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This paper is an investigation of the stability of some ideal stars. It is intended as a study in general

relativity, with emphasis on the coupling to matter, aimed at a better understanding of strong gravitational

fields and ‘‘black holes.’’ This contrasts with the usual attitude in astrophysics, where Einstein’s equations

are invoked as a refinement of classical thermodynamics and Newtonian gravity. Our work is based on

action principles for systems of metric and matter fields, well-defined relativistic field models that we

hope may represent plausible types of matter. The thermodynamic content must be extracted from the

theory itself. When the flow of matter is irrotational, and described by a scalar density, we are led to

differential equations that differ little from those of Tolman, but they admit a conserved current, and

stronger boundary conditions that affect the matching of the interior solution to an external metric and

imply a relation of mass and radius. We propose a complete revision of the treatment of boundary

conditions. An ideal star in our terminology has spherical symmetry and an isentropic equation of state,

p ¼ a��, a and � piecewise constant. In our first work it was assumed that the density vanished beyond a

finite distance from the origin and that the metric is to be matched at the boundary to an exterior

Schwartzchild metric. But it is difficult to decide what the boundary conditions should be and we are

consequently skeptical of the concept of a fixed boundary. We investigate the double polytrope,

characterized by a polytropic index n � 3, in the bulk of the star and a value larger than five in an outer

atmosphere that extends to infinity. It has no fixed boundary but a region of critical density where the

polytropic index changes from a value that is appropriate for the bulk of the star to a value that provides a

crude model for the atmosphere. The boundary conditions are now natural and unambiguous. The

existence of a relation between mass and radius is confirmed, as well as an upper limit on the mass.

The principal conclusion is that all the static configurations are stable. There is a solution that fits the Sun.

The masses of white dwarfs respect the Chandrasekhar limit. The application to neutron stars has

surprising aspects.

DOI: 10.1103/PhysRevD.77.104019 PACS numbers: 04.40.Nr, 04.20.Jb, 04.80.Cc

I. INTRODUCTION

The problem on which we hope to throw some light in
this paper is the application of general relativity to starlike
systems that can be described by mass, radius, density, and
pressure; the flow is assumed to be irrotational and to be
controlled by a velocity potential.

In contrast with the traditional treatment we introduce
the matter component into Einstein’s equation for the
metric by adding an appropriate matter contribution to
the Einstein-Hilbert action. The difference, at first sight,
seems minor, for the equations associated with either ap-
proach are nearly identical, especially in the static case. An
important consequence for the study of equilibrium con-
figurations is that the action principle fixes an integration
constant that is usually left free. This results in a strength-
ening of the conditions for matching the interior metric to
an exterior Schwartzchild metric at the boundary of the star
[see Eq. (4)], or asymptotically at infinity. Consequently,
the action principle has some additional predictive power,
likely to bring it down, perhaps, but worth investigating.

We do not take it for granted that the matter distribution
conforms to the precepts of classical thermodynamics;
instead it is expected that the interpretation is implied by

the theory itself. A simple choice of interaction does in-
deed lead to an equation of state of the familiar type. The
difference in attitude therefore does not, by itself, lead to
any dramatic contrast with the traditional approach. The
future inclusion of radiative effects may change that.
The simplest choice of action leads to an equation of

state of the form

p ¼ a

n
��; � ¼ 1þ 1

n
; (1)

where a, � are constants, eventually piecewise constant.
The main result of an earlier investigation [1] was a

relation between the mass and the radius of any equilib-
rium configuration. The original purpose of the present
paper was to study the stability of those configurations.
In the course of this work we have become somewhat
skeptical about the appropriateness of naive boundary
conditions; that is, the assumed continuity of the metric,
regardless of the behavior of density and pressure that it
implies, at a fixed boundary. A large part of this paper is
directed to a reevaluation of these questions.
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A. Double polytrope

Consider the process that leads to the formation of a star,
assuming that the primordial matter is homogeneous, as is
reasonable if stars are a late result of a long process of
condensation of a hydrogen cloud. Condensation is a result
of gravitational attraction and the first effect produced by
the attraction is an increase in density. All subsequent
development is ultimately attributable to this primordial
increase in the density. If, as is always taken for granted in
studies of stellar structure, the equation of state is nearly
polytropic, then the basic, underlying reason for a change
in the index n must be the variation of density. A popular
model is a polytrope with n � 3 in a region of moderately
high density and n > 5 in the outer atmosphere. In the early
stages with low density the index may be larger than five
almost everywhere, characteristic of a distribution that
extends to infinity, but as this would imply a singularity
at the origin a change must take place near the center.
Whatever happens, the primal cause is the variation of
density. That is, the position of the boundary must be
determined by the density, rather than the other way
around. It follows that, if the index changes abruptly,
then it is the result of a rapidly changing density, as in

n½�� ¼ n1ð�=�crÞK þ n2
1þ ð�=�crÞK ; (2)

where K is a suitable large number and �cr is a critical
density. (Another representation for the approximately
piecewise function will be explored at the end, with inter-
esting results.)

Indeed, in an approximation where the only variables to
be taken into account, besides the components of the
metric field, are density and pressure, this would appear
to be the only possible approach: the boundary is defined to
be the region of critical density. Note that this ‘‘boundary’’
need not coincide with the visual boundary of the star.

In this paper, after attempting a more traditional ap-
proach to localizing the surface of the star, and remaining
unconvinced of the aptness of it, we shall concentrate on
trying to understand the double polytrope with this type of
equation of state.

The main conclusion is that all the static solutions, with
natural boundary conditions applied at the center and at
infinity, are stable. The white dwarfs respect the
Chandrasekhar limit on the mass, not because heavier stars
are unstable, but because they do not exist. A model for the
Sun is included; the application to neutron stars offers
some new dimensions.

B. Summary

An unfamiliar aspect of this work is the use of an action
principle for the complete system of metric and matter
fields. Matter is assumed to be irrotational and polytropic,
thus fully described by fields of density and pressure, with
the action

Amatter ¼
Z
d4x

ffiffiffiffiffiffiffi�gp
L;

L ¼ �

2
ðg�� ;� ;� � c2Þ � V½��:

(3)

The eventual presence of (electromagnetic) radiation will
require additional terms to be added. The associated
energy-momentum tensor provides the right-hand side of
Einstein’s equation R�� � g��

R
2 ¼ 8�GT��. We look for

solutions that are spherically symmetric, such that the
metric, in terms of coordinates t, r, �, and�, takes the form

ðdsÞ2 ¼ e�ðdtÞ2 � e�ðdrÞ2 � r2d�2;

with � and � depending on r and t only.
Homogeneous polytropes are characterized by a poten-

tial V½�� of the form V½�� ¼ a��, with � and a constant,
which leads to the equation of state p ¼ að�� 1Þ��.
When � is not constant, the polytropic equation of state
is slightly modified in the region of critical density. As is
usual, we study the time development of the system under
the assumption that it is initially in an equilibrium
configuration.
Our first calculations [1] posited a fixed boundary be-

yond which the density is zero and the metric is that of
Schwartzchild’s exterior solution. The static configurations
of this model are essentially the same as in the traditional
approach, except for an important difference with respect
to the boundary conditions. In contrast with the situation in
the usual approach, we must match both of the metric
functions �, � of the interior solutions to an external
Schwartzchild metric. Integration proceeds from the center
and the boundary is at a point r ¼ R where

�ðRÞ þ �ðRÞ ¼ 0: (4)

Within the traditional approach this condition is ineffective
since the boundary value of � is just an integration
constant.
We wish to calculate the time development to first order

in the deviation from equilibrium. This was first done by
Chandrasekhar in 1931 [2], and as far as we know the same
method has been followed by all later investigators. All
these studies are characterized by what we think are in-
sufficiently motivated boundary conditions. In the first
place it is not sure that one knows which of the fields,
metric components, density, pressure, should be required to
be continuous at the boundary. The boundary is not at a
fixed point but varies from one static configuration to
another and with time. Consequently it is unnatural to
restrict the fluctuations by the condition that the radius
remain fixed. Another question that imposes itself is that
of the mass. We define the mass in terms of the asymptotic
metric; does it echo the oscillations or does it remain fixed?
In view of the fact that we have come to view the

Schwartzchild solution as the metric of a singular, limiting
mass distribution [1,3,4], we felt that one way to clarify
these questions would be to replace the outer
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Schwartzchild metric with another polytrope, with the
index n > 5 as is appropriate for a mass distribution that
extends to infinity. This exterior metric rapidly approaches
the Schwartzchild metric at moderate distances. But the
boundary conditions continue to present the same, difficult
problems.

We have come to believe that the very idea of a fixed
boundary is unnatural, and an obstruction to understanding
what is going on. For this reason we make a new start, with
another version of the double polytrope, an ideal star in
which the equation of state is essentially polytropic near
the center, with an index that is nearly constant, but
changes to a larger value in a ‘‘boundary’’ region of critical
density, and essentially constant outside this region. The
‘‘surface’’ of this star is a region in which the index makes
a sudden or gradual change from one value to the other, as
in

p¼ a

n
fnþ1; �¼ fn; n¼ 3þ 3

1þ ðf=fcrÞK : (5)

This defines a 2-parameter family of equations of state. For
reasons that will be explained, the most plausible models
have fcr ¼ �cr ¼ 1.

C. Results

Our earlier calculations were made with a fixed poly-
tropic index for the interior, and a matching Schwartzchild
metric for the empty exterior. In this case the parameter a
can be varied by simple rescaling. We investigated these
solutions but, having great difficulties in selecting the
proper boundary conditions, we abandoned that approach.

Using the new equation of state, in Eq. (5), and the
natural boundary conditions (regularity at the center and
falloff at infinity) we recalculated the static configurations.
With n ¼ 3 (inside) and n ¼ 6 (outside), solutions were
found for values of the parameter a ranging from 10�6 to
1=5:765 and no solutions were found for larger values of a.
A relation between radius and mass emerges in all cases
considered, including:

(1) Polytropic index 1 � n � 3 (near the center) and 6
(at large distances).

(2) Index n ¼ 3 and 15.
All these static solutions appear to be stable to radial

perturbations. It may be objected that the equation of state
used here is somewhat special, not to say ad hoc. We are
nevertheless justified in concluding that instabilities of
polytropes found previously are characteristic of a re-
stricted class of boundary conditions; they are not generic.

An important consequence of the fact that the dynamics
is formulated as an action principle is the existence of a
conserved current. With the usual boundary conditions at
the center, and natural boundary conditions at infinity, we
find that the asymptotic mass is a constant of the motion.

An application to the Sun predicts the central density
and pressure, close to the values obtained within the tradi-

tional approach. In applications to white dwarfs the con-
stant a, a free parameter in other cases, is known. In the
case of complete degeneracy, the polytropic index is equal
to 3, and in this case a unique mass is predicted, very close
to the mass of the Sun. This limit, here derived from a
theory in which all the stars are stable, is close to the
limiting value obtained by Chandrasekhar from stability
considerations [2].
The instabilities of white dwarfs discovered by

Chandrasekhar are difficult to interpret, as witness the
reservations expressed by Eddington [5]. The first question
that comes to mind is the future development of a star that
starts from static but unstable initial conditions. This could
not be answered within the context in which the instabil-
ities appeared, because that context was not a mathemati-
cally well-defined model. Instead, Chandrasekhar’s results
have been taken to mean that there are limitations to the
range of physical parameters (mass and size) that are
possible, given the assumed thermodynamic properties of
the star. With this conclusion, our results are in perfect
agreement: There is a largest mass, beyond which the
problem is not that the static solutions are unstable, but
that they do not exist.
The maximal mass of a neutron star can be obtained

once the critical density is known. Using commonly ac-
cepted values, we again recover the traditional limit. We
explore some variations of the representation used for the
piecewise almost constant function n½�� and discover an
unexpected and interesting density profile.

II. MATTER MODEL AND EQUATIONS OF
MOTION

The dynamical variables of a simple hydrodynamical
system are �, a scalar density that will be interpreted as a
mass density, a velocity field ~v, and the pressure p. The
fundamental equations are the equation of continuity, _�þ
divð� ~vÞ ¼ 0 and the hydrostatic equation

� �
D

Dt
~v ¼ gradp:

We limit ourselves to laminar flow, setting ~v ¼ �grad�,
in terms of a scalar velocity potential. If we further define a
functional V½�� by p ¼ �ðdV=d�Þ � V, then V is defined
up to a term linear in � and we can express the hydro-
dynamical equation by

� D

Dt
~v ¼ grad

dV

d�
:

It is well known that this equation, with the continuity
equation, are the Euler-Lagrange equations of the action

A ¼
Z
dt

Z
d3xð�ð _�� ~v2=2��Þ � V½��Þ:

We have included the gravitational potential �. Variation
of � now gives
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� �
D

Dt
~v� grad� ¼ gradp:

A straightforward relativistic version of this theory is
obtained by taking the matter action to be

Amatter ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
�

2
ðg�� ;� ;� � c2Þ � V½��

�

¼:
Z
d4x

ffiffiffiffiffiffiffi�gp
L:

The nonrelativistic limit is recovered by setting  ¼ c2tþ
�.

We add this matter action to the Einstein-Hilbert action
and restrict the metric to the spherically symmetric form

ðdsÞ2 ¼ e�ðdtÞ2 � e�ðdrÞ2 � r2d�2:

Einstein’s equations then reduce to

Gt
t ¼ �e��

���0

r
þ 1

r2

�
þ 1

r2
¼ 8�Gðe��� _ 2 �LÞ; (6)

Gr
r ¼ �e��

�
�0

r
þ 1

r2

�
þ 1

r2
¼ 8�Gð�e���ð 0Þ2 �LÞ;

(7)

Gr
t ¼ e��

_�

r
¼ �8�Ge��� 0 _ ; (8)

and are supplemented by the wave equations, from varia-
tion of the fields � and  ,

1

2
ðe�� _ 2 � e��ð 0Þ2 � 1Þ ¼ dV

d�
; (9)

@tðeð��þ�Þ=2r2� _ Þ � ðeð���Þ=2r2� 0Þ0 ¼ 0: (10)

The Lagrangian density L, evaluated on shell, is inter-
preted as the pressure, subsequently denoted p. This is
not only because of its appearance in the expression for
the energy-momentum tensor [in Eqs. (6)–(8)] but also
because of the fact that L ¼ �ðdV=d�Þ � V, which is a
familiar expression for pressure in terms of internal energy
(see Ref. [6] , page 304). (Extending this to an off shell
identification of the pressure with the Lagrangian density
would be a mistake.)

The function � is often replaced by the function M
defined by

M ¼:
r

2G
ð1� e��Þ; e�� ¼ 1� 2MG

r
; (11)

then Eqs. (6) and (7) can be written as follows,

M0 ¼ 4�r2ðe��� _ 2 �LÞ; (12)

re���0 ¼ 1� e�� þ 8�Gr2ðe��� 02 þLÞ: (13)

The two equations can be combined to yield

ð�þ �Þ0 ¼ 8�Gre��ðe�� _ 2 þ e�� 02Þ: (14)

The differences between this theory and the usual one are
mainly as follows:
(i) Equation (9) looks unfamiliar, but taking the deriva-

tive with respect to r one recovers the usual force equation
with only minor changes. In the static case, when _ ¼ 1,
 0 ¼ 0 and �, � are time independent, this becomes the
hydrostatic condition,

p0=� ¼ �1
2�

0e��

and this has exactly the same form in both theories. But
Eq. (9) is stronger than its derivative; it furnishes an addi-
tional constraint at the boundary, and it is this equation that
provides a relation between the radius and the mass. In the
traditional approach, the boundary of a polytrope is often
chosen to be at the point where the pressure becomes zero,
that always exists if the polytropic index n ¼ ð�� 1Þ�1 is
less than five. There is no effective or meaningful matching
of the field � to an external Schwartzchild metric, a fact
that, in our opinion, makes the whole proceeding unsatis-
factory. In our model this matching is expressed by

�ðRÞ þ �ðRÞ ¼ 0; 1� e�ðRÞ ¼ 2mG

R
: (15)

The first equation determines R and the second gives the
value of the asymptotic, Schwartzchild mass m.
(ii) Another significant difference is that the old ap-

proach has no intrinsic conserved current (a conserved
baryonic current is often introduced by hand) [7], while
the new theory does, namely

J� ¼ ffiffiffiffiffiffiffi�gp
�g��@� : (16)

The existence of this conserved current does not by itself
assure us that the quantity

�m ¼
Z
d3x

ffiffiffiffiffiffiffi�gp
J0

is a constant of the motion. However, with the new equa-
tion of state introduced later, and the natural boundary
conditions that it entails, it does indeed turn out that �m is
conserved (see, Sec. III).
(iii) In the static case, the pressure of the model corre-

sponds exactly to the pressure as defined by Tolman’s
formula,

T�� ¼ ð�̂þ pÞU�U� � pg��

while Tolman’s density �̂ is replaced by �þ ð�VÞ0. We do
not try to guess the precise physical interpretation of � and
p but try instead to obtain results in terms of quantities that
we feel sure are physical, such as the gravitational,
Schwartzchild massm, uniquely defined by the asymptotic
gravitational potential. The choice of V / �� leads to p /
��, but if an equation of the form p / �̂� is more success-
ful, then that too can be accommodated. Both types are
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natural extensions of the nonrelativistic, polytropic equa-
tion of state.

In the static case, when _ ¼ 1 and  0 ¼ 0, we find a
curious, special solution, with f constant, namely

e�� ¼ 1þ 2a�f; e�� ¼ 1þ 8�Gpr2: (17)

As a global solution it is of no interest, but we shall find a
solution for which f remains nearly constant over a finite
interval.

In the paper [1], we examined static solutions with
boundary conditions determined by matching the metric
of the interior polytrope to an exterior Schwartzchild met-
ric. As explained above, the radius and the mass were
determined by the two conditions in Eq. (15). Solutions
were given for n ¼ 1, 2, 3, 4, 6, 10, . . ., but only the case
n ¼ 3 will be invoked here; Table I reproduces the data for
this case.

There appears to be an upper limit to the mass of about
1.02, and a lower limit on the radius of about 1.96, in units
where c ¼ G ¼ a ¼ 1. The number in the third row is the
position of the first zero of the pressure. Since the scale is
not fixed, the most significant data are the range of the
dimensionless ratio 2mG=R and the correlation of this
number with �ð0Þ. This is shown in Fig. 1, lower curve.

A. Oscillations around the static solutions

In this section we use units such that 8�G ¼ 1 and fix
the scale by setting a ¼ 1. We linearize the equations at the

static solution. The equation for Gr
r gives 	p,

re�	p ¼ 	�0 �
�
�0 þ 1

r

�
	�; (18)

and so does ‘‘Newton’s equation,’’ Eq. (9)

ðe��=2Þ	ðe��=2 _ Þ ¼ 	
dV

d�
¼ 1

�
	p;

or

	p ¼ e���ð	 _ � 	�=2Þ: (19)

Eliminating 	p from these two gives

r�e���ð	 _ � 	�=2Þ ¼ 	�0 �
�
�0 þ 1

r

�
	�: (20)

Equation (14) for Gt
t �Gr

r gives 	�,

re���ð	�þ �	�þ 2�ð	 _ � 	�=2ÞÞ ¼ 	�0 þ 	�0;

or

r	� ¼ �2r�ð	 _ � 	�=2Þ � r�	�þ e���ð	�0 þ 	�0Þ:
(21)

Using Eq. (20) we eliminate the time derivative and obtain
a constraint,

r	� ¼ e���
�
	�0 � 	�0 þ

�
�0 � �0 þ 2

r

�
	�

�
: (22)

TABLE I. Mass/radius relation for n ¼ 3=exterior Schwartzchild.

��ð0Þ R ��ðRÞ 2mG 2mG=R

.00001 18 750 60 000 0.000 054 1.017 0.000 054

0.001 18 777 6000 0.000 542 1.015 0.000 54

0.005 374 1200 0.002 70 1.001 0.0027

0.02 92.4 300 0.010 73 0.991 0.011

0.1 17.4 57 0.0516 0.895 0.051

0.3 5.03 18.6 0.1388 0.680 0.135

0.4 3.59 14.4 0.1721 0.618 0.172

0.45 3.12 13.1 0.1863 0.582 0.187

0.475 2.90 12.7 0.2026 0.567 0.196

0.49 2.84 12.5 0.1955 0.555 0.195

0.5 2.77 12.3 0.1927 0.547 0.197

0.6 2.30 11.4 0.217 0.489 0.213

0.7 2.03 11.5 0.232 0.441 0.217

0.8 1.96 13.6 0.2012 0.396 0.202

0.85 2.022 14.4 0.1875 0.379 0.197

0.9 2.17 16.8 0.1688 0.365 0.168

0.95 2.43 20.5 0.1458 0.354 0.146

1 2.91 26 0.120 0.350 0.120

1.2 7.86 48 0.0524 0.404 0.051

1.3 8.99 49 0.0514 0.450 0.050

1.5 7.64 47 0.0650 0.497 0.065

2.0 4.82 29 0.1000 0.482 0.100

2.065 4.66 28.5 0.1021 476 0.102
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The original set of equations is equivalent to Eqs. (19)
and (21) that determine 	p and 	�, and the two equations

r�e���ð	 _ � 	�=2Þ ¼ 	�0 �
�
�0 þ 1

r

�
	� (23)

and

	 _� ¼ r� 0 (24)

for the functions � and  . The only difficulty is that there is
no determination of 	�; to fix it we have to use the
equation of state, the choice may affect stability.

B. Equation of state

We express V and � parametrically, in terms of the
Emden function f

V ¼ af�; � ¼ fn; p ¼ �
dV

d�
V;

with

n ¼ n1 þ n2 � n1
1þ fK

:

This function takes the constant value n1 (in most of our
calculations n1 ¼ 3) in the inner regions where f > 1, and
the constant value n2 (the values 6 and 15 were explored) in
the atmosphere. The critical region is thus at the place
where f takes the value unity; f and � are entered as
multiples of their critical values. This choice, with a con-
stant, gives the best approximation to an polytropic equa-
tion of state, as we shall see.

In regions where n is constant we have p ¼ ða=nÞfnþ1.
In the boundary region there will of course be deviations
from this equation of state. We calculate

dV

d�
¼ af

1þ n� N lnf

n� N lnf
; N ¼ ðn1 � nÞðn� n2Þ

n1 � n2
K:

Because of the high value ofK that was used (K ¼ 50), the
function N vanishes except in a narrow interval of r where
n1 < n< n2. Of course, because K is large, N is not small
in this region. However, for the same reason, the function f
varies little from its critical value in this interval.
Therefore, taking this critical value to be unity, making
f � 1 in the interval, is highly beneficial. The two func-
tions � d

d� V, �V are nearly indistinguishable over the entire

interval 0< r <1. The deviation is small, in a small
region, and it will be ignored in the calculations. (Most
results show a remarkable insensitivity to details of the
equation of state near the critical point.) Thus we set p ¼
a�� and

�	p ¼ �p	�: (25)

For a stationary solution, when 	 _� ¼ s	� for some num-
ber s that we hope will have to be pure imaginary, from
Eqs. (20), (24), and (25),

	�0 ¼ re�	pþ
�
�0 þ 1

r

�
	�; r� 0 ¼ s	�;

	�0 ¼ rKe�	pþ
�
�0 � 1

r

�
	�; K ¼ 1þ e���=�p:

Elimination of 	p leads to

	�0 ¼ re����ðs	 � 	�=2Þ þ
�
�0 þ 1

r

�
	�;

r� 0 ¼ s	�;

	�0 ¼ sr�Ke���	 � ðr�K=2Þe���	�þ
�
�0 � 1

r

�
	�;

or

ðd=drÞ
	�
	 
	�

0
@

1
A

¼
�ðr�=2Þe��� sðr�Þe��� �0 þ 1

r

0 0 ðs=r�Þ
ðr�K=2Þe��� sðr�ÞKe��� �0 � 1

r

0
B@

1
CA 	�

	 
	�

0
@

1
A:
(26)

From this it is easy to see that the integration from r ¼ 0
can proceed. We start at r ¼ 10�10 with 	 ¼ 	� ¼ 0 and
	� � 0. This will make 	�0 and 	�0 of order r, 	� of order
r2, and 	�� 	�ð0Þ of order r2.
The solutions include a simple gauge transformation;

when it is ignored the system can be reduced to a single,
second order differential equation for the function L ¼
re��	�

€L ¼ r�

2

�
�0 þ 1

r

�
Lþ r2�e�ð�þ3�Þ=2

�
eð�þ3�Þ=2L0

r2�K

�0
: (27)

This equation shows that the stationary solutions have
frequencies determined by a self-adjoint Sturm-Liouville
operator, with a domain of functions L that satisfy a

0 0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

0.3

FIG. 1. The lower curve shows the essential information from
Table I. The abscissa is �ð0Þ and the ordinate is the dimension-
less ratio 2mG=R, where R is the boundary defined by Eq. (15).
The upper curve shows the same information from Table II, the
ordinate here is 2mG=Rcr.
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condition that fixes the value of L0=L at the boundary and
such that L=r3 is regular at the origin.

C. Boundary conditions, difficulties

Round 1—Here we report the result of studying the
stability of the static solutions in the case that the star
has a fixed polytropic index in the interior and the metric
is matched to an exterior Schwartzchild metric at the value
of r determined by Eq. (15). (These are the solutions listed
in Table I.) We adopt Eddington’s boundary conditions at
the center [5], so that the solutions of the static equations of
motion for fixed values of n are indexed by the value �ð0Þ
of the function � at the center. Matching of the solution to
the exterior metric [Eq. (15)] determines both the radius
and the gravitational mass. The result is a relation between
mass and radius, for each value of n, reproduced for the
case n ¼ 3 in Table I and in Fig. 1, lower curve.

The stability of a star is to be determined by solving
Eqs. (26) or (27) with some boundary conditions. It is
difficult, however, to understand what boundary conditions
are appropriate.

To deal with Eq. (27) from the point of view of the
Sturm-Liouville theory, one looks for solutions with har-
monic time dependence, Lðx; tÞ ¼ ei!tLðx; 0Þ. One identi-
fies the range of the parameter ! with the spectrum of an
operator in a Hilbert space constructed from a space of
functions of r. An acceptable set of boundary conditions
must make this operator self-adjoint.

It has always been assumed that the origin is a regular
point. It is difficult to find a real justification for this, since
the center of the star is a region about which one has very
little information. Nevertheless, we follow this precedent
since it helps to give a precise mathematical sense to our
model. Thus � has a well-defined value at r ¼ 0, � is of the
order of r2, and the function L is of the order of r3. In this
case the possible additional boundary conditions amount to
fixing the value of L0ðrÞ=LðrÞ at the surface. If we fix the
boundary and suppose that L ¼ 0 there, then we find a
discrete set of oscillating solutions and, in some cases,
decaying solutions, in agreement with the findings of [2].
But the radius of the star is determined by the first of the
conditions (15), and that means that the surface of the star
is pulsating, as we have verified numerically. This seems
not at all unnatural, the difficulty is that the asymptotic
mass, as determined by the matching of the metrics, is also
pulsating. We are very skeptical of these results.

In the traditional treatment the mass within a sphere of
radius R is defined by the integral

MðRÞ ¼
Z R

d3x�̂:

The equations of motion equate this quantity to ðR=2GÞ�
ð1� e��Þ and if the metric is asymptotically Schwartz-
child then it tends, as R tends to infinity, to the
Schwartzchild mass. But in the simplest models �̂ vanishes

beyond the surface of the star and there is no matching of
the interior metric to an exterior Schwartzchild metric.
Hence Mð1Þ is ‘‘the mass’’ of the star by definition only.
Oscillations of this quantity do not propagate to infinity.
This is the reason why the problem does not arise in
connection with the work of Chandrasekhar.
Round 2—Fixing the mass would seem to be the more

reasonable boundary condition, since it is determined
asymptotically in a region where the density is zero. It
does not seem possible that oscillations of a finite star
propagate to infinity through an infinite region of empty
space. To understand this better we should remember that
the external Schwartzchild metric, according to our inter-
pretation [1], is not the metric of empty space, but a
singular limit of a family of metrics of spaces with non-
vanishing density. Consequently, in our next attempt we
replaced the empty Schwartzchild exterior by a crude
approximation for the atmosphere, another polytrope.
The density distribution now extends to infinity, though it
falls off extremely rapidly and the metric soon becomes
indistinguishable from that of Schwartzchild. The asymp-
totic mass is a property of the exterior polytrope, but we
were unable to match the two polytropes at the boundary in
such a way that this mass would remain constant. Still we
cannot claim to have excluded this possibility completely.
It has been traditional since the beginning, to admit a

discontinuous behavior of density and pressure at the
surface of a star. This is reasonable if the star is cold, but
perhaps less likely to be typical of a polytrope. Facing
doubts of this kind, and the difficulties discussed in the
preceding paragraph, we came to the realization that it may
be better to give up the idea of a fixed boundary and
introduce the equation of state described in the introduc-
tion, thus allowing all the fields to vary continuously
throughout.

III. IMPROVED BOUNDARY CONDITIONS

Round 3—We suppose that there is a region of critical
density �cr, where the polytropic index changes more or
less abruptly from a value n1 < 5 (in our calculations n1 �
3) that is appropriate for the bulk of the star, to a value n2 >
5 (actually 6 or 15) that we hope may be appropriate for the
atmosphere. Precisely,

V½�� ¼ a�cr ~�
�; � ¼ 1þ 1

n
; n ¼ n1 ~f

K þ n2

1þ ~fK
;

(28)

where K is a suitably large number (actually 50) and ~f ¼
f=fcr, ~� ¼ �=�cr are all dimensionless. The critical den-
sity now appears as a common factor of the energy-
momentum tensor, and on the right-hand sides of
Eq. (6)–(8), together with G. We shall drop the tildes on
~f and ~�, so that f and � are henceforth given as multiples
of their critical values. Then Eqs. (6)–(10) remain valid if
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the factor G in (6)–(8) is replaced by G�cr. Finally, we
choose our unit of length such that this factor is equal to
unity,

G�cr ¼ 1:

The pressure in these units is ða=nÞ~�� and the critical
pressure is ða= �nÞ�cr, �n ¼ ðn1 þ n2Þ=2.

There is no longer any question of matching to an
exterior Schwartzchild metric, instead we require that the
metric approach the Schwartzchild form at large distances,
to order 1=r. The mass is determined by this asymptotic
metric,

2mG :¼ limr�ðrÞ ¼ � limr�ðrÞ:
In the traditional approach the second condition is not
effective, since only the derivative �0 of the function �
appears in Einstein’s equation. The extra condition that
comes from the action principle guarantees that the metric
is asymptotically Schwartzchild (as r3�ðrÞ ! 0) so that the
two limits always coincide. The indices n1, n2 were given
the values 3, 6 in our initial calculations, Table II. A larger
value of n2 makes the metric approach more quickly to the
Schwartzchild form. The exponent K determines the
abruptness of the change of n.

Since the index is not constant, the value of a can no
longer be reduced to unity by a change of scale. As before,
we assume that all the fields are regular at the origin. A star
is characterized by the parameters fcr and a. We choose a
value of a and determine allowed value(s) of �ð0Þ by
demanding that �r�ðrÞ tend to a finite limit (twice the
mass m) at infinity, and establish in this way a correlation
between R and m. Results are given in Fig. 2 and in
Table II. The upper curve in Fig. 2 shows the dimensionless
number 2mG=Rcr versus �ð0Þ, for the case n ¼ 3, 6 (3 in-
side and 6 outside). The lower curve was obtained by
matching the interior solution (n ¼ 3) to an exterior
Schwartzchild metric. The difference between the two
curves is easily explained since the upper curve refers to
the critical radius Rcr while the lower curve is 2mG=R,
where R is the boundary.

A. All static solutions are stable

When there is no fixed boundary, and the star extends to
infinity, the asymptotic behavior becomes important; for
the function L that embodies the oscillations around a
static solution we find

L / sinðr3=2bÞ=rk

with k and b constant. Values of the exponent k determined
by numerical calculations for n ¼ 6 (k ¼ 5=2) and n ¼ 10
(k ¼ 9=2) at large distances are such that the metric fluc-
tuations 	� and 	� fall of faster than 1=r. It follows that
the mass (defined by the asymptotic metric) is unaffected
by the oscillations.

With the improved boundary conditions, the real spec-
trum of frequencies is continuous and apparently the entire
real line. No unstable solutions were found. This could
have been anticipated by inspection of Eq. (27). The factor
� in the first term on the right-hand side makes this term
fall off very fast at infinity, which suggests that this term
cannot affect the spectrum of !2. The conclusion must be
that the instabilities first discovered by Chandrasekhar [2]
are imposed on the theory by the choice of boundary
conditions.

B. Constants of the motion

The conservation law for the current (16) can be inte-
grated to yield

d

dt

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð��þ�Þ=2

p
r2� _ dr ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð���Þ=2

p
r2� 0�10 :

In view of the boundary conditions at the origin,

d

dt

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð��þ�Þ=2

p
� _ r2dr ¼ lim

r!1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð���Þ=2

p
r2� 0�:

The factor � on the right-hand side suggests that there is no
flux at infinity, but in fact the flux r� 0 is equal to�	 _�=8�
by Eq. (8). For a static configuration both sides of this
equation are zero; for a first order deviation from a static
configuration we have

d

dt

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð��þ�Þ=2

p
r2�	 _ drd� ¼ 1

2
lim
r!1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð���Þ=2

p
r	 _��:

If the perturbed and unperturbed metrics both tend to
Schwartzchild at infinity, then r	 _�! 2 _m so that, finally,

d

dt

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð��þ�Þ=2

p
r2�	 _ drd� ¼ dm=dt: (29)

It is not a priori obvious that the asymptotic mass is a
constant of the motion, but a result of our calculations is
that r	� tends to zero at infinity so that in fact _m ¼ 0. The
asymptotic mass is a constant of the motion and so is the
quantity

Z
d3x

ffiffiffiffiffiffiffi�gp
gtt�:

In our numerical study this number turns out to be bounded
upwards by the asymptotic mass, the difference being
greater in the case of strong gravitational fields.

IV. APPLICATIONS

A. Modelling the Sun

The results for n1 ¼ 3, n2 ¼ 6 (Table II) and for n1 ¼
3=2, n2 ¼ 6 are shown in Fig. 2. The graph of allowed
values of ðRcr; 2mGÞ has a lower branch with small internal
pressure, a maximal value of Rcr, and an upper branch with
increasing central pressure and a maximum value of the
mass.
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FIG. 2. The mass-radius relation obtained with different boundary equations of state. On the left n ¼ 3, 6, on the right n ¼ 3=2, 6.

TABLE II. Mass/radius relation for n ¼ 3 and 6.

��ð0Þ R 1=a ��ðRÞ 2mG 2mG
R

0:346 977� 10�5 ð8:25� 15Þ 1:35� 10�9 ½3:22� 10�4� 1.079 18 1.011

0:408 938� 10�5 ð7� 105Þ 1:72� 10�9 ½3:47� 10�4� 1.079 18 1.007

0:477 094� 10�5 ð6� 105Þ 2:175� 10�9 ½3:77� 10�4� 1.079 18 1.011

0:572 512� 10�5 ð5� 105Þ 2:83� 10�9 ½4:13� 10�4� 1.079 18 1.006

0:715 640� 10�5 ð4� 105Þ 4:00� 10�9 ½4:62� 10�4� 1.079 18 1.012

0:954 190� 10�5 ð3� 105Þ 6:155� 10�9 ½5:34� 10�4� 1.079 19 1.011

0:143 128� 10�4 ð2� 105Þ 1:13� 10�8 ½6:52� 10�4� 1.079 19 1.011

0:190 837� 10�4 ð1:5� 105Þ 1:74� 10�8 ½7:58� 10�4� 1.079 19 1.011

0:286 255� 10�4 ð105Þ 3:2� 10�8 ½9:23� 10�4� 1.079 19 1.012

0:572 512� 10�4 (50 000) 0:905� 10�7 [0.000 585] 1.079 21 1.012

0.000 572 505 63 (5000) 2:9� 10�6 [0.004 15] 1.079 42 1.025

0.002 385 341 6 (1200) 0.000 024 2 [0.008 44] 1.080 17 1.008

0.014 086 8 (200) 0.000 349 [0.020] 1.085 26 1.012

0.028 611 53 (100) 0.000 970 [0.029] 1.091 74 0.970

0.047 680 7 (60) 0.002 02 [0.038] 1.101 01 0.939

0.057 218 4 (50) 0.002 61 [0.042] 1.105 91 0.923

0.071 534 195 (40) 0.003 57 [0.0465] 1.113 59 0.903

0.095 436 8 (30) 0.005 29 [0.0535] 1.179 42 0.869

0.143 546 8 (20) 0.009 05 [0.0655] 1.1579 0.809

0.169 284 5 (17) 0.011 10 [0.0687] 1.176 01 0.778

0.186 029 25 (15.5) 0.012 44 [0.0736] 1.188 46 0.759

0.192 388 6 (15) 0.012 95 [0.0748] 1.193 34 0.752

0.203 544 5 (14.2) 0.013 82 [0.0766] 1.202 09 0.740

0.223 019 5 (13) 0.015 34 [0.0796] 1.218 0.719

0.242 466 (12) 0.016 80 [0.0825] 1.234 75 0.698

0.265 818 9 (11) 0.018 53 [0.0855] 1.256 06 0.676

0.294 494 4 (10) 0.020 53 [0.0884] 1.284 18 0.649

0.330 789 (9) 0.022 86 [0.0920] 1.3232 0.617

0.378 856 5 (8) 0.025 50 [0.0950] 1.3818 0.577

0.447 908 (7) 0.028 40 [0.0980] 1.4832 0.527

0.575 115 (6) 0.030 60 [0.0962] 1.749 0.450

0.677 60 (5.7586) 0.029 00 [0.0910] 2.092 84 0.401

0.752 918 5 (5.9) 0.025 96 [0.0840] 2.485 05 0.372

0.790 723 (6.1) 0.023 90 [0.0793] 2.7564 0.360

0.874 (7) 0.018 33 [0.0680] 3.6683 0.339

0.924 04 (8) 0.014 66 [0.0605] 4.5583 0.332

0.983 69 (10) 0.010 39 [0.0512] 6.2787 0.329

1.009 24 (11.245) 0.008 74 [0.0474] 7.3522 0.330

1.013 842 (11.5) 0.008 46 [0.0468] 7.5735 0.330

1.022 385 (12) 0.007 95 [0.0455] 8.0092 0.330

1.051 813 (14) 0.006 40 [0.042] 9.780 0.335

1.119 438 (20) 0.003 95 [0.0353] 14.473 0.353

1.177 98 (25) 0.003 05 [0.0332] 21.073 0.381

1.194 58 (26) 0.002 95 [0.0331] 22.446 0.391

1.218 345 1 (27) 0.002 80 [0.0332] 24.114 0.393
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The bulk of the sun is often modeled with a polytrope
with index three. The parameter values are

ð2MGÞSun ¼ 2:95� 105 cm;

RSun ¼ 6:96� 1010 cm;

and the ratio is 0:424� 10�5. We must not equate Rsun

with the value Rcr of the radius at which the density takes
the critical value; this may occur deep in the interior.

If the critical density is �cr ¼ k2 g=cm3, then

�crG ¼ 0:7414� 10�28k2=cm2

and the unit of length used in our calculations is therefore

‘ ¼ 1:16

k
� 1014 cm:

Here are two examples from Table II.
Example 1. Take 1=a ¼ 105, the table gives 2mG ¼

0:32� 10�7 ‘¼37k�1�105. To agree with the Sun value
we need k¼37=2:95¼12:54. Thus �cr¼158 g=cm3,
which may be a little high. The critical radius is 9:23�
10�4‘ ¼ 0:854� 1010 and the critical pressure is pcr ¼
ða=3Þ�cr ¼ 0:527� 10�3 or 4:74�1017 dyn=cm2.

Example 2. Take 1=a ¼ 2� 105, the table gives 2mG ¼
0:113� 10�7 ‘ ¼ 0:131k�1 � 107. Here we need k ¼
13:1=2:95 ¼ 4:44. Thus �ð0Þ¼1:257��cr¼24:8 g=cm3,
which may be too low. The critical radius is

Rcr ¼ 6:52� 10�4‘; ‘ ¼ 1:7� 1010:

This is about RSun=4. The density profile, shown in Fig. 3,
shows that this is quite reasonable. The pressure is

pð0Þ ¼ a

3
�crfð0Þ4 ¼ 0:446� 10�4;

or 0:401� 1017 dyn=cm2.
Given the known values of the mass and the radius of the

Sun, the traditional polytrope model predicts the values
�ð0Þ ¼ 76:39 g=cm3 and pð0Þ ¼ 1:24� 1017 dyn=cm3

for the density and pressure at the center. Our dynamical
model gives slightly different values for the central density
and pressure. Various refinements, such as larger values of
K and/or n2, may affect these predictions to a limited
extent.

Let us compare the effect of different boundary condi-
tions for fixed values of �ð0Þ and a. In the case of
Example 2, in units of 1010 cm:

(i) The Emden function vanishes at 12.3. This would be
the prediction for the radius of the standard approach
with this choice of parameters (not the best choice).
The density predicted by the model at this point is
about 1=5000 of the critical value.

(ii) The actual value of the visual radius is 6.96.
(iii) Matching to an external Schwartzchild metric would

fix the boundary at 3.9. The density at this point is
about 1=8 of the critical value, dropping abruptly to
zero.

(iv) The critical radius is at 1.7.
(v) The density profile is shown in Fig. 3, and the density

predicted by the standard theory is shown for
comparison.

All three models can be made to give the correct radius
and mass of the Sun. They differ, but not very greatly, in the
predictions for central density and pressure, and they differ
considerably in the degree to which they seem to be
physically reasonable.
Figure 4 shows profiles of the metric functions.

B. Strong gravitational fields

A good indicator of the strength of the gravitational field
is the dimensionless ratio 2mG=Rcr. The maximum values
are, for the case that n2 ¼ 6

n1 ¼ 3; 5=2; 2; 3=2; 1; 1=10

2mG

Rcr

¼ 0:33; 0:43; 0:50; 0:59; 0:67; 0:77

As the value of n2 is increased the falling off of the
density outside the critical radius becomes much more
rapid. Nevertheless, there is always a region where the
gravitational field is less strong and where the density is
not yet negligible. Thus it is difficult to imagine a situation
where no radiation escapes. A much simpler assumption to
explain the astrophysical ‘‘black holes’’ would be for the
star, or at least the atmosphere, to be nonradiating on
account of the temperature being very low. But in the
polytropic models the temperature falls off much more
slowly than the density.

C. Chandrasekhar limit

Under conditions that are believed to prevail in a white
dwarf, the value of the parameter a can be calculated.
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FIG. 3 (color online). Various functions plotted against the
distance from the center. The function with the step is
nðrÞ=10. The other solid curves show fðrÞ and �ðrÞ. The dashed
curves show analogous results with a polytropic index fixed at
the value of three. What cannot be seen is that the latter pass to
negative values at r ¼ 0:0047, while the solid curves never do.
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Normally the equation of state is expressed as p ¼ K��,
with pressure and density given in units of g=cm3. In that
case one obtains

K ¼ 0:548� 10�6; a ¼ 3fcrK:

Our unit of length is

‘ ¼ 1:16

f3=2cr

� 1014 cm:

The numbers posted for 2mG, to be expressed in centi-
meters, must be multiplied by ‘, including the factor

f�3=2
cr / a�3=2. To find the maximum value of the mass

we have evaluated the product of 2mG in the table by this
factor, with the result that it is essentially constant at 1.01
in the upper half of the table and eventually decreases to
about 0.33 near the bottom of the table. The model is thus
in agreement with the traditional treatment, in predicting a
unique mass in the case of weak gravitational fields, and a
maximum value of the mass that is reached roughly in the
interval 0< a< 0:01. This maximum value is

2mG‘ ¼ 1:16� 1:01� 1014ð3KÞ3=2 ¼ 0:84ð2mGÞSun:
When the mass is close to this upper limit the ratio

2mG=Rcr < 0:334:

The maximum value is 788 times the value of 2mG=RSun,
so it would appear that a white dwarf of this mass may have
a radius as little as 1=100th that of the Sun.
The model makes these predictions, basically the same

as the theory of Chandrasekhar, but without invoking in-
stabilities. All the stars described by the model are stable.
Field profiles are shown in Figs. 3 and 4.

D. Neutron stars

According to Oppenheimer and Volkoff [8], a model of a
neutron star must have a very rigid equation of state. We
tried n ¼ 1=10 in the bulk and n ¼ 6 outside and in this
way we reach the higher value of 0.77 for the ratio
2mG=Rcr. The model does not furnish the scale; that is,
in our case, the value of �cr. It is usual to place the central
density of a neutron star between 1014 and 1015 g=cm2.
Taking �cr ¼ 1014 g=cm2 gives us the scale ‘ ¼ 1:16�
107. Two sample solutions are

a ¼ 1=2; 2mG ¼ 9� 105 cm; Rcr ¼ 17 km;

which is three solar masses and 2:4� 10�5 solar radii and

a ¼ 4=3; 2mG ¼ 106; Rcr ¼ 13 km:

If the density is 9 times greater the numbers will be 3 times
smaller. All these numbers are consistent with current
estimates.
It was found that the formula that was used for the

variable polytropic index fails, in this case of a low internal
value, to give a constant value in the interior; the value is
close to n1 near the center, but begins to increase at about
half the critical radius. The natural remedy would be to
increase the value of the exponent K, but in that case the
power of MATHEMATICA to handle very large numbers is
overtaxed. An alternative formula, namely

n½f� ¼ n1 þ n2
2

þ n1 � n2
2

f� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf� 1Þ2 þ 

p (30)

approaches a step function very well if 
 is very small, and
for 3 � n1 � 1 this formula reproduces the same relation
between mass and radius as the one used to construct the
tables, to a very good accuracy. However, the density
profile is affected in an interesting way as 
 is decreased.
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FIG. 4 (color online). The metric functions � (lower curve)
and �� in the case that best fits the Sun. The dashed line is the
function �� for the Schwartzchild metric with the same mass.
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FIG. 5. Contrast between two ways of smoothing the transition at the critical density, on the left formula (28), on the right (30). In
both cases, the parameters used are those that best fit the Sun. The lower curve shows the function nðrÞ.
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In an intermediary range of the radial variable the density
is constant. This phenomenon is specific to the model, to
the use of a variational principle. Consequently, we suc-
ceed in fixing n ¼ n1 in the region interior to this platform
only.

As shown in Fig. 5, the effect is not very important in the
case n1 ¼ 3, n2 ¼ 6, but for smaller values of n1 it is
decisive. Figure 6 shows the density profile for the case
n1 ¼ 2, n2 ¼ 6, and 
 ¼ 10�6.

Thus it seems that attempts to fix n at a very low value
leads instead to a stratification of the star, with a middle
region in which the density is constant. This has an un-
canny similarity with the accepted picture of neutron stars.
If the value of n1 is decreased below 0.3 or 0.2 this middle
region reaches the center, and the theoretically uncertain
core shrinks to nothing. We do not have the temerity to
suggest that this picture of a neutron star corresponds to
reality, but we find it fascinating.

V. DISCUSSION OF THE RESULTS

(1) The success of the polytropic equation of state in
accounting for a wide range of astronomical objects is
well-known and almost miraculous. One may feel, never-
theless, that there is some question about the best choice of
boundary conditions. There is also something a little un-
satisfactory about the definition of mass and mass density.
We have advocated the use of a variational principle, and
we have found that there is a simple and natural matter
Lagrangian that allows us to reproduce all of the results of
the traditional approach. It also provides a conserved
quantity, something that is often added as an additional
ingredient to Tolman’s theory. The new equation of state,
that interpolates between an interior polytrope and an
exterior polytrope that extends to infinity, is justified on
physical grounds; see Sec. I. It wipes out all the uncertain-
ties that are presented by the more traditional approach
using a fixed boundary [5,2], and it one allows to establish
the existence of a constant of the motion related to the

conserved current. The idea of a double polytrope is not
new, for Chandrasekhar has proposed a very similar equa-
tion of state [7,8]. With this equation of state all the
examined double polytropes are stable, which is an ex-
tremely satisfactory resolution of the paradox presented by
Chandrasekhar’s limit. It is worth emphasizing that the
only practical test of Chandrasekhar’s prediction is the
observation of an upper limit on the mass; this is a pre-
diction of our model as well.
(2) In this paper it is taken for granted that the metric

approaches the Schwartzchild form at infinity; in particu-
lar, that the function r�ðrÞ has a limit at infinity. What is
called ‘‘the mass’’ or ‘‘asymptotic mass,’’ and denoted m,
is defined by

2mG ¼ � lim
r!1r�ðrÞ:

The traditional approach defines ‘‘the mass’’ as the integralZ
d3x�̂:

Its value, with our treatment of the boundary conditions, is
the asymptotic mass m. Of all the textbooks that we have
consulted, only one (Ref. [9], pages 12–13) expresses any
discomfiture with this formula; they say that it is ‘‘treach-
erous,’’ because a factor

ffiffiffiffiffiffiffi�gp
is missing in the measure.

Indeed, if in Tolman’s formula the field with components
U� is a vector field, and T is a tensor field, then manifestly
� and p are scalar fields. The correct expression would beZ

d3x
ffiffiffiffiffiffiffi�gp

�̂U0;

but not being conserved there is nothing to recommend it.
The difficulty in the traditional theory arises because it

does not have a conserved current, ultimately because it is
not formulated as an action principle. Our model is, and we
have shown that, with the boundary conditions that we
have adopted, there is a conserved quantity,

1

2

Z 1

0

ffiffiffiffiffiffiffi�gp
gtt� _ r2drd�:

The value is always less than m. The only meaningful
concept of energy in general relativity is the Arnowit,
Deser, and Misner energy; therefore we make no sugges-
tion as to the proper name for the above integral. The
important point is that both it and the asymptotic mass
are constants of the motion. It is our opinion that this solves
a difficulty in the applications of general relativity to mass
distributions in general and to the structure of stars in
particular.
(3) The paradox that is presented by the Chandrasekhar

limit is that his theory fails to explain what happens to an
unstable configuration. Our model reproduces the limits,
but the unstable configurations of Chandrasekhar’s theory
do not have counterparts in the model. The problem of
explaining or predicting what happens to them simply does
not arise.
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FIG. 6. Here formula (28) was used with n ¼ 2, 6. The plat-
form of constant density reaches almost to the center. The lower
curve is the function nðrÞ=10.
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(4) Observation of most real stars depends on the fact
that they are luminous. The role of radiation in determining
the equation of state has been overlooked in this paper and
this is an obstacle to further phenomenological applica-
tions. The question of how radiation is to be included in the
model is interesting. Of course, matter has to interact with
radiation, but since the interior of a star is neutral on a large
scale this may not be the first item to take up. Radiation can
be introduced by adding the Maxwell action to the gravi-
tational and matter actions, but this is probably not the best
way. Here we suggest, but offer no justification for it, to
include a contribution to the action of the form

ARadiation ¼
Z
d4x

ffiffiffiffiffiffiffi�gp ���F2

16�
�W½��

�

where � is a scalar field, the density of radiation, and the
functional W½�� represents an internal energy of the pho-
ton gas. The modification of the Maxwell action by the
factor � and the internal energy W is inspired by analogy
with the fact that we need the factor � and the internal
energy V in the matter action. It is probable that the
gravitational action should be similarly modified, to reflect
the existence of a background of soft gravitons (compare
Refs. [10,11]).
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