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In general relativity, systems of spinning classical particles are implemented into the canonical

formalism of Arnowitt, Deser, and Misner [R. Arnowitt, S. Deser, and C.W. Misner, in Gravitation:

An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962), p. 227; arXiv:gr-qc/

0405109]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-

dimensional covariant action functional. The formalism is valid to terms linear in the single spin variables

and up to and including the next-to-leading order approximation in the gravitational spin-interaction part.

The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their

expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations

as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given

within covariant spin supplementary conditions. The applied coordinate conditions are the generalized

isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two

spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by

Damour, Jaranowski, and Schäfer [Phys. Rev. D 77, 064032 (2008)], is rederived and the derivation of the

next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [J. Steinhoff, S.

Hergt, and G. Schäfer, Phys. Rev. D 77, 081501(R) (2008)], is presented.

DOI: 10.1103/PhysRevD.77.104018 PACS numbers: 04.25.�g, 04.25.Nx

I. INTRODUCTION

Full implementation into canonical formalisms of gen-
eral relativity (GR) and applications have so far found only
classical point masses [1–13], fluids [14–18], massive
scalar fields [19,20], and gauge spin-1 fields, including
Maxwell [1,20] and Yang-Mills [21]. The canonical im-
plementation of spin- 12 Dirac fields has been performed in

[22–26]. Formally showing derivative coupling to the
spacetime metric, the Dirac fields resemble to the classical
spinning objects (pole-dipole particles) treated in our pa-
per. Problems of canonical gravity with derivative-coupled
sources are discussed in the comprehensive review by
Isenberg and Nester [27]. Another common feature of
Dirac fields and classical spinning objects is the occurrence
of surface terms in the Minkowski space algebra of the
stress-energy tensor, see Appendix A. The canonical for-
mulation of Dirac fields coupled to gravity is therefore a
valuable guide for the considerations in this paper and for
future work.

Regarding classical pole-dipole particles in GR, see,
e.g., [28–30], the theory of special relativity (SR) tells us
that only for specific spin supplementary conditions (SSC),
namely, the Newton-Wigner (NW) ones [31], canonical
variables can be achieved. Related with a SSC is an im-
plicit association of the used coordinates to a specific
center for the particle: in case of the canonical NW SSC
the center is called center-of-spin, in case of the nonca-
nonical noncovariant Møller (in SR) or Corinaldesi-
Papapetrou (in GR) SSC [32,33] center-of-mass or
center-of-energy, and in case of the covariant Fokker-

Synge-Pryce (in SR) or Tulczyjew (in GR) SSC, [28,34–
36], center-of-inertia, see, e.g., [37]. If one is interested in a
theory with terms linear in spin only, the Fokker-Synge-
Pryce-Tulczyjew SSC are identical with the Lanczos (in
SR) [38] or Mathisson and Pirani (in GR) SSC, [39,40], for
history see, e.g., [41].
In this paper, the canonical formalism by Arnowitt,

Deser, and Misner (ADM), see [1], will be applied to put
the GR-dynamics of pole-dipole particles into canonical
form. The starting point will not be a covariant action
functional but rather the symmetric stress-energy tensor
of pole-dipole particles. The developed formalism is valid
to terms linear in spin and, in post-Newtonian framework,
to next-to-leading order approximation in the spin interac-
tion part. The formalism is applied to the derivations of the
ADM Hamiltonian of two spinning compact bodies with
next-to-leading order gravitational spin-orbit coupling re-
cently obtained in [42] and to the calculation of the next-to-
leading order gravitational spin(1)-spin(2) Hamiltonian.
The outcome of the latter calculation has been announced
in [43] already. It is hoped to develop the canonical formal-
ism to higher orders in future.
The canonical dynamics is only given in a reduced form

in this paper, i.e. all gauge degrees of freedom due to
general coordinate invariance are already fixed. A similar
reduced formulation for gravitating Dirac fields is given in
[23]. The gauge independent canonical formalism for
Dirac fields is achieved for tetrad gravity instead of metric
gravity in [26], i.e. the vierbein instead of the metric is the
fundamental dynamical variable. An analogous canonical
theory for classical spinning objects would be very desir-
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able. Of course, other methods are also well suited to
incorporate spin effects into the post-Newtonian expansion
of general relativity [44–46]. However, a common problem
of all formalisms, if one aims at a Hamiltonian formula-
tion, is to get Poisson brackets for the variables, or to find
variables that allow for standard Poisson brackets. Here the
ADM formalism presents itself as valuable because one is
always close to the exact canonical formulation of point-
masses and the connection to the global Poincaré algebra
has already been studied in detail in the literature, see, e.g.,
[47,48]. The global Poincaré algebra seems to be the
smartest tool to construct or validate Poisson brackets
within a post-Newtonian setting. Regarding interaction
terms nonlinear in spin, the ADM formalism has been
proven useful too. Beyond leading order, various new
nonlinear-in-spin binary Hamiltonians have been derived
recently, [49]. For sake of completeness it should be men-
tioned that in [50] a covariant action functional approach to
the dynamics of pole-dipole particles in external gravita-
tional fields has been introduced in Routhian form using
vierbein fields and in [51] the same dynamics has been
treated within the language of forms. A Lagrangian ap-
proach is presented in [52]. In neither of the latter cases
dynamical canonical gravity has been envisaged.

It is important to point out that we will count post-
Newtonian orders, i.e. orders in c�2, only in terms of
velocity of light c originally present in the Einstein field
equations. Then both linear momentum and spin are
counted of the order zero. The next-to-leading order in
the spin interaction part therefore appears at the second
post-Newtonian order in this paper. This makes no state-
ment about the numerical value of these contributions,
which can, of course, be much smaller compared to the
second post-Newtonian point-mass contributions (depend-
ing on the numerical values of the spin variables). Some
papers already respect in their post-Newtonian expansion
that the numerical value of the spin variables is assumed to
be of the order c�1. Then the next-to-leading order spin-
orbit and spin-spin contributions, both second post-
Newtonian in our way of counting, are referred to as
second-and-a-half and third post-Newtonian contributions,
respectively.

The paper is organized as follows. In Sec. II, the struc-
ture of the ADM formalism is outlined. Emphasis is put on
the role the stress-energy tensor of the matter source of the
Einstein field equations plays in the ADM formalism. In
Sec. III, the matter Hamiltonian and its relation to the
covariant 3-space components of the matter stress-energy
tensor are discussed. The Sec. IV is devoted to the stress-
energy tensor of pole-dipole particles in Minkowski space
in canonical variables. The components of the stress-
energy tensor occurring in the curved spacetime
Hamiltonian are constructed by 3-dimensional covariant
generalization. The canonical linear momentum is identi-
fied as generator of the global Poincaré algebra. The action

functional for center-of-mass and spin motions is given.
The Sec. V shows how the components of the stress-energy
tensor in the Hamiltonian can be directly obtained in
curved spacetime. In Sec. VI, consistency of the obtained
formalism is proved to the approximation of the Einstein
field equations treated in the paper. The Sec. VII is devoted
to applications. The next-to-leading order gravitational
spin-orbit and spin(1)-spin(2) Hamiltonians are calculated.
In Sec. VIII, an independent derivation of the next-to-
leading order gravitational spin(1)-spin(2) Hamiltonian is
given using the lapse and shift functions which are not
involved in the calculation of the ADM Hamiltonians of
Sec. VII. Finally in Sec. IX, the Poincaré algebra is shown
to hold to the order of approximation of the developed
formalism. The Appendix A presents the local stress-
energy tensor algebra for pole-dipole particles in
Minkowski space and the Appendix B gives the local
stress-energy tensor algebra in curved spacetime for non-
spinning particles. The Appendix C shows the applied
regularization techniques.
Our units are c ¼ 1 and G ¼ 1, where G is the

Newtonian gravitational constant. Greek indices will run
over 0, 1, 2, 3, Latin over 1, 2, 3. For the signature
of spacetime we choose þ2. The shortcut notation
ab ( ¼ a�b� ¼ a�b

�) for the scalar product of two vec-

tors a� and b� will be used. Round brackets denote index

symmetrization, i.e., að�b�Þ ¼ 1
2 ða�b� þ a�b�Þ. The spa-

tial part of a 4-vector x is x.

II. STRUCTURE OF THE ADM FORMALISM

Crucial to the ADM formalism [1] is the Hamiltonian
which generates the full Einstein field equations, both the
four constraint equations and the 12 first order evolution
equations for the 3-metric �ij and its canonical conjugate
1

16��
ij, also see [47,53],

H ¼
Z
d3xðNH � NiH iÞ þ E½�ij�; (2.1)

whereN andNi denote lapse and shift functions, which are
merely Lagrange multipliers. The super-Hamiltonian H
and the supermomentum H i densities decompose into
gravitational field and matter parts as follows,

H ¼ H field þH matter; H i ¼ H field
i þH matter

i ;

(2.2)

where the field parts are given by

H field ¼ � 1

16�
ffiffiffiffi
�

p
�
�Rþ 1

2
ð�ij�ijÞ2 � �ij�kl�

ik�jl
�
;

H field
i ¼ 1

8�
�ij�

jk
;k: (2.3)

Here � is the determinant of the 3-metric �ij ¼ gij of the

spacelike hypersurfaces t ¼ const, whereas the determi-
nant of the 4-dim. metric g�� will be denoted g. The
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canonical conjugate to �ij is
1

16��
ij. R is the Ricci-scalar

of the spacelike hypersurfaces and ; denotes the 3-dim.
covariant derivative. The expressions for lapse and shift

functions are then N ¼ ð�g00Þ�1=2 and Ni ¼ �ijg0j. For

simplicity, we will assume that the relation between field
momentum�ij and extrinsic curvatureKij is the same as in

the vacuum case:

�ij ¼ � ffiffiffiffi
�

p ð�ik�jl � �ij�klÞKkl (2.4)

The energy E is defined by

E ¼ 1

16�

I
d2sið�ij;j � �jj;iÞ; (2.5)

where , denotes partial space derivatives and d2si the 2-
dim. spatial volume element at spatial infinity. The surface
expression Emakes the Hamilton variational principle well
defined also for variations which do not have compact
support. After imposing coordinate conditions and con-
straint equations,

�H

�N
� H ¼ 0; � �H

�Ni � H i ¼ 0; (2.6)

E turns into the ADM Hamiltonian HADM. Comparing
these constraints with the Einstein equations, projected
onto the spacelike hypersurfaces, results in

H matter ¼ ffiffiffiffi
�

p
T��n�n� ¼ N

ffiffiffiffiffiffiffi�gp
T00;

H matter
i ¼ � ffiffiffiffi

�
p

T�i n� ¼
ffiffiffiffiffiffiffi�gp

T0
i ;

(2.7)

where
ffiffiffiffiffiffiffi�gp

T�� is the stress-energy tensor density of the

matter system. The timelike unit 4-vector n� ¼
ð�N; 0; 0; 0Þ points orthogonal to the spacelike hypersur-
faces. The evolution equations of the field, before imposing
constraints and coordinate conditions, read

1

16�

@�ij

@t
¼ � �H

��ij
;

1

16�

@�ij
@t

¼ �H

��ij
: (2.8)

The coordinate conditions must be preserved under this
time evolution. These additional constraints fixate lapse
and shift functions.

The ADMTT gauge [1], being the most often used and
best adapted coordinate condition for explicit calculations,
is given by

�ij ¼  4�ij þ hTTij ;

or 3�ij;j � �jj;i ¼ 0;

and �ii ¼ 0:

(2.9)

Here hTTij has the properties hTTii ¼ hTTij;j ¼ 0 (transverse,

traceless). After imposing the constraint equations (2.6),
the remaining 4 (reduced) field equations read

1

16�

@�ijTT
@t

¼ ��HADM

�hTTij
;

1

16�

@hTTij
@t

¼ �HADM

��ijTT
;

(2.10)

where �ijTT denotes the transverse traceless part of �ij and
the variational derivatives must include a projection onto
the transverse traceless part. We will call the phase space

consisting of hTTij ,
1

16��
ij
TT and canonical matter variables

the reduced phase space, whereas the nonreduced phase
space consists of �ij,

1
16��

ij and canonical matter

variables.
The fundamental problem to be solved are the forms of

the super-Hamiltonian and supermomentum densities for
pole-dipole particles in canonical variables. Our approach
will be as follows. We first construct the stress-energy
tensor in Minkowski space with canonical variables.
Then taking into account that, respectively, H matter and
H matter

i are scalar and covariant vector densities with
respect to 3-dim. coordinate transformations, we put these
expressions into 3-dim. covariant forms (this procedure
had been suggested already by Boulware and Deser
[54]). Afterwards we show that the same result can be
obtained by Lie-shifting certain components of the stress-
energy tensor with rotational-free parallel transport of the
linear momentum fields.

III. CONSISTENCY CONDITIONS

The Hamilton variational principle must generate the
Einstein equations. This trivial fact leads to several con-
sistency conditions for the matter part of the Hamiltonian,

Hmatter ¼
Z
d3xðNH matter � NiH matter

i Þ: (3.1)

Lapse and shift are Lagrange multipliers, so H matter and
H matter

i must be independent of them. Equation (2.7) then
already ensures that the constraint Eqs. (2.6) are correct.
The evolution Eqs. (2.8) coincide with the Einstein equa-
tions if and only if

�Hmatter

��ij
¼ 0; (3.2)

�Hmatter

��ij
¼ 1

2
N

ffiffiffiffi
�

p
Tij: (3.3)

Violation of the first condition would give an incorrect
evolution equation for �ij. This is critical, because the

geometric meaning of this equation is the definition of
the extrinsic curvature Kij � �N�0

ij, additional terms

here imply leaving Riemannian geometry. This might be
fixed by adjusting Eq. (2.4), see [55]. The second condition
ensures that the evolution equation for �ij fits with the
Einstein field equations.
The first condition, Eq. (3.2), is equivalent to the local

equations
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�H matterðxÞ
��ijðx0Þ ¼ 0;

�H matter
k ðxÞ

��ijðx0Þ ¼ 0: (3.4)

The second condition, Eq. (3.3), then implies that also Tij is

independent of �ij. If and only if Tij does also not depend

on lapse and shift, then the local version of the second
condition reads

�H matterðxÞ
��ijðx0Þ ¼ 1

2

ffiffiffiffi
�

p
TijðxÞ�ðx� x0Þ;

�H matter
k ðxÞ

��ijðx0Þ ¼ 0:

(3.5)

In Appendix B it will be shown that Eq. (3.5) is equivalent
to the simple constraint algebra (B1)–(B3). The conditions
given in Eq. (3.5) are very restrictive, as they imply that
H matter cannot depend on derivatives of �ij, and H matter

k

cannot depend on �ij at all. Together with (2.4), this defines
a kind of simple coupling of matter to gravity. Gravitating
classical spinning objects and Dirac fields are not of this
kind. However, our canonical formulation of spinning
objects will exactly fulfill (2.4) and (3.4), and also at least
approximately (3.3), see Sec. VI.

None of the preceding consistency conditions validates
the canonical matter variables directly, in our case position,
linear momentum and spin. In a theory that is of the simple
kind mentioned above, this can be done via a local algebra
for H matter and H matter

i on the nonreduced phase space,
Eqs. (B11)–(B13). We will instead consider the global
Poincaré algebra, which is a consequence of the asymptotic
flatness and is represented by Poisson-brackets of the
corresponding conserved quantities. So besides the ADM
energy (2.5) also total linear momentum Pi, total angular
momentum Ji � 1

2 �ijkJjk and the boost vector Ki are con-

served and given by surface integrals at spatial infinity. The
boosts have an explicit dependence on the time t and can be
decomposed as Ki � Gi � tPi, where X

i � Gi=E is the
coordinate of the center-of-mass. Gi will be called center-
of-mass vector in the following. The corresponding surface
integrals read, with spatial coordinates denoted xi:

Pi ¼ � 1

8�

I
d2sk�

ik;

Jij ¼ � 1

8�

I
d2skðxi�jk � xj�ikÞ;

(3.6)

Gi ¼ 1

16�

I
d2sk½xið�kl;l � �ll;kÞ � �ik þ �ik�ll�: (3.7)

After imposing constraints and coordinate conditions,
these quantities have well-defined Poisson-brackets on
the reduced phase-space [47], and the Poincaré algebra
can be verified. At the second post-Newtonian level for
spin, and also in the spatial conformally flat case �ij ¼
 4�ij, we have, by virtue of the momentum constraints

H i ¼ 0 and the ADMTT gauge, the following simple

expressions:

Pi ¼
Z
d3xH matter

i ;

Jij ¼
Z
d3xðxiH matter

j � xjH matter
i Þ:

(3.8)

In the ADMTT gauge it also holds:

E ¼ HADM ¼ � 1

2�

Z
d3x� ;

Gi ¼ � 1

2�

Z
d3xxi� :

(3.9)

After solving the Hamilton constraint H ¼ 0,  can be
expressed in terms of canonical variables of the reduced
phase space, and the Poincaré algebra can be verified.
A final remark concerns the canonical spin variables.

Imposing the standard Poisson-bracket algebra of angular
momentum for the spin variables, it is clear that the
squared euclidean length of the spin, being a Casimir
operator, will commute with all other canonical variables.
Therefore this length is constant in time, as it will also
commute with the Hamiltonian.

VI. POLE-DIPOLE PARTICLE STRESS-ENERGY
TENSOR IN CANONICALVARIABLES

Calculating H matter and H matter
i via (2.7) in the

Minkowskian case and then going over to their 3-dim.
covariant generalizations has the advantage that H matter

and H matter
i will definitely not depend on lapse, shift, and

�ij or Kij. This is a serious problem when working in
curved spacetime. Then our matter variables (in particular,
spin and momentum of the particles, but not their position)
have to be redefined to suit the consistency conditions of
the previous section. It was also observed in [54] that the
correct general relativistic source terms in the constraint
equations for low spin ( � 1) fields, including electrody-
namics, can be achieved by expressing their flat-space
action in a 3-dim. covariant form, and redefining canonical
variables in a way that leaves them unchanged in the flat
case. This is similar to our approach. In the next section we
will show that a curved spacetime approach is also pos-
sible, yielding the same result as in the present section.
Because of its importance for later transition to curved

spacetime with canonical variables, the stress-energy ten-
sor density for an electric charge-free pole-dipole particle
in curved spacetime takes the form, to linear order in spin,
see, e.g., [56],

ffiffiffiffiffiffiffi�gp
T�� ¼

Z
d�½mu�u��ð4Þ � ðS�ð�u�Þ�ð4ÞÞjj�� (4.1)

¼ p�v��� ðS�ð�v�Þ�Þ;� � S�ð���Þ�	v
	�; (4.2)

applying the Tulczyjew SSC or, equivalently, the
Mathisson-Pirani SSC
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S��u� ¼ 0: (4.3)

Here v� ¼ u�=u0 and p� ¼ mu�, particularly pi ¼ mui,
with massm and g��u

�u� ¼ �1. The Christoffel symbols

are denoted �
�� as usual, and the 4-dim. covariant deriva-

tive by jj. The 4-dim. spin tensor S�� has the property
S�� ¼ �S��. � is a proper time parameter running from
�1 toþ1with u� ¼ dz�

d� , where z
� is the 4-dim. position

variable of the particle. The coordinate time velocity of the
particle, v�, is identical with dz�

dt . The Dirac delta func-

tions, �ð4Þ � �ðx� zÞ and � � �ðx� zÞ, are normalized

such that
R
d4x�ð4Þ ¼

R
d3x� ¼ 1 holds.

Furthermore, again to leading order in spin, it holds

DS��

d�
¼ 0; (4.4)

where D denotes the 4-dim. covariant differential.
Obviously,

S��S�� � 2s2 ¼ const (4.5)

is valid.
The transition to Minkowski space results in the stress-

energy tensor

T�� ¼
Z
d�½mu�u��ð4Þ � ðS�ð�u�Þ�ð4ÞÞ;��

¼ p�v��� ðS�ð�v�Þ�Þ;�: (4.6)

Now we proceed to the Newton-Wigner SSC in making the
following shift of the particle coordinates

ẑ � ¼ z� � S��n�
m� np

; (4.7)

where np � n�p
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �ijpipj

q
, as well as intro-

ducing the spin tensor Ŝ�� by the relation, see, e.g., [37],

S�� ¼ Ŝ�� þ p�n
Ŝ
�
=m� p�n
Ŝ

�
=m; (4.8)

which results in

ðn� þ p�=mÞŜ�� ¼ 0: (4.9)

This turns the stress-energy tensor into the form (from now
on � � �ðx� ẑÞ)
T̂ ��ðx; ẑÞ � T��ðx; zÞ ¼ p�v��� ðŜ�ð�v�Þ�Þ;�; (4.10)

because _̂z� ¼ _z� (dot means time derivative) to linear

order in spin. The new spin tensor Ŝ�� has the important
property that

S��S�� ¼ ŜijŜij ¼ const (4.11)

is valid.
The components of the stress-energy tensor, relevant for

the ADM formalism, read

ffiffiffiffi
�

p
T̂��n�n� ¼ �np��

�
�ij�kl

pl
m� np

Ŝjk�

�
;i
; (4.12)

� ffiffiffiffi
�

p
T̂�i n� ¼ pi�þ 1

2

��
�mkŜik � ð�mk�ip

þ �mp�ikÞ�qlŜqp plpk
npðm� npÞ

�
�

�
;m
:

(4.13)

These components of the stress-energy tensor fulfill the
Poisson-bracket algebra a stress-tensor has to fulfill in
Minkowski space, see [54,57]. Details are given in
Appendix A.
The 3-dim. covariant generalizations of these expres-

sions read (; denotes the 3-dim. covariant derivative)

H matter � ffiffiffiffi
�

p
T̂��n�n�

¼ �np��
�
�ij�kl

pl
m� np

Ŝjk�

�
;i

� N2 ffiffiffiffi
�

p
T̂00; (4.14)

H matter
i � � ffiffiffiffi

�
p

T̂�i n�

¼ pi�þ 1

2

��
�mkŜik � ð�mk�pi

þ �mp�ki Þ�qlŜqp
plpk

npðm� npÞ
�
�

�
;m

� N
ffiffiffiffi
�

p
T̂0
i : (4.15)

Correspondingly,

�ik�jlŜijŜkl ¼ 2s2 ¼ const (4.16)

has to hold. The new canonical spin variables SðiÞðjÞ (the
round brackets make allusion to implicit dreibein compo-
nents) are defined such that

�ik�jlŜijŜkl ¼ SðiÞðjÞSðiÞðjÞ ¼ 2s2 (4.17)

is valid. This can be achieved by constructing eij as the

symmetric matrix square root of symmetric �ij (�ij ¼ �ji),

eilelj ¼ �ij; eij ¼ eji: (4.18)

Then it holds

Ŝ kl ¼ ekieljSðiÞðjÞ: (4.19)

The condition eij ¼ eji had also been imposed on the

spatial part of the vierbein field in [23] in order to achieve
a canonical formalism for the spin- 12 field.

If the 3-metric is represented in the form

�ij ¼ �ij þ hij; jhijj � 1; (4.20)

the solution for eij reads (with some abuse of notation)
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eij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ij þ hij

q
¼ �ij þ 1

2hij � 1
8hikhkj þ . . . (4.21)

and the variation of eij is given by

�eij ¼ 1
2��ij � 1

8ðhkj��ik þ hik��kjÞ þ . . . : (4.22)

It may be pointed out that the simple variational relation
for dreibein fields eðjÞi, where �ij ¼ eðkÞieðkÞj, of the form

2�eðjÞi ¼ eðjÞk�kl��li is not valid for our symmetric matrix

square root in general; exceptions are isotropic metrics.
Recalling Eq. (3.8), the new canonical momentum Pi is

defined in the way that the following structure holds,

H matter
i ¼ Pi�þ 1

2

��
�mkŜik � PlPk

nPðm� nPÞ
� ð�mk�pi þ �mp�ki Þ�qlŜqp

�
�

�
;m
; (4.23)

where

Pi � pi � 1

2

�
�lj�kp�il;p

� pmpq
npðm� npÞ�

mj�kl�qp�lp;i

�
Ŝjk: (4.24)

Hereof, we get

H matter ¼ �nP�� 1

2
tkij�

ij
;k �

�
Pl

m� nP
�ij�klŜjk�

�
;i
;

(4.25)

where the quantity tkij can be related to the flat
ffiffiffiffi
�

p
T̂ij via

Eq. (4.10):

ffiffiffiffi
�

p
T̂ij ¼ �PiPj

nP
�þ tkij;k þOðGÞ;

tkij � �kl
ŜlðiPjÞ
nP

�þ �kl�mn
ŜmðiPjÞPnPl

ðnPÞ2ðm� nPÞ�:
(4.26)

The crucial question now is for the canonical variables.
For both the second post-Newtonian order approximation
for spin and the spatial conformally flat case in general we
get for linear and angular momentum

Pi �
Z
d3xH matter

i ¼ Pi; (4.27)

Jij �
Z
d3xðxiH matter

j � xjH matter
i Þ

¼ ẑiPj � ẑjPi þ SðiÞðjÞ: (4.28)

It is important that these expressions were achieved in the
ADMTT gauge and with eij ¼ eji. Under these conditions

both generators of the global Poincaré group fit with the
standard Poisson-brackets,

fẑiðtÞ; PjðtÞg ¼ �ij; fSðiÞðtÞ; SðjÞðtÞg ¼ �ijkSðkÞðtÞ;
zero otherwise; (4.29)

where SðiÞðjÞ ¼ �ijkSðkÞ (SðiÞSðiÞ ¼ s2) with the completely

antisymmetric Levi-Civita tensor �ijk (�123 ¼ 1). In the

following we will also use the notations S for SðiÞ, P for

Pi, and Z for ẑi. The commutation relations of the field
variables still read

fhTTij ðx; tÞ; �klTTðx0; tÞg ¼ 16��TTkl
ij �ðx� x0Þ;

zero otherwise;
(4.30)

where

�TTkl
ij � 1

2½ð�il ���1@i@lÞð�jk ���1@j@kÞ
þ ð�ik ���1@i@kÞð�jl � ��1@j@lÞ
� ð�kl ���1@k@lÞð�ij � ��1@i@jÞ� (4.31)

with the inverse Laplacian ��1 and the partial space-
coordinate derivatives @i. Herewith we have completed
the calculation of the source terms applicable to the
ADM formalism. Crucial for our approach is the property
of our spin variables S to have conserved euclidean length.
Further discussion of the consistency of our formalism is
given in Sec. VI.
The ADM Hamiltonian, written for a many-particle

system (numbering a ¼ 1; 2; . . . ) depends on the following
variables,

HADM ¼ HADM½ẑia; Pai; SaðiÞ; hTTij ; �klTT� (4.32)

and the corresponding action W reads (dot means time
derivative)

W ¼
Z
dt

�X
a

Pai _̂z
i
a þ

X
a

SðiÞa �ðiÞ
a þ 1

16�

Z
d3x�ijTT

_hTTij

�HADM½ẑia; Pai; SðjÞa ; hTTij ; �ijTT�
�
; (4.33)

where �ðiÞ
a ¼ 1

2 �ijk�aðlÞðjÞ _�aðlÞðkÞ with �aðiÞðkÞ�aðjÞðkÞ ¼
�aðkÞðiÞ�aðkÞðjÞ ¼ �ij. Hereof, by variation of W with re-

spect to Pai, ẑ
i
a, S

ðiÞ
a ¼ 1

2 �
ijkSaðjÞðkÞ, �aðiÞðjÞ in the forms

�Pai, �ẑ
i
a, �S

ðiÞ
a , ��

ðiÞ
a ¼ 1

2 �ijk�aðlÞðjÞ��aðlÞðkÞ, the equa-

tions of motion follow:

_̂z iaðtÞ ¼ �
R
dt0HADM

�PaiðtÞ ; _PaiðtÞ ¼ ��
R
dt0HADM

�ẑiaðtÞ ;

(4.34)

�ðiÞ
a ðtÞ ¼ �

R
dt0HADM

�SðiÞa ðtÞ ; _SðiÞa ðtÞ ¼ �ijk�
ðjÞ
a ðtÞSðkÞa ðtÞ:

(4.35)

The field evolution is obviously given by Eq. (2.10).
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Finally, the transition to a Routhian reads

R½ẑia; Pai; SaðkÞ; hTTij ; _hTTij � ¼ HADM½ẑia; Pai; SaðkÞ; hTTij ; �klTT�

� 1

16�

Z
d3x�klTT

_hTTkl ;

(4.36)

with the field equations

�
R
Rðt0Þdt0

�hTTij ðxk; tÞ
¼ 0; (4.37)

and the equations of motion

_̂z iaðtÞ ¼ �
R
dt0R

�PaiðtÞ ;
_PaiðtÞ ¼ ��

R
dt0R

�ẑiaðtÞ ; (4.38)

�ðiÞ
a ðtÞ ¼ �

R
dt0R

�SðiÞa ðtÞ ;
_SðiÞa ðtÞ ¼ �ijk

�
R
dt0R

�SðjÞa ðtÞ
SðkÞa ðtÞ:

(4.39)

The Routhian is very suitable for the derivation of an
autonomous, conservative Hamiltonian for the matter,
where the solution hTTij of the field equations is replaced

by the matter variables, see [11].

V. SPACETIME APPROACH TO THE STRESS-
ENERGY TENSOR IN CANONICALVARIABLES

The 3-dim. derivation in the previous section of the
needed stress-energy components does not show up which
4-dim. object in curved spacetime is behind the performed
construction. This will be clarified in this section. Starting
from our original curved spacetime stress-energy tensor
density with covariant SSC, Eq. (4.1), we add up the
following Lie-shift to it,

ð ffiffiffiffiffiffiffi�gp
T��Þshifted � ffiffiffiffiffiffiffi�gp

T�� þLm�

ffiffiffiffiffiffiffi�gp
T��

¼
Z
d�

��
mu�u� �Dmð�

d�
u�Þ

�
�ð4Þ

� ðŜ�ð�u�Þ�ð4ÞÞjj�
�
; (5.1)

where m� ¼ �S��n�=ð1� nuÞ and
S�� ¼ Ŝ�� þ u�n
Ŝ

�
 � u�n
Ŝ
�
; (5.2)

ðn� þ p�=mÞŜ�� ¼ 0; (5.3)

as generalizations of Eqs. (4.7), (4.8), and (4.9) to curved
spacetime. Note that n� now introduces the lapse function

into these expressions. Equation (5.1) was found to be the
stress-energy tensor of a spinning particle with mass dipole
moment m� in [58], i.e., its position variable is the
Newton-Wigner one in the Minkowski limit.
Unfortunately, an explicit calculation shows that the com-
ponents Nð ffiffiffiffiffiffiffi�gp

T00Þshifted and gi�ð ffiffiffiffiffiffiffi�gp
T0�Þshifted still de-

pend on lapse and shift, which is not compatible with the
ADM formalism. The solution to this problem is inspired
by the observation that multiplication with n� and gi� does

not commute with taking the Lie-derivative.
Therefore, we first calculate the projections of the stress-

energy tensor density with covariant SSC given by
Eq. (4.1), i.e.,

ffiffiffiffi
�

p
T��n�n� and � ffiffiffiffi

�
p

T�i n�. These quanti-

ties, after a long calculation, turn out to be independent of
lapse and shift. Adding up their Lie-shifted expressions
(notice m0 ¼ 0) and also using the definitions (5.2) and

~p i � mui � n�S
k�Kik; (5.4)

which fortunately eliminates Kij and therewith �
ij, we end

up with the expressions

ð ffiffiffiffi
�

p
T��n�n�Þshifted ¼ �n~p��

�
�ij�kl

~pl
m� n~p

Ŝjk�

�
;i

� N2 ffiffiffiffi
�

p ~T00; (5.5)

ð� ffiffiffiffi
�

p
T�i n�Þshifted ¼ ~pi�þ 1

2

��
�mkŜik � ð�mk�pi

þ �mp�ki Þ�qlŜqp
~pl ~pk

n~pðm� n~pÞ
�
�

�
;m

þ �xlð~pi;l þ ~pl;i � ~pi;lÞ�
� N

ffiffiffiffi
�

p ~T0
i ; (5.6)

where �xl ¼ �ml=m. Full agreement is obtained with our
previous results (4.14) and (4.15) if the linear momentum
~pi (as function of space and time coordinates) gets parallel
shifted along �xl and shows no rotation. Then pi and ~pi
play identical roles and may be identified and thus, T̂�� and
~T�� too. In order to fulfill the global Poincaré algebra, we
must indeed drop this term proportional to �xl. Including it
into the definition of our canonical momentum (4.24) is not
possible, see Sec. IX.

VI. CONSISTENCY CONSIDERATIONS

Our action (4.33) has the important properties that it
exactly coincides with the expected spin dynamics in the
Minkowski case, that it reduces to the usual point-mass
dynamics for vanishing spins, and that our spin variables
have constant Euclidean length like in the covariant equa-
tions of motion approach for spin, see [42]. Our action,
formally valid up to arbitrary order, thus defines a spin
dynamics that should at least be a good approximation to
the dynamics described by the covariant stress-energy
tensor (4.1). We will argue in the following that up to the
second post-Newtonian order, i.e., the next-to-leading
spin-orbit and spin(1)-spin(2) order, our dynamics is in-
deed the same as of the covariant stress-energy tensor
treated as source in the Einstein field equations, see, e.g.,
[45].
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First we define

qi � ��ij�kl ŜjkPl
m� nP

�;

rki �
1

2
�kmŜim�� �ml�nk

ŜlðiPnÞPm
nPðm� nPÞ�:

(6.1)

Then (4.23) and (4.25) are simply given by H matter ¼
�nP�� 1

2 t
k
ij�

ij
;k þ qi;i and H matter

i ¼ Pi�þ rki;k. Instead

of (3.5) we now have:

�HmatterðxÞ
��ijðx0Þ ¼ 1

2

�
�PiPj

nP
�þ tkij;kðxÞ

�
�ðx� x0Þ

� 1

2

�tmklðxÞ
��ijðx0Þ�

kl
;mðxÞ þ

�
�qkðxÞ
��ijðx0Þ

� 1

2
tkijðxÞ�ðx� x0Þ

�
;k
; (6.2)

�Hmatter
k ðxÞ

��ijðx0Þ ¼
�
�rlkðxÞ
��ijðx0Þ

�
;l
: (6.3)

At the leading order the total divergences in (6.2) and (6.3)
do not contribute to (3.3):

�Hmatter

��ij
¼ 1

2
N

ffiffiffiffi
�

p
T̂ij þOðGÞ: (6.4)

Note that
ffiffiffiffi
�

p
T̂ij is here a Minkowski expression, where our

variables are definitely the correct canonical ones. This

ensures that the evolution equations of hTTij and �ijTT are

correct at the leading order, which is sufficient for a second
post-Newtonian Hamiltonian for spin, see also Eqs. (7.10)
and (7.11).

The structure of (4.27) and (4.28) is very promising, as it
already implies the fulfillment of a major part of the
Poincaré algebra. This is a very strong argument for our
spin variables to be canonical up to the second post-
Newtonian order for spin and also in the spatial confor-
mally flat case, or, from a different point of view, for our
spin dynamics (4.33) to be physical. This argument applies
to the reduced phase space in the ADMTT gauge, also
recall eij ¼ eji, where (4.27) and (4.28) were derived. The

problems encountered for a gauge independent formula-
tion are briefly presented in Appendix B.

In addition, the next-to-leading order gravitational spin-
orbit coupling we will obtain in Sec. VII is the same as in
[42]. The latter was based on a completely different ap-
proach using only the equations of motion for spin; the
stress-energy tensor for spin was not needed. Also the
remaining generator Gi of the Poincaré group was deter-
mined there and the Poincaré invariance was shown for the
two-body case. In Sec. IX we will extend the proof of the
Poincaré invariance to the spin(1)-spin(2) interaction case.

Finally we present a nice property of our spin variable,
both in the second post-Newtonian approximation for spin

and the spatial conformally flat case. In both cases we can

set Ŝai
j � Ŝail�

lj ¼ Ŝalj�
li � Ŝiaj ¼ SaðiÞðjÞ. This is ob-

vious in the spatial conformally flat case. The neglected
hTTij contributions are merely total divergences at the sec-

ond post-Newtonian order in the Hamilton constraint,
which do not contribute to the corresponding Hamiltonian.

VII. APPLICATIONS

In this section we will derive within our formalism the
ADM Hamiltonian of two spinning compact bodies with
next-to-leading order gravitational spin-orbit coupling, re-
cently obtained in [42], and with next-to-leading order
gravitational spin(1)-spin(2) coupling. Some calculations
in this and the following sections were confirmed with the
help of xTensor [59], a free package for MATHEMATICA

[60].
First we have to solve the constraints iteratively within

the post-Newtonian perturbation expansion, which can be
seen as a formal expansion in c�1. In the source terms of
the constraint equations, the action of the mass m has to be
counted asm�OðGc�2Þ, and similarly P�OðGc�3Þ and
S�OðGc�3Þ. In the following a subscript in round brack-
ets denotes the formal order in c�1. We further set  �
1þ�=8 and �ij ¼ ~�ij þ �ijTT in our coordinate condi-
tions (2.9). ~�ij can be written in terms of the vectors ~�i �
��1�ij;j ¼ ��1 ~�ij;j and �

i � ð�ij � 1
2@i@j�

�1Þ~�j as

~� ij ¼ �i;j þ �j;i � �ij�
k
;k þ ��1�k;ijk (7.1)

¼ ~�i;j þ ~�j;i � 1
2�ij ~�

k
;k � 1

2�
�1 ~�k;ijk: (7.2)

The Hamilton constraint for an arbitrary source,

1

16�
ffiffiffiffi
�

p
�
�Rþ 1

2
ð�ij�ijÞ2 � �ij�kl�

ik�jl
�
¼ H matter;

(7.3)

to the order needed for a second post-Newtonian
Hamiltonian for spin, then reads

� 1

16�
��ð2Þ ¼ H matter

ð2Þ ;

� 1

16�
��ð4Þ ¼ H matter

ð4Þ � 1

8
H matter

ð2Þ �ð2Þ;
(7.4)

� 1

16�
��ð6Þ ¼ H matter

ð6Þ � 1

8
ðH matter

ð4Þ �ð2Þ þH matter
ð2Þ �ð4ÞÞ

þ 1

64
H matter

ð2Þ �2
ð2Þ

þ 1

16�

�
ð~�ijð3ÞÞ2 �

1

2
�ð2Þ;ijhTTð4Þij

�
; (7.5)
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� 1

16�
��ð8Þ ¼ H matter

ð8Þ � 1

8
ðH matter

ð6Þ �ð2Þ þH matter
ð4Þ �ð4Þ

þH matter
ð2Þ �ð6ÞÞ þ 1

64
ðH matter

ð4Þ �2
ð2Þ

þ 2H matter
ð2Þ �ð2Þ�ð4ÞÞ � 1

512
H matter

ð2Þ �3
ð2Þ

þ 1

16�

�
1

8
�ð2Þð ~�ijð3ÞÞ2 þ 2 ~�ijð3Þ ~�

ij
ð5Þ

� 1

16
�ð2Þ;i�ð2Þ;jhTTð4Þij þ

1

4
ðhTTð4Þij;kÞ2

�

þ ðtdÞ; (7.6)

where (td) denotes total divergence, and the momentum
constraint,

� 1

8�
�ij�

jk
;k ¼ H matter

i ; (7.7)

can be expanded as

1

16�
~�ijð3Þ;j ¼ � 1

2
H matter

ð3Þi ; (7.8)

1

16�
~�ijð5Þ;j ¼ � 1

2
H matter

ð5Þi � 1

32�
ð�ð2Þ ~�

ij
ð3ÞÞ;j: (7.9)

The solution to the partial differential equation ~�ij;j ¼
�~�i ¼ Ai for ~�ij is given by (7.2) and ~�i ¼ ��1Ai. The
ADM Hamiltonian can now be calculated via Eq. (3.9).

In the near-zone hTTð4Þij results from:

�hTTð4Þij¼�TTkl
ij

�
32�

�ðRd3xH matter
ð8Þ Þ

�hTTð4Þkl
�1

4
�ð2Þ;k�ð2Þ;l

�

(7.10)

¼ �TTkl
ij ½�16�Tð4Þkl � 1

4�ð2Þ;k�ð2Þ;l�: (7.11)

The first of these equations is a consequence of the evolu-
tion equations (2.10), the second is a direct consequence of
the Einstein equations. Both lead to the same result, if the
consistency condition (3.3) is valid at the leading order. At

this order �ijTT vanishes in the near-zone, the transition to
the Routhian (4.36) is therefore trivial.

Now we introduce new indices a and b that number the
spinning particles. Expanding (4.25) for a many-particle
system yields

H matter
ð2Þ ¼ X

a

ma�a;

H matter
ð4Þ ¼ X

a

�
P2
a

2ma

�a þ 1

2ma

PaiSaðiÞðjÞ�a;j
�
;

(7.12)

H matter
ð6Þ ¼ X

a

�
�ðP2

aÞ2
8m3

a

�a � P2
a

4ma

�ð2Þ�a

þ 1

4ma

PaiSaðiÞðjÞ�ð2Þ;j�a � P2
a

8m3
a

PaiSaðiÞðjÞ�a;j

� 1

4ma

PaiSaðiÞðjÞð�ð2Þ�aÞ;j
�
; (7.13)

H matter
ð8Þ ¼ X

a

�ðP2
aÞ3

16m5
a

�a þ ðP2
aÞ2

8m3
a

�ð2Þ�a þ 5P2
a

64ma

�2
ð2Þ�a

� P2
a

4ma

�ð4Þ�a � 1

2ma

PaiPajh
TT
ð4Þij�a

� P2
a

8m3
a

PaiSaðiÞðjÞ�ð2Þ;j�a

� 5

32ma

PaiSaðiÞðjÞ�ð2Þ�ð2Þ;j�a

þ 1

4ma

PaiSaðiÞðjÞ�ð4Þ;j�a

þ 1

2ma

PaiSaðjÞðkÞhTTð4Þij;k�a
�
þ ðtdÞ; (7.14)

and (4.23) reads

H matter
ð3Þi ¼ X

a

�
Pai�a � 1

2
SaðjÞðiÞ�a;j

�
; (7.15)

H matter
ð5Þi ¼ X

a

1

4m2
a

ðPaiPajSaðjÞðkÞ�a;k

þ PajPakSaðjÞðiÞ�a;kÞ: (7.16)

The leading order of (4.26) is

Tð4Þij ¼
X
a

1

2ma

ð2PaiPaj�a þ PaiSaðjÞðkÞ�a;k

þ PajSaðiÞðkÞ�a;kÞ: (7.17)

The equivalence of (7.10) and (7.11) can now explicitly be

checked. The source terms of�ð4Þ, ~�
ij
ð3Þ and h

TT
ð4Þij arise from

the point-mass source-terms by a substitution Pai ! Pai þ
1
2SðiÞðjÞ@j. As this substitution commutes with ��1 and

�TTkl
ij , we can just apply this substitution to the point-

mass solutions of �ð4Þ, ~�ijð3Þ and h
TT
ð4Þij, which are, e.g., in

[11]. The results are, with ra ¼ jx� Zaj,

�spin
ð4Þ ¼ 2

X
a

PaiSaðiÞðjÞ
ma

�
1

ra

�
;j
; (7.18)

~�
ij spin
ð3Þ ¼ �X

a

�
SaðkÞðiÞ

�
1

ra

�
;kj

þ SaðkÞðjÞ
�
1

ra

�
;ki

�
; (7.19)

h
TT spin
ð4Þij ¼ X

a

PamSaðkÞðlÞ
ma

�
ð4�kði�jÞm@l � 2�ij�km@lÞ 1ra

þ ð�km@i@j@l � 2�kði@jÞ@m@lÞra
�
: (7.20)

In order to get this expression for hTTð4Þij, it is actually easier
to solve (7.10) directly, utilizing the formula 8���2�a ¼
�ra, than to use the substitution. The unknown functions

�ð6Þ and ~�ijð5Þ are not needed for the second post-Newtonian
Hamiltonian H2PN ¼ � 1

16�

R
d3x��ð8Þ, they disappear

after some partial integrations. �ð6Þ can be eliminated by
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Z
d3xH matter

ð2Þ �ð6Þ ¼ � 1

16�

Z
d3xð��ð2ÞÞ�ð6Þ

¼ � 1

16�

Z
d3x�ð2Þð��ð6ÞÞ (7.21)

and then using the constraint (7.5) for �ð6Þ. Using (7.2) for

~�ijð3Þ and also (7.9) and (7.16), we get,

Z
d3x ~�ijð3Þ ~�

ij
ð5Þ ¼ � 1

2

Z
d3x ~�ijð3Þ

�
�ð2Þ ~�

ij
ð3Þ

þX
a

1

2m2
a

PaiPakSaðkÞðjÞ�a
�
: (7.22)

The hTTð4Þij part of the Hamiltonian can also be simplified.

We define Að4Þij such that �hTTð4Þij ¼ �TTkl
ij Að4Þkl:

1

16�
Að4Þij � �X

a

PaiPaj
ma

�a �
X
a

1

ma

PaiSaðjÞðnÞ�a;n

� 1

4
�ð2Þ;i�ð2Þ;j: (7.23)

The hTTð4Þij contribution to the Hamiltonian then is

1

16�

Z
d3x

�
1

2
Að4ÞijhTTð4Þij þ

1

4
ðhTTð4Þij;kÞ2

�

¼ 1

16�

Z
d3x

1

4
Að4ÞijhTTð4Þij: (7.24)

Here we used the fact that �TTkl
ij is a Hermitian operator,

ðhTTð4Þij;kÞ2 ¼ �hTTð4Þij�hTTð4Þij þ ðtdÞ, and of course hTTð4Þij ¼
�TTkl
ij hTTð4Þkl. The spin part of this can further be written as

1

16�

Z
d3x

�
1

2
A
point�mass
ð4Þij h

TT spin
ð4Þij þ 1

4
A
spin
ð4Þijh

TT spin
ð4Þij

�
:

(7.25)

Note the factor 1
2 instead of 1

4 in the spin-orbit part. This

transformation of the hTTð4Þij contribution is very convenient,
because the spin part of hTTð4Þij is much simpler than its

point-mass part, which does not contribute any more in
Eq. (7.25).
The integral H2PN ¼ � 1

16�

R
d3x��ð8Þ can now be

computed. The regularization is, at the second post-
Newtonian order, done by Hadamard’s partie finie method
and by analytic regularization, see, e.g., [7,61,62]. In
Appendix C the formulas needed to regularize the integrals
occurring in this calculation are assembled.

Results for HNLO
SO and HNLO

SS

Now we are ready to present the results. Our
Hamiltonian for two spinning compact bodies has a next-
to-leading order spin-orbit partHNLO

SO and a next-to-leading

order spin(1)-spin(2) part HNLO
SS given by:

HNLO
SO ¼ �ððP1 � S1Þ � n12Þ

r212

�
5m2P

2
1

8m3
1

þ 3ðP1 � P2Þ
4m2

1

� 3P2
2

4m1m2

þ 3ðP1 � n12ÞðP2 � n12Þ
4m2

1

þ 3ðP2 � n12Þ2
2m1m2

�

þ ððP2 � S1Þ � n12Þ
r212

�ðP1 � P2Þ
m1m2

þ 3ðP1 � n12ÞðP2 � n12Þ
m1m2

�
þ ððP1 � S1Þ � P2Þ

r212

�
2ðP2 � n12Þ
m1m2

� 3ðP1 � n12Þ
4m2

1

�

� ððP1 � S1Þ � n12Þ
r312

�
11m2

2
þ 5m2

2

m1

�
þ ððP2 � S1Þ � n12Þ

r312

�
6m1 þ 15m2

2

�
þ ð1 $ 2Þ; (7.26)

HNLO
SS ¼ 1

2m1m2r
3
12

�
3

2
ððP1 � S1Þ � n12ÞððP2 � S2Þ � n12Þ þ 6ððP2 � S1Þ � n12ÞððP1 � S2Þ � n12Þ � 15ðS1 � n12ÞðS2 � n12Þ

� ðP1 � n12ÞðP2 � n12Þ � 3ðS1 � n12ÞðS2 � n12ÞðP1 � P2Þ þ 3ðS1 � P2ÞðS2 � n12ÞðP1 � n12Þ
þ 3ðS2 � P1ÞðS1 � n12ÞðP2 � n12Þ þ 3ðS1 � P1ÞðS2 � n12ÞðP2 � n12Þ þ 3ðS2 � P2ÞðS1 � n12ÞðP1 � n12Þ
� 1

2
ðS1 � P2ÞðS2 � P1Þ þ ðS1 � P1ÞðS2 � P2Þ � 3ðS1 � S2ÞðP1 � n12ÞðP2 � n12Þ þ 1

2
ðS1 � S2ÞðP1 � P2Þ

�

þ 3

2m2
1r

3
12

½�ððP1 � S1Þ � n12ÞððP1 � S2Þ � n12Þ þ ðS1 � S2ÞðP1 � n12Þ2 � ðS1 � n12ÞðS2 � P1ÞðP1 � n12Þ�

þ 3

2m2
2r

3
12

½�ððP2 � S2Þ � n12ÞððP2 � S1Þ � n12Þ þ ðS1 � S2ÞðP2 � n12Þ2 � ðS2 � n12ÞðS1 � P2ÞðP2 � n12Þ�

þ 6ðm1 þm2Þ
r412

½ðS1 � S2Þ � 2ðS1 � n12ÞðS2 � n12Þ�: (7.27)

Here r12 ¼ jZ1 � Z2j is the euclidean distance between the two particles and n12 denotes the unit vector r12n12 ¼
Z1 � Z2. ð1 $ 2Þ stands for repeating the preceding terms with particle one and two exchanged. HNLO

SO is identical to the
result in [42]. The result for HNLO

SS , already announced in [43], differs from the corresponding spin(1)-spin(2) potential,
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VSS
3PN, in [63]. A canonical transformation connecting both

results could not be found [43]. In a recent preprint [64],
prompted by the preprint version of [43], a missing con-
tribution in Eq. (4) of [63] has been identified, see [64],
[Eq. (2)], using information from [65], [Eq. (18)].

The term � 1
16�

R
d3x�ð2Þð ~�ijð3ÞÞ2, that contributes to the

Hamiltonian via (7.22), is the only one where terms pro-
portional to S2

1 and S2
2 survived the regularization proce-

dure. These terms must be dropped, because we already
neglected them in the stress-energy tensor.

Of course we are also able to calculate the leading order
spin-orbit and spin(1)-spin(2) Hamiltonians via H1PN ¼
�ð16�Þ�1

R
d3x��ð6Þ, which gives the well-known re-

sults:

HLO
SO ¼ X

a

X
b�a

SaðiÞðjÞ
r2ab

�
3mb

2ma

niabpaj � 2niabpbj

�
; (7.28)

HLO
SS ¼ 1

2

X
a

X
b�a

SaðkÞðiÞSbðkÞðjÞ
r3ab

½�ij � 3niabn
j
ab�: (7.29)

Here rab ¼ jZa � Zbj and rabniab ¼ ẑia � ẑib. These for-

mulas are even valid for arbitrary many particles.

VIII. DIFFERENT DERIVATION OF HNLO
SS

In order to confirm our result for HNLO
SS , we use the

method from [42] to rederive HNLO
SS . Our ansatz for HNLO

SS

linear in S1 and S2 is now:

HNLO
SS ¼ ~�ð4ÞijS

ðiÞ
1 S

ðjÞ
2 ¼ �

spinð2Þ
ð4Þ � S1 ¼ �

spinð1Þ
ð4Þ � S2:

(8.1)

Note that the equal signs are correct here, because

½�spinð2Þ
ð4Þ �i ¼ ~�ð4ÞijS

ðjÞ
2 (8.2)

already includes the full dependence of the Hamiltonian on
S2. The formula for�ð4Þ given in [42] can be used without
further changes, but now the spin-dependent parts of the
quantities have to be inserted. The evolution equations,
correctly given by (2.8) if (3.2) and (3.3) are fulfilled, read:

�ij;0 ¼ 2N��1=2ð�ij � 1
2�ij�kl�

klÞ þ Ni;j þ Nj;i; (8.3)

�ij;0 ¼ �N ffiffiffiffi
�

p ðRij � 1
2�

ijRÞ
þ 1

2N�
�1=2�ijð�mn�mn � 1

2�mn�
mnÞ

� 2N��1=2ð�mn�im�nj � 1
2�mn�

mn�ijÞ
þ ��1=2ðN;ij � �ijN;m

;mÞ þ ð�ijNmÞ;m
� Ni

;m�
mj � Nj

;m�
mi þ 1

2N�
im�jnTmn: (8.4)

Here Rij is the 3-dim. Ricci-tensor. Now we determine
lapse and shift by demanding that our coordinate condi-
tions (2.9) are preserved under this time evolution. In
particular we insert (8.3) into 3�ij;0j � �jj;0i ¼ 0, and we

take the �ij-trace of (8.4). The post-Newtonian expansion

of the resulting expressions, with further simplifications
using the constraints, leads to:

Nð0Þ ¼ 1; Nð2Þ ¼ �1
4�ð2Þ; (8.5)

�Nð4Þ ¼ 4�Tð4Þii þ 4�H matter
ð4Þ � �H matter

ð2Þ �ð2Þ

þ 1
16ð�ð2Þ�ð2Þ;iÞ;i; (8.6)

�Nð3Þi þ 1
3Nð3Þj;ji ¼ 16�H matter

ð3Þi ; (8.7)

�Nð5Þi þ 1
3Nð5Þj;ji ¼ 16�H matter

ð5Þi þ ½�ð2Þ ~�
ij
ð3Þ

þ Nð3Þðj�ð2Þ;iÞ�;j � 1
3½Nð3Þj�ð2Þ;j�;i:

(8.8)

Note that also Tij is needed for N. The solution of �Ni þ
1
3Nj;ji ¼ Ai is given by Ni ¼ ð�ij � 1

4 @i@j�
�1Þ��1Aj.

Again we can get Nð4Þ and Nð3Þi by the substitution Pai !
Pai þ 1

2SðiÞðjÞ@j from their point-mass solutions. This gives:

N
spin
ð4Þ ¼ � 3

2

X
a

PaiSaðiÞðjÞ
ma

�
1

ra

�
;j
;

N
spin
ð3Þi ¼ 2

X
a

SaðjÞðiÞ
�
1

ra

�
;j
:

(8.9)

Nð5Þi is more complicated, but for �ð4Þ we only need

�ijkN
spin
ð5Þj;k ¼ �ijk

X
a

�
�2

PasPamSaðmÞðtÞ
m2
a

�jðs�tÞl
�
1

ra

�
;kl

þmaSaðjÞðmÞ
�
1

r2a

�
;km

�

þ �ijk@k@l
X
a

X
b�a

@am½4mbSaðmÞðjÞð@bl � @al Þ

þ 4mbSaðmÞðlÞð@bj � @aj Þ� lnsab; (8.10)

where sab ¼ ra þ rb þ rab and @ai and @bi are partial de-
rivatives with respect to Za and Zb, and we used the
formula � lnsab ¼ ðrarbÞ�1. Finally, we get from the lead-
ing order spin-orbit Hamiltonian (7.28):

v
i spin
ð3Þa ¼ fẑia; HLO

SO g ¼ �X
b�a

�
3mbSaðiÞðjÞ

2ma

þ 2SbðiÞðjÞ
�
njab
r2ab

:

(8.11)

Now �
spin
ð4Þ1 can be calculated by applying partie finie

regularization, e.g.,
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1

2
SaðjÞðkÞRegaðNspin

ð5Þj;kÞ ¼
3

2

PbiPbmSaðjÞðkÞSbðnÞðlÞ
m2
br

3
ab

�½��ij�mnnkabnlab
þ �jn�mln

k
abn

i
ab� þ

SaðiÞðjÞSbðiÞðlÞ
r4ab

�ð3ma þmbÞð4njabnlab � �jlÞ;
(8.12)

where a ¼ 1 and b ¼ 2, or a ¼ 2 and b ¼ 1, and
RegaðfðxÞÞ ¼ fregðZaÞ, see Appendix C. Although this

term is not symmetric under exchange of both particles,
the final result (8.1) recovers this symmetry, and indeed
turns out to be the same as (7.27). It should be stressed that
this approach is indeed independent from the one of the last
section, in particular, lapse and shift functions had to be
determined, also using Tij, and �ð4Þ was determined using

the equations of motion of a spinning body in [42].

IX. APPROXIMATE POINCARÉ ALGEBRA

At last, the Poincaré invariance at the next-to-leading
spin(1)-spin(2) order was not yet verified. First we calcu-
late GNLO

SO and GNLO
SS with the help of (3.9), i.e., G2PN ¼

� 1
16�

R
d3xx��ð6Þ. Using the 3-particle integrals from

Ref. [10]

Z
d3x

r2a
rbrc

¼ �4�

�
��1 r

2
a

rb

�
x¼Zc

¼ �4�

�
� 1

6
r3bc þ

1

4
ðr2ac þ r2abÞrbc

�
; (9.1)

Z
d3x

r2arb
rc

¼ �4�½��1ðr2arbÞ�x¼Zc

¼ � 4�

180
½10r2ac þ 5r2ab � 4r2bc�r3bc; (9.2)

and treating the origin as a particle coordinate, results in

GNLO
SO ¼�X

a

P2
a

8m3
a

ðPa�SaÞþ
X
a

X
b�a

mb

4marab

�
�5ðPa�SaÞ

þððPa�SaÞ �nabÞ5ZaþZb
rab

�

þX
a

X
b�a

1

rab

�
3

2
ðPb�SaÞ�1

2
ðnab�SaÞðPb �nabÞ

�ððPa�SaÞ �nabÞZaþZb
rab

�
; (9.3)

GNLO
SS ¼ 1

2

X
a

X
b�a

�
ðSb � nabÞ Sa

r2ab
þ ð3ðSa � nabÞðSb � nabÞ

� ðSa � SbÞÞ Za
r3ab

�
: (9.4)

We get the same result for GNLO
SO as in [42], if we consider

our expression for two particles. Now the Poincaré algebra
for two bodies, includingHNLO

SS , can be verified in the same

way as in [42], also see [66]. The algebra is indeed fulfilled.
If we would have kept the term proportional to �xl in

Sec. V, then we must include it into the definition of our
canonical momentum (4.24). This gives only a change in

H matter, in particular, the term � P2
a

8m3
a
PaiSaðiÞðjÞ�ð2Þ;j�a in

Eq. (7.14) disappears. Then we must add ððP1�S1Þ�n12Þ
r2
12

m2P
2
1

2m3
1

þ
ð1 $ 2Þ to the Hamiltonian in Eq. (7.26), but the center-of-
mass vector G, calculated in this section, stays unchanged,
as Eq. (7.14) does not contribute to it. The Poincaré algebra
would not be fulfilled any more, therefore we have to drop
the term proportional to �xl in Sec. V.
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APPENDIX A: POISSON-BRACKETALGEBRA OF
SPINNING PARTICLES STRESS-ENERGY

TENSOR IN MINKOWSKI SPACE

The following equal-time algebra, i.e., x0 ¼ x00, must be
valid in Minkowski space [54] (see also [57]),

fH matterðxÞ;H matterðx0Þg ¼ �½H matter
i ðxÞ

þH matter
i ðx0Þ��xx0;i

þ @m@n@
0
p@

0
q½fmnpqðxÞ�xx0 �;

(A1)

fH matter
i ðxÞ;H matterðx0Þg ¼ �H matterðxÞ�xx0;i

� Tijðx0Þ�xx0;j

þ @n@
0
p@

0
q½ginpqðxÞ�xx0 �;

(A2)

fH matter
i ðxÞ;H matter

j ðx0Þg ¼ �H matter
j ðxÞ�xx0;i

�H matter
i ðx0Þ�xx0;j

þ @n@
0
q½hinjqðxÞ�xx0 �: (A3)

Here �xx0 � �ðx� x0Þ, where x and x0 are the spatial parts
of x and x0. This local algebra is a consequence of the
global Poincaré algebra, whose generators can be written
in terms of integrals over certain components of the stress-
energy tensor, similar to Eq. (3.8). The terms containing f,
g and h turn into vanishing surface terms in the generators
of the Poincaré algebra. It holds:
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fmnpq ¼ fnmpq ¼ fmnqp; the same for g and h;

(A4)

fmnpq ¼ �fpqmn; the same for h: (A5)

An explicit calculation with the Minkowski versions of
(4.23), (4.25), and (4.26) shows that we have to set

fmnpqðxÞ ¼ 0 ¼ ginpqðxÞ; (A6)

hinjqðxÞ ¼
�
�ŜqÞðnPiÞðj � �kl

pkŜlðnPiÞðjpqÞ
ðnpÞðm� npÞ

þ �kl
pkŜlðqPjÞðipnÞ
ðnpÞðm� npÞ

�
�;

with P ij � �ij �
pipj

ðnpÞ2 : (A7)

Now the local algebra is fulfilled linear in the spin varia-
bles, as it should be, because our variables are known to be
canonical in the Minkowski case. It was already noted in
[67], in the context of quantum field theory, that hinjqðxÞ
does not generally vanish if fields with spin are present, in
particular, spin- 12 fields. For fields with spin

3
2 one even has

fmnpq � 0, see [68]. The consequences of nonvanishing

hinjqðxÞ are considered in Appendix B.

APPENDIX B: POISSON-BRACKETALGEBRA OF
NON-SPINNING PARTICLES STRESS-ENERGY

TENSOR IN GENERAL RELATIVITY

We assume that the following equal-time constraint
algebra on the nonreduced phase space without gauge
fixing is valid [20,48,53]:

fH ðxÞ;H ðx0Þg ¼ �½H iðxÞ�ijðxÞ þH iðx0Þ�ijðx0Þ��xx0;j;

(B1)

fH iðxÞ;H ðx0Þg ¼ �H ðxÞ�xx0;i; (B2)

fH iðxÞ;H jðx0Þg ¼ �H jðxÞ�xx0;i �H iðx0Þ�xx0;j: (B3)

Note that, compared to the algebra of the last section, the
Tij term and the surface terms are absent. If this local

algebra is fulfilled, then the global Poincaré algebra can
also be derived [20,48]. At this point the constraints are not
solved and no coordinate conditions are imposed, i.e., one
has to use f�ijðx; tÞ; �klðx0; tÞg ¼ 16��klij�ðx� x0Þ, where
�klij ¼ �kði�

l
jÞ.

Remember thatH andH i are a sum of matter and field
parts. The field-field Poisson-brackets cancel with the field
terms on the right hand side of each relation of the algebra,
because the algebra is fulfilled if no matter would be
present, see [53]. In the context of (2.4), the matter parts
do not depend on �ij, Eq. (3.4). Therefore all terms pro-
portional to �ij that arise from the mixed matter-field

Poisson-brackets must vanish separately. These are exactly
the ones with H field:

fHfieldðxÞ; Hmatterðx0Þg þ fHmatterðxÞ; Hfieldðx0Þg ¼ 0; (B4)

fHmatter
i ðxÞ; Hfieldðx0Þg ¼ 0: (B5)

These conditions are indeed equivalent to Eq. (3.5). From
(B5) follows:

�klðx0Þ
�
�klðx0Þ�mnðx0Þ�H

matter
i ðxÞ

��mnðx0Þ � 2
�H matter

i ðxÞ
��klðx0Þ

�
¼ 0

(B6)

Because of the factor 2, we have
�Hmatter

i ðxÞ
��klðx0Þ ¼ 0 as the only

possible solution. In Eq. (B4) we make a general ansatz

�H matterðxÞ
��ijðx0Þ ¼ aijðxÞ�ðx� x0Þ

þ XN
n¼1

ak1...knij ðxÞ@k1 . . . @kn�ðx� x0Þ;

(B7)

ak1...knij � @H matter½�ij; ð@k1�ijÞ; . . . ; ð@k1 . . . @kN�ijÞ�
@ð@k1 . . . @kn�ijÞ

;

(B8)

integrate over x0 and demand that the term with the highest
number of derivatives on �ij must vanish separately. The
resulting equation is similar to (B6), this time leading to

ak1...kNij ðxÞ ¼ 0. Now we have effectively reducedN by one,

proceeding this way we get ak1...knij ðxÞ ¼ 0 for all n with

1 � n � N. Comparing with (3.3) we see that aij has to be

identified as 1
2

ffiffiffiffi
�

p
Tij.

From (3.5) then immediately follows:

fHfield
i ðxÞ; Hmatterðx0Þg ¼ ffiffiffiffi

�
p

Tjkðx0Þ½�ji�klðx0Þ�xx0;l

þ �jk;iðx0Þ�xx0 �; (B9)

fHfield
i ðxÞ; Hmatter

j ðx0Þg ¼ 0: (B10)

For the matter part therefore a similar algebra as in the
Minkowski case has to hold,

fH matterðxÞ;H matterðx0Þg ¼ �½H matter
i ðxÞ�ijðxÞ

þH matter
i ðx0Þ�ijðx0Þ��xx0;j;

(B11)

fH matter
i ðxÞ;H matterðx0Þg ¼ �H matterðxÞ�xx0;i

� ffiffiffiffi
�

p
Tjkðx0Þ½�ji�klðx0Þ�xx0;l

þ �jk;iðx0Þ�xx0 �; (B12)
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fH matter
i ðxÞ;H matter

j ðx0Þg ¼ �H matter
j ðxÞ�xx0;i

�H matter
i ðx0Þ�xx0;j: (B13)

If the consistency conditions (3.4) and (3.5) hold, still in the
context of (2.4), then this algebra can be used to validate
the canonical variables of the matter part on the nonre-
duced phase space. This algebra is indeed fulfilled for
point-masses, and of course also Eqs. (2.4), (3.4), and (3.5).

Because in the algebra (B11) and (B12) there are no
variations with respect to �ij and �

ij left any more, we can

now consider its Minkowski space limit. This gives the
algebra of the last section with 0 ¼ fmnpqðxÞ ¼ ginpqðxÞ ¼
hinjqðxÞ. But in the last Section we have seen that for

spinning bodies hinjqðxÞ does not vanish, not even in the

Newtonian case. Therefore we already see by inspecting
the Minkowski case that the coupling to gravity cannot be
of the simple kind defined by (2.4), (3.4), and (3.5).
Another problem that must be addressed by a gauge inde-
pendent formulation is that we have (6.2) and (6.3) instead
of Eq. (3.5). The total divergence in (6.2) contributes to the
leading order. Therefore (3.5) is not even fulfilled at the
leading order. This together with the nonvanishing hinjqðxÞ
leads to additional contributions to the algebra (B1)–(B3)
and suggests its extension when spinning objects are
present. Extensions to (2.4) may also be considered, recall
Ref. [55].

Important about the algebra of (first-class) constraints is
their connection to the gauge structure of the considered
theory, see, e.g., [69]. This makes the algebra (B1)–(B3)
quite robust even if other systems are coupled to gravity.
Extended forms of the algebra (B1)–(B3) were, to the best
of our knowledge, indeed only found when the gauge
structure was also extended [21,26,70,71]. This we will
keep in mind when investigating higher approximations in
future.

The considerations of this Appendix do not show up any
inconsistencies of the canonical formulation for spinning
bodies given in this paper because they are requiring that
no coordinate conditions are imposed. Rather they indicate
that the gauge conditions (2.9) must be seen as essential
part of our formulation.

APPENDIX C: PARTIE FINIE AND ANALYTIC
REGULARIZATION

In this Appendix we will present the regularization
techniques we used in this work. We first give a short
overview of Hadamard’s partie finie method. Let us con-
sider f being a real function defined in an environment of
the point x0 2 R3, except in this point where f is singular.
We define a family of complex-valued functions fn as
follows:

fn: C 3 "� fnð"Þ � fðx0 þ "nÞ 2 C: (C1)

We expand fn in a Laurent-series around " ¼ 0:

fnð"Þ ¼
X1

m¼�N
amðnÞ"m: (C2)

The regularized value of f at x0 is defined as the coefficient
at "0 in the expansion (C2) mean-valued over all unit
vectors n, [7,61,62],

fregðx0Þ � 1

4�

I
d�a0ðnÞ: (C3)

This formula can be used to calculate integrals with delta-
distributions. We define

Z
d3xfðxÞ�ðx� ZaÞ :¼ fregðZaÞ; (C4)

which provides us with a formula for calculating Poisson
integrals of the form

��1

�X
a

fðxÞ�a
�
¼ ��1

�X
a

fregðxÞ�a
�

¼ X
a

fregðZaÞ��1�a

¼ � 1

4�

X
a

fregðZaÞ 1ra : (C5)

A complicated example is given by (8.12).
Integrals that do not contain a delta function are regu-

larized analytically [61]. First we perform all differentia-
tions in the integrand, and then constrain ourselves to the
two particle case. The integrand then depends on r1 ¼
jx� Z1j, n1 ¼ ðx� Z1Þ=r1 and r2, n2. Now we introduce
the analytic regularization parameter � by replacing r�1 by

r
�þ��
1 , and r	2 by r	þ��2 . The vectors ni1 and nj2 are then
rewritten as partial derivatives @1i and @

2
j with respect to the

particle positions

r�an
i
a ¼ � @ai r

�þ1
a

�þ 1
; r�an

i
an

j
a ¼ ��ijr

�
a

�
þ @ai @

a
j r
�þ2
a

�ð�þ 2Þ ;
(C6)

r�an
i
an

j
anka ¼

ð�ij@ak þ �ik@
a
j þ �jk@

a
i Þr�þ1

a

ð�� 1Þð�þ 1Þ

� @ai @
a
j @

a
kr
�þ3
a

ð�� 1Þð�þ 1Þð�þ 3Þ : (C7)

These equations are sometimes not defined without regu-
larization, because the right-hand side might diverge in
special cases. The derivatives @1i and @2j are now pulled

out in front of the integral, and we can use the famous
formula from [72] to carry out the integrations:

�Z
d3xr�1 r

	
2

�
reg

� �3=2
�ð�þ3

2 Þ�ð	þ3
2 Þ�ð� �þ	þ3

2 Þ
�ð� �

2Þ�ð� 	
2Þ�ð�þ	þ6

2 Þ r
�þ	þ3
12 :

(C8)
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After the partial derivatives @1i and @
2
j with respect to the

particle positions, that were pulled out of the integral
before, are performed, the limit �! 0 can be considered.
In all cases emerging in our calculations this limit was
independent of the direction in the ð�; �Þ-plane.

Astonishingly, the most complicated integral appearing in
this work has the simplest solution:

Z
d3xh

TT spin
ð4Þij �ð2Þ;i�ð2Þ;j ¼ 0: (C9)
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