rather dull form of matter:

at their location there are conical singularities of the cur-
vature tensor and the equations of motion imply that the
string world sheet is locally flat [9] (vibrational modes of
the strings are pure gauge). Nevertheless, as we will argue
in this paper, the feature that makes these strings interest-
ing is the fact that they are extended objects (this is also
behind their exotic statistical properties [10]). This will
allow us to couple four-dimensional BF theory with more
physically appealing degrees of freedom. As the set of
possibilities is quite vast, we will restrict our attention to
certain world sheet theories that satisfy the following two
properties: (a) they can be naturally (or minimally) coupled
to BF theory in 4d, and (b) the coupled system defines a
(topological) theory with no local degrees of freedom.
Because of the close relationship between four-
dimensional BF theory and gravity, requirement (a) is
expected to produce physically interesting models, as
they might provide natural candidates for the coupling of
spin foam models of gravity with natural forms of matter.
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‡Unité Mixte de Recherche (UMR 6207) du CNRS et des

Universités Aix-Marseille I, Aix-Marseille II, et du Sud Toulon-
Var; laboratoire afilié à la FRUMAM (FR 2291)
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Requirement (b) implies that the models studied here are
expected to be nonperturbatively quantizable.

We believe that the study of these simple topological
models can be of more relevance than a simple exercise in
the application of nonperturbative quantization techniques.
We would like to explore the possibility that topological
theories, containing low dimensional objects, could be
used to construct a background-independent quantum field
theory with infinitely many (‘‘quasilocal’’) degrees of free-
dom. This is in fact our motivation for imposing require-
ment (b) above.

The article is organized as follows: In Sec. II we briefly
review the coupling of strings to four-dimensional BF
theory. In Sec. III we show how Yang-Mills degrees of
freedom can be added to the strings. We analyze the
equations of motion of the coupled system and perform
the canonical analysis to prove that the theory is topologi-
cal. In Sec. IV we add a tetrad field on the world sheet and
obtain an interesting model whose equations of motion
resemble those of general relativity in a curious way. In
Sec. V we study a purely two-dimensional model of
background-independent Yang-Mills theory which natu-
rally follows from the results of the previous sections. In
Sec. VII we present a speculative discussion about the
possibility of using topological theories of the type intro-
duced in this paper in order to define a background-
independent quantum field theory with infinitely many
degrees of freedom.

II. STRINGS COUPLED TO FOUR-DIMENSIONAL
BF THEORY

The coupling of (d� 3)-dimensional membranes to
d-dimensional BF theory (defined for a large class of
structure groups) was introduced in [7]. Here we concen-
trate on the case of strings coupled to four-dimensional BF
theory with structure group SOð3; 1Þ (see Refs. [11] for its
canonical analysis and Refs. [12,13] for alternative action
principles). If we denote M the four-dimensional space-
time manifold and W � M the two-dimensional world
sheet of the string, the action defining the coupling is given
by

SST�BF ¼
Z
M

BIJ ^ FIJðAÞ þ �
Z
W
ðBþ dAqÞIJpIJ; (1)

where I, J ¼ 1; . . . ; 4, and if we denote TIJ 2 soð3; 1Þ the
generators of the Lie algebra then q ¼ qIJTIJ is a
soð3; 1Þ-valued 1-form on W and p ¼ pIJTIJ is a
soð3; 1Þ-valued function on W . This action is invariant
under the gauge transformations:

B � gBg�1; B � Bþ dA�;

A � gAg�1 þ gdg�1; q � q� �;

q � gqg�1; p � gpg�1;

(2)

where g 2 C1ðM; GÞ and � is any g-valued (d� 3)-

form. Varying the action with respect to the B field implies
that the connection A is flat except at W :

F ¼ ��p�W ; (3)

where �W is the distributional 2-form (current) associated
to the string world sheet. So, the string causes a conical
singularity in the otherwise flat connection A. The strength
of this singularity is determined by the field p, which plays
the role of a ‘‘momentum density’’ for the string. Note that
while the connection A is singular in the directions trans-
verse toW , it is smooth and indeed flat when restricted to
W . Thus, the equation of motion obtained from varying q
makes sense:

dAp ¼ 0: (4)

This expresses conservation of momentum density and in
fact implies that the field p remains in the same conjugacy
class, hence it can be written as p ¼ ��v��1 for v 2
soð3; 1Þ a normalized vector and � 2 SOð3; 1Þ. The con-
stant � defines the string tension. Conjugacy classes of
soð3; 1Þ are labeled by the two Lorentz Casimirs. So far,
we have fixed only one by choosing the string tension �2 ¼
pIJp

IJ. The other Casimir defines an extra parameter s ¼
pIJpKL�

IJKL (the geometric meaning of swill be discussed
below). Notice that the strength of the conical singularity at
the location of the strings is, in this sense, nondynamical.
This will change in the model of Sec. III.
Assuming that the space-time manifold is of the form

M ¼ �� R, we choose local coordinates ðt; xaÞ for
which� is given as the hypersurface ft ¼ 0g. By definition,
xa with a ¼ 1, 2, 3 are local coordinates on �. We also
choose local coordinates ðt; sÞ on the 2-dimensional world
sheetW , where s 2 ½0; 2�� is a coordinate along the one-
dimensional string formed by the intersection of W with
�. Performing the standard Legendre transformation one
obtains Ea

i ¼ �abcBibc as the momentum canonically con-
jugate to Ai

b. Similarly, pIJ is the momentum canonically

conjugate to qIJ1 ¼ qIJa ð@�Þa. The phase-space variables

satisfy the following constraints:

LIJ :¼ DaE
a
IJ � 2�S½q1½IjMjpM

J� � � 0; (5)

Ka
IK

:¼ �abcFIJ
bcðxÞ þ �S½pIJð@�Þa� � 0: (6)

Here S � � denotes the one-dimensional curve represent-
ing the string, parametrized by xSðsÞ, and for any field� on
S, we define

�S½�� :¼
Z
S
��ð3Þðx� xSðsÞÞ:

The constraint (5) is the modified Gauss law of BF theory
due to the presence of the string. The constraint (6) is the
modified curvature constraint containing the dynamical
information of the theory. This constraint implies that the
connection A is flat away from the string S. Some care
must be taken to correctly interpret the constraint for points
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on S. By analogy with the case of 3d gravity, the correct
interpretation is that the holonomy of an infinitesimal loop
circling the string at some point x 2 S is expð�pðxÞÞ 2 G,
where p ¼ ��v��1 as before. This describes the conical
singularity of the connection at the string world sheet.

The BF phase-space variables satisfy the standard com-
mutation relations:

fEa
i ðxÞ; Aj

bðyÞg ¼ �a
b�

j
i�

ð3Þðx� yÞ;
fEa

i ðxÞ; Eb
j ðyÞg ¼ fAi

aðxÞ; Aj
bðyÞg ¼ 0:

(7)

The phase space of the string is parametrized in terms of
the momentum pIJ and the ‘‘total angular momentum’’
JIJ ¼ 2q1½IjMjpM

J�. The Poisson brackets of these varia-

bles are given by

fpIJðsÞ; JKLðs0Þg ¼ cSTIJKLpSTðsÞ�ð1Þðs� s0Þ;
fJIJðsÞ; JKLðs0Þg ¼ cSTIJKLJSTðsÞ�ð1Þðs� s0Þ;

(8)

where cSTIJKL are the structure constants of soð3; 1Þ, and
fJIJðsÞ; �ðs0Þg ¼ �TIJ�ðsÞ�ð1Þðs� s0Þ: (9)

The string variables are still subject to the following first
class constraints:

tr ½TIJ�z�
�1�JIJ ¼ 0; tr½p�z��1� ¼ �tr½vz�; (10)

where z 2 g is such that ½z; v� ¼ 0. The last constraint is
the generalization of the mass shell condition for point
particles in 3d gravity. The Poisson bracket of the string
variables with the BF variables is trivial, as well as the
Poisson brackets among the pIJ.

Geometrical interpretation

Here we present a brief account of the analysis carried
out in [9]. The full set of equations of motion of the theory
is

FðAÞ ¼ �p�W ; dAB ¼ �½q; p��W ;

dApjW ¼ 0; ��
W
ðBþ dAqÞ ¼ 0;

(11)

where ��
W

denotes the pullback of the corresponding 2-

forms toW . Therefore, the field configuration A ¼ 0, B ¼
0, q ¼ 0, p ¼ constant gives a solution to the equations of
motion in an open region U � M such that any open set
containing points of W has points outside U. Since the
theory is topological, all the solutions are equivalent to this
one in U through a gauge transformation. Let us assume
that we have a coordinate system in U with coordinate
functions XI, (for I ¼ 1; � � � ; 4). In order to recover an
interpretation of fields on a flat background we can make
a gauge transformation of the type (2) with gauge parame-

ter �IJ ¼ X½IdXJ�. In this gauge the solution is

BIJ
ab ¼ eI½ae

J
b� ¼ �I

½a�
J
b�; qIJa ¼ X½IdaXJ�: (12)

We see that in this gauge the B field defines a flat back-
ground geometry. There is still the residual gauge freedom
that maintains this property of the B field given by gauge
transformations of the form �0 ¼ df for some arbitrary f.
We call this family of gauges flat gauges. The integrability
conditions that follow from the equation dB ¼ ½q; p��W
imply that d½p; q� ¼ 0 or equivalently that ½p; q� ¼ d	 for
some potential 	. If 	 ¼ 0, it can be shown that ½p; q� ¼ 0
has nontrivial solutions if s ¼ pIJpKL�

IJKL ¼ 0.1 In that
case the string world sheet XIð�; tÞ is given by a plane in
Minkowski space-time passing through the origin defined
by either the equation pIJXI ¼ 0 or ?pIJXI ¼ 0. We can

translate the plane off the origin by choosing 	IJ ¼ C½IXJ�
(this choice sends XI to XI þ CI). If s � 0 then equation
½p; q� ¼ 0 implies XI ¼ 0.
One can establish a strict connection between these

solutions and solutions of general relativity representing
a cosmic string. In cylindrical coordinates f@t; @r; @’; @zg,
such that the string is lying along the z axis and goes
through the origin, the metric of a cosmic string solution
of tension � is:

ds2 ¼ g
�dx

 � dx�

¼ �dt2 þ dr2 þ ð1� aÞ2r2d’2 þ dz2; (13)

where a ¼ ð1� 4G�Þ, G is the Newton constant. The dual
coframe for the above metric is written

e0 ¼ dt; e1 ¼ cos’dr� ar sin’d’;

e2 ¼ sin’drþ ar cos’d’; e3 ¼ dz;
(14)

such that ds2 ¼ eI � eJ�IJ. The spin connection (s.t.
dAe ¼ 0) is

A ¼ AIJ

 JIJdx


 ¼ 4G�J12d’; (15)

where JIJ are the soð3; 1Þ generators. We can identify now
the string momentum p above, namely pIJJIJ ¼ �J12.
From the distributional identity dd’ ¼ 2��2ðrÞdxdy (x ¼
r cos’, y ¼ r sin’), it is immediate to compute the torsion
T ¼ T0e0 and curvature F ¼ F12�12 of the cosmic string
induced metric:

T0 ¼ 0; F12 ¼ 8�G��2ðrÞdxdy: (16)

The above fields are clearly a solution of Einstein’s equa-
tions with distributional matter

�IJKLe
J ^ FKL ¼ 8�G��IJKLe

JJKL
12 �W : (17)

The previous solution is in one to one correspondence with
the solution of (11)

B ¼ �ðe ^ eÞ; A ¼ 4G�J12d’; p ¼ �J12;

qIJ ¼ ðzdt� tdzÞ�½I
0 �

J�
3 ¼ ðzdt� tdzÞJIJ21:

(18)

1If we allow for complex pIJ , then solutions also exist if pIJ is
self-dual (or anti self-dual).
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One can construct a two strings solution by ‘‘superimpos-
ing’’ two solutions of the previous kind at different loca-
tions (notice that the equations are nonlinear so the new
solution is not the sum of two solutions). It can be shown
that the torsion dAB is proportional to the distance separat-

ing the world sheets in the flat-gauge where BIJ
ab ¼ �½I

a �
J�
b .

More strings can be added in a similar fashion.

III. MINIMAL COUPLING OF WORLD-SHEET
YANG-MILLS WITH 4D BF THEORY

Yang-Mills theory in two dimensions can be written in a
way that resembles BF theory if one is given a 2-form field
�, namely

SYM ¼
Z
W
½EaF

aðAÞ þ �EaEa�; (19)

where a ¼ 1; . . . ; dimðgÞ are internal indices labeling the
elements of a basis of the Lie algebra g of the gauge group
of our choice G (we require G to be compact and g to have
an invariant metric with which we raise and lower internal
indices). The field A ¼ ðAa


dx

Þ � Ja is the g-valued con-

nection 1-form, ½Ja; Jb� ¼ fcabJc where f
c
ab are the struc-

ture constants with respect to the basis fJag. Under these
assumptions the internal metric can be taken as kab ¼
cTrJaJb (assuming a matrix form for the generators Ja
and c is a constant that depends on the dimension of the
representation of the generators Ja). The field Ea is a
collection of dimðgÞ many 0-forms. One can show that if
� is nondegenerate (i.e., a volume form) then the previous
action is equivalent to the standard Yang-Mills action

SYM ¼
Z
W

ffiffiffiffiffiffiffi�g
p

g
�g��Fa

�F��a;

where the 2d metric g
� is such that � ¼ ffiffiffiffiffiffiffi�g
p

dx1 ^ dx2.

If one makes the canonical analysis of the BF-like action
above one finds that the total Hamiltonian is not weakly
vanishing due to the presence of the background structure
given by the (nondynamical) �. It is also easy to check
through the canonical analysis that the theory has no local
degrees of freedom. Sometimes it is said that 2d YM is
topological; however, this is not strictly the case because,
even though the degrees of freedom are global (and cer-
tainly tied to the topology of W ), they are also related to
the background structure �.

The simplest way of coupling two-dimensional Yang-
Mills theory with four-dimensional BF theory to produce a
background-independent field theory is to combine the B
field and the world sheet variable p to build a volume 2-
form � ¼ BIJpIJ on the world sheet. The result is given by
the following action:

SBFYM ¼
Z
M

BIJ ^ FIJð!Þ þ
Z
W
ð½BIJEaEa � d!q

IJ�pIJ

þ EaF
aðAÞÞ: (20)

The equations of motion of the new model are

Fð!Þ þ �W ½EaEap� ¼ 0; d!Bþ �W ½qp� ¼ 0;

��
W
ðEaEaB� d!qÞ ¼ 0; (21)

and

2B � pEa þ FaðAÞ ¼ 0: (22)

We have not explicitly written the equations d!p ¼ 0, and
dAEa ¼ 0, as they are implied by the integrability condi-
tions arising from the Bianchi identities for the curvature of
! and A, respectively.
Now we show that the new model is in fact a topological

field theory (i.e. background-independent theory with no
local degrees of freedom). In order to do this, we perform
the 3þ 1 decomposition of the previous action and analyze
its phase-space structure. The unconstrained phase space is
parametrized by the canonical variables ðE


IJ; !
KL
� Þ and

ðpIJ; qKL1 Þ (given in the previous section) plus the Yang-
Mills canonical pairs ðEa;Ab

1Þ. The constraints relating the
bulk degrees of freedom with the ones on the world sheet
are

LIJ :¼ d!

E


IJ þ 2�S½q½IjMjpM

J�� � 0; (23)

K
IJ :¼ �
��FIJ
��ðxÞ þ �S½EaEapIJ@
�� � 0: (24)

Notice that LIJ is precisely the same as (5), while KIJ is a
simple modification of (6). In fact there are new constraints

Ga :¼ dAEa � 0; (25)

which is the standard Gauss law of Yang-Mills. These
equations (together with Hamilton’s equations of motion)
imply that EaEa ¼ constant. It is easy to see that the
constraint algebra closes forming a first class system of
6þ 18þ dimðgÞ local constraints for the same number of
configuration variables fqIJ1 ; !IJ


 ;Aa
1g. The model has no

local degrees of freedom.2 The curvature constraint implies
that the space-time connection is flat in the bulk and there
is a conical singularity at the string. The strings on � can
be viewed as flux lines of Yang-Mills electric field which
back react with the environment producing a conical sin-
gularity whose strength is modulated by the Yang-Mills
‘‘energy density’’ �E ¼ �S½EaEapIJ�. As mentioned in the
introduction the strength of the curvature singularity is now
dynamical.

IV. ADDING AWORLD SHEET ‘‘FRAME’’ FIELDS

The idea follows from the observation that the two-
dimensional field theory defined by the following action

2There is a subtlety concerning the constraints KIJ. In fact
when we are away from the string the source term vanishes and
the Bianchi identity implies that only 3 out of the 6 ones are
independent. On the string, the Bianchi identity implies d!p ¼ 0
which is indeed an independent condition.
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has no local degrees of freedom

S ¼
Z
W
ð½dqIJ þ �ðeI ^ eJÞ�pIJ þ �Ide

IÞ; (26)

where �ðeI ^ eJÞ ¼ 1
2"

IJ
KLe

K ^ eL, W is a two-

dimensional surface, qIJ ¼ �qJI is a set of six 1-forms
on W , eI is a set of four 1-forms on W , pIJ ¼ �pJI is a
set of six 0-forms (functions) on W , �I is a set of four 0-
forms (functions) onW . In principle, there are other terms
that can also be added to the action, for instance, ðd �
qIJÞpIJ ¼ dqIJ � pIJ and ðeI ^ eJÞpIJ.

In order to count the number of degrees of freedom, let
us perform the canonical analysis of this model. Let ðyaÞ ¼
ðy0; y1Þ ¼ ð�; �Þ be local coordinates on W which is
assumed to have the form W ¼ S� R; the coordinate
time � labels the points along R and the space coordinate
� labels the points on S which is assumed to have the
topology of S1. Therefore, using

qIJ ¼ qIJa dy
a ¼ qIJ0 d�þ qIJ1 d�; eI ¼ eI0d�þ eI1d�;

(27)

the action (26) becomes

S ¼
Z
R
d�

Z
S
d�ð _qIJ1 pIJ þ _eI1�I � �IJDIJ � �IGIÞ;

(28)

where �IJ :¼ �qIJ0 and �I :¼ �eI0 are Lagrange multi-

pliers imposing the constraints

D IJ ¼ @�pIJ � 0; (29)

C I ¼ @��I þ "KL
IJe

J
1pKL � 0: (30)

There are no more constraints. Smearing the constraints
with test fields

DðNÞ ¼
Z
S
d�NIJGIJ; CðaÞ ¼

Z
S
d�aICI; (31)

to compute their Poisson brackets leads to

fDðNÞ; DðMÞg ¼ 0; fDðNÞ; CðaÞg ¼ 0;

fCðaÞ; CðbÞg ¼ Dð�½a; b�Þ; (32)

with ½a; b�IJ :¼ aIbJ � aJbI. Thus, all the 10 constraints
are first-class for the 10 configuration variables ðqIJ1 ; eI1Þ.
Therefore, the system has no local degrees of freedom, it is
a topological field theory.

In the spirit of what was done in the previous section
now we couple this world sheet action to the four-
dimensional BF theory in such a way to maintain the
topological character of the model. There is a natural
choice for the coupling leading to the new model intro-
duced in this section, namely:

SBFYMGR ¼
Z
M

BIJ ^ FIJð!Þ þ
Z
W
ð½BIJEaEa � d!q

IJ

þ �ðeI ^ eJÞ�pIJ þ �Id!e
I þ EaF

aðAÞÞ: (33)

We call this model BFYMGR (where GR stands for gen-
eral relativity) due to the suggestive similarity of the
equations of motion with those of general relativity in the
first order formalism. In order to make this statement more
explicit let us analyze the equations of motion of the
model. The observation is that on the world sheet varia-
tions with respect to p imply that B ¼ E�2ðd!q� �ðe ^
eÞÞ, hence the B field is simple up to a gauge transforma-
tion. Therefore, the simplicity constraints that reduce BF
theory to general relativity are satisfied on the world sheet.
The conclusion is more transparent if we study the remain-
ing equations of motion. For instance we have

FIJ ¼ �pIJE2�W ! �FIJ

� ¼ �pIJE2 and

"IJKLe
JpKL ¼ d!�I; (34)

where �FIJ

� is the smearing of the curvature tensor on a two-

dimensional surface dual to the world sheet along the
coordinates 
� �, more precisely

�F IJ

� :¼

Z

��

FIJ:

Now we can appropriately combine the previous equations
and obtain

�
���"IJKLe
J
�
�FKL
�� ¼ �
�ðd!�IÞ�E2; (35)

where �
� :¼ �
���ðdtÞ�ðd�Þ�, and we have assumed that

E2 is nonvanishing in order to bring it to the right-hand
side. The previous equation has a suggestive similarity to
Einstein’s equation with source T
� ¼ tIð
eI�Þ where tI
 ¼
ðd!�IÞ
E2. This is why we call this topological model

BFYMGR.
We have emphasized the similarity of this model with

Einstein’s theory of gravity in order to motivate the intro-
duction of this model. Now let us stress why this is quite
different in fact. The main reason is that, in contrast with
general relativity, this model is a topological theory with
no local excitations. This conclusion becomes transparent
in the Hamiltonian analysis which yields the following set
of constraints for the canonical variables ðE


IJ; !
KL
� Þ,

ðpIJ; qKL1 Þ, ðEa;Ab
1Þ, and ð�I; e

J
1Þ

LIJ :¼ d!

E

IJ þ 2�S½q½IjMjpM

J�� � 0;

K
IJ :¼ �
��FIJ
��ðxÞ þ �S½EaEapIJ@
�� � 0;

Ga :¼ dAEa � 0;

which are just the same as (6), (23), and (25) in addition to
the new world sheet constraints

CI :¼ d!�I þ 2eJ � pIJ � 0: (36)
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It is easy to see using the results of the previous sections
that the constraints form a first-class set of 24þ dimðgÞ
local constraints for the same number of configuration
variables. The degrees of freedom are global.

V. A TWO-DIMENSIONAL BACKGROUND-
INDEPENDENT YANG-MILLS THEORY

Using what we have learned, we can also define a two-
dimensional background-independent Yang-Mills theory
by making the 2-form � appearing in Eq. (19) dynamical
in an world sheet intrinsic way: namely � ¼ ðeI ^ eJÞpIJ.
The resulting action is

STYM ¼
Z
W
ð½dqIJ þ �ðeI ^ eJÞ þ eI ^ eJEaEa�pIJ

þ EaF
aðAÞ þ �Ide

IÞ: (37)

The canonical analysis performed along the lines of the one
corresponding to the previous model leads to the following
constraints

G a ¼ dAEa � 0; (38)

D IJ ¼ @�pIJ � 0; (39)

C I ¼ @��I þ 2eJ1pIJEaEa þ 2eJ1 � pIJ � 0: (40)

The first one is the familiar Gauss law of Yang-Mills theory
while the remaining ones correspond to the appropriate
modification of the ones obtained above. The constraint
algebra gives

fGð	Þ; Gð
Þg ¼ Gð½	;
�gÞ;
fDðNÞ;DðMÞg ¼ 0;

fDðNÞ; CðaÞg ¼ 0;

fCðaÞ; CðbÞg ¼ Dð�½a; b� þ E2½a; b�Þ þGð2½a; b�IJpIJEÞ;

(41)

with ½a; b�IJ :¼ aIbJ � aJbI and ½	;
�g is the commuta-

tor in the Lie algebra g. The constraint algebra closes and
gives a first-class system. As before, we have 10þ dimðgÞ
local constraints for the same number of configuration
variables; hence the system is a topological field theory.

We end this section with a remark. Notice that the
constraint algebra has field-dependent structure constants.
This is characteristic of the constraint algebra of general
relativity, although here the field dependence is much
simpler since the quantity E2 is constant on the world sheet
due to the Gauss constraint. These are genuine field-
dependent structure constants.

VI. QUANTIZATION

We have shown how the coupling of four-dimensional
BF theory to strings introduced in [7] allows for the defi-
nition of a large class of topological field theories with
physically interesting kinematical degrees of freedom. The
set of possibilities is indeed very large so we have con-

centrated here on two cases of special interest: world sheet
Yang-Mills theories defined in terms of structure groups G
possessing an adG invariant metric in their Lie algebra g,
and a world sheet tetrad (with intriguing resemblance with
general relativity).
The fact that these models are topological indicates that

their nonperturbative quantization should be well-defined.
Indeed the quantization of the model of Sec. III follows
straightforwardly from the results of [7,9]. This should be
clear from the fact that the phase-space structure presented
in Sec. III is quite similar to the one of the theory briefly
reviewed in Sec. II whose loop quantization is set up in [7]
and completely worked out in [9]. The only new ingre-
dients are the Yang-Mills unconstrained degrees of free-
dom which are especially well suited for the application of
loop variables techniques.
More precisely, a basis of the kinematical Hilbert

space—space of solutions of all quantum constraints with
the sole exception of the curvature constraint (24)—of the
model (20) is given by: (1) A bulk SOð3; 1Þ spin network
functional of the SOð3; 1Þ-connection A based on a graph
� 2 � with open ends at n points on the string S, (2) an
n-point spin functional of � (recall that the variable p ¼
�v��1 for vg normalized and � 2 G), (3) a functional of
the G-connectionA given by the trace of the Wilson loop
of A around the string S in an unitary irreducible repre-
sentation ofG (Fig. 1). IfG is compact we can always think
of the latter quantum number as n 2 N, where n labels the

nth eigenvalue �n of the square of the electric field dEaEa.
The physical Hilbert space is obtained by imposing the

n

m

FIG. 1. The elements of a natural basis of the kinematical
Hilbert can be written as the product of: (1) A functional of
the Lorentz connection labeled by a graph in space and the
assignment of unitary irreducible representations of the Lorentz
group, i.e., a SOð3; 1Þ spin-network state (represented by the
thin-lines graph), (2) An n-point spin function (represented here
by the endpoints of the thin-lines-graph on the strings; see [7] for
the precise definition), (3) A functional of the Yang-Mills
connection given by the product of Wilson loops on a unitary
representation of the structure group G along the each string
component.
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quantum version of the constraint (24). This amounts for
requiring the holonomy of loops around the string carrying
Yang-Mills quantum flux number n 2 N to be in the con-
jugacy class of expð��nvÞ. The techniques developed in
[9] can be simply extended to treat this case.

Another important remark concerns the relationship of
this model with 4-dimensional Yang-Mills fields coupled
to general relativity. There is a close relationship between
SOð3; 1Þ BF theory and general relativity [14–17]. More
precisely one can obtain the action of general relativity in
the first order formulation by constraining the B field to be
of the form B ¼ �ðe ^ eÞ for a tetrad field e. This idea is in
fact at the core of the definition of many spin foam models
for four-dimensional quantum gravity [18]. Here we would
like to point out that if such constraint is imposed on the B
field appearing in the action (20) then the naive quantum
amplitude for a world sheet configuration with quantized
Yang-Mills electric field squared �n is proportional to
expðiAp½W ��nÞ where Ap½W � is the area of the world

sheet computed with the area form ðe ^ eÞ�IJpIJ. This is
precisely the functional dependence of the Yang-Mills
amplitude in any dimension [19]. We think that the model
presented here might present a new perspective for the
definition of a natural coupling of Yang-Mills fields with
gravity in the context of spin foam models of quantum
gravity.

It would be interesting to undertake the quantization of
the model of Sec. IV. This would require the nonperturba-
tive quantization of the tetrad field eI1 and its conjugate
momentum �I. We would like to study this question in
detail in the future. Nevertheless, it seems clear that topo-
logical invariance should considerable simplify matters. It
seems that if this question can be resolved then one should
be able to quantize the model of Sec. V. An interesting
feature of these models (from the loop quantum gravity
perspective) is that their constraint algebras represent sim-
pler models of that of general relativity, since as in the
latter, they possess field-dependent structure constants.
Perhaps some technical issues concerning the quantization
of such theories can be clarified in this simpler context. The
model of Sec. IV is in addition interesting because of its
additional resemblance to general relativity.

VII. SOME SPECULATIVE REMARKS

Let us finish with more speculative considerations which
are however an important additional motivation for the
study presented here. The most fundamental question of
loop quantum gravity is whether one can construct a quan-
tum field theory in the absence of a nondynamical back-
ground metric. Several known results such as the
quantization of Chern-Simons theory, 2þ 1 gravity, BF
theory, etc., show that this is possible at least when dealing
with topological field theories. The difficult question is
whether one can construct an explicit nontrivial example
of background-independent quantum field theory (with

infinitely many degrees of freedom, i.e., infinitely many
physical observables). One can argue that the entire frame-
work of standard quantum field theory is based on the
notion of particle, where Fourier modes are the basic
building block in the construction of standard quantum
field theories. Similarly, we would like to explore the
possibility that the finitely many degrees of freedom en-
coded in topological models, of the kind presented here,
might be put together (be ‘‘second quantized’’) in order to
define a QFTwith infinitely many degrees of freedom. Our
ideas are at this stage rather heuristic with some aspects
based in unproven assumptions motivated by properties of
very simple models [20]. The degree to which these as-
sumptions can be made into factual statements will be
explored elsewhere.
The basic idea goes as follows: In the model of [7] as

well as those presented here, the topology of the space-
time manifold M and the embedded world sheet W are
held fixed. Under these conditions the transition ampli-
tudes between kinematical states can be computed. When
the topology of the world sheet is trivial (e.g. a cylinder
W ¼ S1 � R or an ensemble of any arbitrary number of
disconnected cylinders) these amplitudes can be used to
define the so called physical inner product of the (canoni-
cally defined) quantum theory. Let us callH n with n 2 N,
the physical Hilbert space so defined for the quantum
theory associated with the classical configuration space
containing n disconnected strings. One can construct a
theory with infinitely many degrees of freedom defining
the ‘‘Fock’’ space F ¼ 	1

n¼0H n with the infinite set of

quantum observables associated with the multistring states
(for the explicit construction in the particle case see [6]).
However, from our perspective3 such a theory seems rather
trivial because there is no interaction between theH n’s for
different values of n.
When the world sheet topology is nontrivial (e.g. it has

branching components as in Fig. 2 and/or nonvanishing
genus) the quantum amplitudes are still well-defined (in
the spin foam representation) but have no clear-cut physi-
cal interpretation.4 It is tempting to interpret these ampli-
tudes as providing the definition of physical interacting
transition amplitudes in a theory where the kinematical
Hilbert space is the Hilbert space F defined above. This
interpretation would be consistent if: (1) the sum over
world sheet topologies would be convergent, and (2) the
transition amplitudes define a positive semidefinite inner
product inF . This last requirement is highly nontrivial—it
is the counterpart of unitarity in background-dependent
quantum field theory. If these conditions hold, this would
provide a consistent way of rendering the world sheet

3In [6] the context in which F is introduce is quite different.
There one uses it to setup a perturbation theory.

4A field theoretic interpretation as Feynman diagrams in the
context of perturbation theory of an associated effective field
theory is proposed in [5].
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topology dynamical achieving the goal of defining a non-
trivial (i.e. interacting) quantum field theory with infinitely
many degrees of freedom: the latter given by the ensemble
global degrees of freedom of all world sheet topologies.

Because of the fact that topology of two-dimensional
orientable manifolds is characterized by a single integer
(the genus g) condition (1) above can be satisfied if the
amplitudes are suitably damped for high g. In fact the sum
over two-dimensional topologies does converge in simple
models such as 2d BF theory (see for instance [20]). Some
positive indication that property (2) could be realized for
models of the kind presented here also comes from the
study of this simple case. However, the model in [20] is too
simple and the sum over world sheets does not lead to a
theory with infinitely many degrees of freedom. If the sum
over world sheet topologies could be achieved in the
models presented here, due to the nontrivial character of
the degrees of freedom involved, we believe that they
might lead to nontrivial examples of background-
independent field theories with infinitely many degrees of
freedom. We would like to explore this possibility in the
future.

VIII. DISCUSSION

We have shown how the extended nature of the conical
defects that naturally couple to four-dimensional BF theory
allow for the introduction of physically interesting world
sheet fields while keeping the topological character of the
theory. These models are expected to be nonperturbatively
quantizable. In particular, the coupling of Yang-Mills the-
ory with BF theory described in Sec. III can be quantized in
a rather direct way by using the techniques of Refs. [7,9].
For this theory we get at a remarkably simple description of
states in the kinematical Hilbert space where bulk-
geometry spin network states are dual to Yang-Mills elec-
tric field flux lines (see Fig. 1). The strength of the conical
singularities at the location of flux lines is proportional to
the electric field square.

The models are in close relationship with gravity in at
least two independent ways. On the one hand, as we argued
in the subsection of Sec. II, solutions of the topological
models are in one to one correspondence with solutions of
Einstein’s equations. This correspondence between solu-
tions has to be interpreted with due care as the gauge
symmetry of our models is much larger than the one of

general relativity. In particular local excitations such as
gravitons are pure gauge in our models. Nevertheless the
correspondence among solutions might be of relevance if
some of the hopes described in the previous section could
be realized. On the other hand, our models are linked to
gravity along the well-known relationship between four-
dimensional BF theory and general relativity explicitly
exhibit in the Plebansky formulation of gravity. In particu-
lar, it would be interesting to compare our models with the
coupling to Yang-Mills theories proposed in [21].
These models are simple but nontrivial. In particular, the

presence of geometric degrees of freedom as well as mat-
terlike degrees of freedommake them potentially useful for
the study of various conceptual difficulties in nonperturba-
tive quantum gravity.
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Grant No. 56159-F.

APPENDIX

Here we construct a truly background-independent
model which will lead to a genuinely topological theory.
The discussion of the first part of this paper gives a clear
way to defining a background-independent analog. The
action is

S ¼
Z
W
½EaF

aðAÞ þ ð
ðeI ^ eJÞ� þ �eI ^ eJÞpIJEaEa

þ pIJF
IJð!Þ þ �Id!e

I�; (A1)

where F ¼ ð12Fa

�dx


 ^ dx�Þ � Ja with Fa

�ðAÞ ¼

@
A
a
� � @�A

a

 þ fabcA

b

A

c
� and—in order to make the eI

and pIJ fields dynamical—added the natural term
pIJF

IJð!Þ þ �Id!e
I which also requires the introduction

of the connection !IJ. Of course there are other additional
fields which can be added to the action (A1) but, for the
moment, let us look just at this action. The parameters 
,
and � are coupling constants.
After the 1þ 1 decomposition, ðx
Þ ¼ ðx1; x2Þ ¼

ð�; �Þ, each of the terms become: The action becomes
(neglecting space boundary terms)

S ¼
Z

d� ^ d�½Ea
_Aa

1 þ �IJ _!IJ
1 þ pI _e

I
1 � �aGa

� �ICI � �IJDIJ�; (A2)

with

G a :¼ dAEa;

CI :¼ d!�I þ 
p�
IJe

J
1EaEa þ �pIJe

J
1EaEa;

DIJ :¼ d!pIJ þ 1

2
ð�IeJ1 � �JeI1Þ:

(A3)

FIG. 2. Interacting string world sheets.
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Smearing the constraints with test fields

Gð	Þ :¼
Z
S
d�	aGa; Cð�Þ :¼

Z
S
d��ICI;

DðNÞ :¼
Z
S
d�NIJDIJ;

(A4)

the constraint algebra gives

fCð�Þ; Cð�Þg ¼
Z
S

�
½�;��IJ

�
2�

�2
EaEa

�
DIJ

þ 4�

�2
Ea½�;��IJpIJGa

�
;

½�;��IJ :¼ 1

2
ð�I�J � �J�IÞ; (A5)

fGð	Þ; Gð
Þg ¼ Gð½	;
�Þ;
fGð	Þ; CðMÞg ¼ fGð	Þ; DðNÞg ¼ 0;

fDðNÞ; DðMÞg ¼ Dð½N;M�Þ;
fDðNÞ; Cð
Þg ¼ CðN � 
Þ;
fCðMÞ; CðNÞg ¼ E2Dð½N;M�Þ þ 2Gð½N;M� � pEÞ;

(A6)

where ½N;M�I and ðN � 
ÞI :¼ NIJ
J is the commutator in
the Lie algebra soð4Þ. The constraints are all first class
which leads to the conclusion that there are zero local
degrees of freedom.
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