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Gravitational waveforms from the inspiral and ring-down stages of the binary black-hole coalescences

can be modeled accurately by approximation/perturbation techniques in general relativity. Recent

progress in numerical relativity has enabled us to model also the nonperturbative merger phase of the

binary black-hole coalescence problem. This enables us to coherently search for all three stages of the

coalescence of nonspinning binary black holes using a single template bank. Taking our motivation from

these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-

down stages of the coalescence of nonspinning binary black holes that follow quasicircular inspiral. This

two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We

show that the template family is not only effectual in detecting the signals from black-hole coalescences,

but also faithful in estimating the parameters of the binary. We compare the sensitivity of a search (in the

context of different ground-based interferometers) using all three stages of the black-hole coalescence

with other template-based searches which look for individual stages separately. We find that the proposed

search is significantly more sensitive than other template-based searches for a substantial mass range,

potentially bringing about remarkable improvement in the event rate of ground-based interferometers. As

part of this work, we also prescribe a general procedure to construct interpolated template banks using

nonspinning black-hole waveforms produced by numerical relativity.

DOI: 10.1103/PhysRevD.77.104017 PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db

I. INTRODUCTION

A network of ground-based gravitational-wave (GW)
detectors (LIGO, Virgo, GEO 600, TAMA) is currently
collecting data, which a worldwide scientific collaboration
is involved in analyzing. Among the most promising
sources detectable by these observatories are coalescing
compact binaries consisting of black holes (BHs) and/or
neutron stars spiraling toward each other as they lose
orbital energy and angular momentum through
gravitational-wave emission. The gravitational-wave sig-
nal from coalescing binaries is conventionally split into
three parts: inspiral, merger, and ring down. In the first
stage, the two compact objects, usually treated as point
masses, move in quasicircular orbits (eccentricity, if
present initially, is quickly radiated away). This part of
the waveform is described very well by the post-Newtonian
(PN) approximation of general relativity. In this approxi-
mation the Einstein equations are solved in the near zone

(which contains the source) using an expansion in terms of
the (small) velocity of the point masses. In the far zone, the
vacuum equations are solved assuming weak gravitational
fields, and these two solutions are matched in the inter-
mediate region [1–3].
The PN approximation breaks down as the two compact

objects approach the ultrarelativistic regime and eventually
merge with each other. Although various resummation
methods, such as Padé [4] and effective-one-body (EOB)
approaches [5], have been developed to extend the validity
of the PN approximation, unambiguous waveforms in the
merger stage must be calculated numerically in full general
relativity. Recent breakthroughs in numerical relativity [6–
8] have allowed many groups [6–13] to evolve BH binaries
fully numerically for the last several orbits through the
plunge to single BH formation. The field is now rapidly
developing the capability to routinely evolve generic
black-hole binary configurations in the comparable-mass
regime, and to accurately extract the gravitational-wave
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signal. Important milestones include simulations of
unequal-mass binaries and calculations of the gravitational
recoil effect and the evolution of black-hole binaries with
spin [14–24].

Comparisons with post-Newtonian results are essential
for data-analysis efforts, and several groups have published
results showing good agreement of various aspects of non-
spinning simulations with post-Newtonian predictions (see
e.g. [25–32]), and the first results for certain configurations
with spin have also become available [33,34]. In order to
overcome phase inaccuracies in long evolutions, signifi-
cant progress has been made by the Caltech-Cornell group
using spectral codes [35,36], and by the Jena group using
higher (sixth) order finite differencing [37]. Methods to
reduce the eccentricity to around 10�3 (so far only for
equal-mass binaries) have been presented by the Caltech-
Cornell group [36], and the Jena group [38] (using initial
parameters from PN solutions that take into account radia-
tion reaction). Current numerical waveforms can be gen-
erated for the last ( & 10) orbits, and these waveforms can
be joined continuously with analytic PN inspiral wave-
forms to obtain one full signal. This was done in
[27,29,30,39]. Indeed, there are no fundamental obstruc-
tions to generating the whole waveform, including long
inspiral over hundreds of orbits, by solving the full Einstein
equations numerically. But, not only would this be compu-
tationally prohibitive with current methods, it is also un-
necessary: the PN formalism is known to work very well in
the weak-field regime (when the BHs are well separated),
and is a low-cost and perfectly adequate substitute to fully
general relativistic solutions in that regime.

The numerically generated part of the gravitational-
wave signal from coalescing binaries also includes the final
stage of the coalescence, when a single perturbed black-
hole is formed and it rapidly loses its deviations from a
Kerr black hole via gravitational waves. This part of the
signal can be decomposed as a superposition of exponen-
tially damped modes, and is called quasinormal mode
‘‘ring down,’’ by analogy with the vibrations of a bell.
The detectable part of the ring down is rather short and
only a few modes (if not only the dominant one) are
expected to be important/detectable by initial ground-
based observatories. This will not be true, however, for
the advanced detectors [40] and certainly it is not the case
for LISA, the planned space-borne gravitational-wave ob-
servatory. Indeed, the majority of the signal-to-noise ratio
(SNR) comes from the quasinormal mode ringing of binary
systems with a total mass above a few 106M� [41]. For
LISA, and also perhaps for the next generation of ground-
based detectors, it will be possible to detect several quasi-
normal modes and test the ‘‘no hair’’ theorem, according to
which all modes are functions of a BH’s mass and spin
[41–43].

Joining analytically modeled inspiral with numerically
generated merger and ring down allows us to produce the

complete gravitational-wave signal from coalescing bi-
naries, and to use it in the analysis of detector data.
There are several benefits to using the whole signal in
searches. The most obvious one is the increase in SNR in
a fully coherent matched filtering search [30,44–46].
Increase in SNR implies increase in the event rate and
improvement in the parameter estimation. Including the
inspiral, merger, and ring-down parts in a template wave-
form also means that the waveform has a more complex
structure. This extra complexity will also bring about some
improvement in the parameter estimation [47] and possibly
also a reduction in the false-alarm rate in analysis of the
data from the ground-based network of detectors. This is
because it is in general harder for the noise to mimic a
complex signal.1 For LISA, the detection of inspiralling
supermassive black holes is not a problem; the SNR is
expected to be so large that we expect some signals to be
visible by eye in LISA data. However, using the full signal
for LISA data analysis is equally important because the full
signal is essential in estimating parameters of the binary
with the required accuracy. This is important not only from
the astrophysical point of view, but also because we need to
subtract loud signals from the data in order to detect/
analyze other signals. Imperfect signal removal due to
errors in the parameter estimation will result in large
residuals and will adversely affect subsequent analyses.
Improved parameter estimation will also enable GW ob-
servations (in conjunction with electromagnetic observa-
tions) to constrain important cosmological parameters,
most importantly the equation of state of dark energy
[47–52].
The numerical waveforms described above are still

computationally expensive and cannot be used directly to
densely cover the parameter space of the binary BHs that
will be searched over by matched filtering techniques. A
promising alternative is to use the post-Newtonian and
numerical-relativity waveforms to construct an analytic
model that sufficiently accurately mimics a true signal
[30,39]. In [30] we have suggested a phenomenological
family of waveforms which can match physical signals
from nonspinning binaries in quasicircular orbits with fit-
ting factors above 99%. In this paper we extend this for-
mulation to propose a two-parameter family of template
waveforms which are explicitly parametrized by the physi-
cal parameters of the binary. We show that this two-
dimensional template family is not only ‘‘effectual’’ in
detecting the signals from binary BH coalescences, but
also ‘‘faithful’’ in estimating the parameters of the binary.
This family of template waveforms can be used to densely
cover the parameter space of the binary, thus avoiding the
computational burden of generating numerical waveforms
in each grid point in the parameter space. We compute the

1At least we expect this to happen for those binaries for which
both the inspiral and the merger contribute significantly to SNR.
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effectualness and faithfulness (see Sec. III for definitions)
of the template family in the context of three different
ground-based detectors: namely, Initial LIGO, Virgo, and
Advanced LIGO. We also compare the sensitivity of a
search which coherently includes all three (inspiral,
merger, and ring down) stages of the BH coalescence
with other template-based searches which look for each
stage separately.

Our ‘‘target signals’’ are constructed by matching the
numerical-relativity waveforms to a particular family
(TaylorT1 approximant [46]) of post-Newtonian wave-
forms, but this choice is by no means necessary. Indeed,
we expect that more robust ways of constructing post-
Newtonian approximants, such as the effective one-body
approach [5] or Padé resummation approach [4], will give
better agreement with numerical-relativity (NR) wave-
forms. But the purpose of the current paper is to explicitly
prescribe a general procedure to produce hybrid and phe-
nomenological waveforms, and to construct interpolated
template banks using parametrized waveforms. We show
that, given the number of numerical wave cycles we em-
ploy, even a simple PN choice like TaylorT1 leads to very
faithful and effectual templates, and significantly increases
the possible range of gravitational-wave searches. The use
of improved PN approximants will require a smaller num-
ber of NR cycles, thereby further reducing computational
cost for template construction. There are also other ap-
proaches for comparing analytic and numerical waveforms
and for constructing hybrid waveforms (see, for example
[29]); it would be interesting to compare the results pre-
sented in this work with other approaches presented in the
literature.

The paper is structured as follows. In Sec. II we sum-
marize the methods of current numerical-relativity simu-
lations, including a setup of the initial data that allows an
unambiguous comparison with post-Newtonian results,
and the wave extraction techniques. In Sec. III we briefly
outline the waveform generation using the restricted post-
Newtonian approximation. There we briefly introduce the
main data-analysis techniques and define notations that are
used in the subsequent sections. In Sec. IV we construct a
phenomenological template family parametrized only by
the masses of the two individual black holes. First we
combine restricted 3.5PN waveforms [53] with results
from NR simulations to construct ‘‘hybrid’’ waveforms
for the quasicircular inspiral of nonspinning binaries with
possibly unequal masses. Then, we introduce a phenome-
nological family of templates constructed in the frequency
domain. Initially the template family is parametrized by 10
phenomenological parameters. We then find a unique map-
ping of these 10 parameters to the two physical parameters:
namely, the total mass M and the symmetric mass ratio
� � M1M2=M

2, so that the template family is just two-
dimensional. The resulting templates have remarkably
high fitting factors with target waveforms. Here we also

compute the faithfulness of the templates and the bias in
the estimation of the parameter of the binary. A compari-
son of the sensitivity of the search using the proposed
template family with other existing template-based
searches is also presented. Finally, we summarize our
main results in Sec. V. Some details of the calculations
involved are described in Appendices A and B. We adopt
geometrical units throughout this paper: G ¼ c ¼ 1.

II. NUMERICAL SIMULATIONS AND WAVE
EXTRACTION

Numerical simulations were performed with the BAM

[11] and CCATIE [23] codes. Both codes evolve black-
hole binaries using the ‘‘moving-puncture’’ approach
[7,8]. The method involves setting up initial data contain-
ing two black holes via a Brill-Linquist-like wormhole
construction [54], where the additional asymptotically
flat end of each wormhole is compactified to a point, or
‘‘puncture.’’ A coordinate singularity exists at the punc-
ture, but can be stably evolved using standard finite-
difference techniques, and is protected by causality from
adversely affecting the physically relevant external space-
time. This prescription allows black holes to be constructed
on a 3D Cartesian numerical grid without recourse to
excision techniques, and also provides a simple way to
generate any number of moving, spinning black holes
[55,56]. Given an initial configuration of two black holes,
the data are evolved using a conformal and traceless ‘‘
3þ 1’’ decomposition of Einstein’s equations [57–59]. In
addition the gauge is evolved using the ‘‘ 1þ log’’ [60,61]
and ‘‘ �-driver’’ equations [61,62] and the coordinate
singularity in the conformal factor is dealt with by evolving
either the regular variable � ¼  �4 [7] (in BAM) or � ¼
ln (in CCATIE), which diverges ‘‘slowly’’ enough so as not
lead to numerical instabilities. The standard moving-
puncture approach consists of all these techniques, and
causes the punctures to quickly assume a cylindrical
asymptotics [63], and allows them to move across the
numerical grid. This method has been found to allow
accurate, stable simulations of black holes over many (>
10) orbits through merger and ring down.
In the initial-data construction we must specify the

masses, locations, and momenta of the two black holes
(we do not consider spinning black holes in this work). The
mass of each black hole, Mi, is specified in terms of the
Arnowitt-Deser-Misner mass at each puncture. This corre-
sponds to the mass at the other asymptotically flat end
which is, to a very good approximation, equal to irreduc-
ible mass of the apparent-horizon mass [64–66]

Mi ¼
ffiffiffiffiffiffiffiffiffi
Ai
16�

s
; (2.1)

where Ai is the area of the apparent horizon. We assume
that this mass is the same as the mass used in post-
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Newtonian formulas. This assumption is really expected to
be true only in the limit where the black holes are infinitely
far apart and stationary. As such we consider any error in
this assumption as part of the error due to starting the
simulation at a finite separation. The important point is
that a binary with horizon masses M1 and M2 should be
compared with a post-Newtonian system with the same
mass parameters. This allows us to provide the same over-
all scale M ¼ M1 þM2 for both numerical and post-
Newtonian waveforms, and is crucial for comparison and
matching.

The initial momenta of the black holes are chosen to
correspond approximately to quasicircular (low eccentric-
ity) inspiral. For equal-mass evolutions performed with the
CCATIE code, parameters for quasicircular orbit were de-

termined by minimizing an effective potential for the
binary [23,67,68]. For the unequal-mass simulations per-
formed with the BAM code [15], initial momenta were
specified by the 3PN-accurate quasicircular formula given
in Sec. VII of [11]. For the longer unequal-mass simula-
tions performed with higher-order spatial finite-difference
methods [37] and used for verification, the initial momenta
were taken from a PN prescription that takes radiation
reaction into account to reduce the initial eccentricity to
below e � 10�3 [38].

The Einstein equations are solved numerically with
standard finite-difference techniques. Spatial derivatives
are calculated at fourth- or sixth-order accuracy, and the
time evolution is performed with a fourth-order Runge-
Kutta integration. Mesh refinement is used to achieve high
resolution around the punctures and low resolutions far
from the black holes, allowing the outer boundary to be
placed very far (at least >300M) from the sources. Full
details of the numerical methods used in the two codes are
given in [11] for BAM and [23] for CCATIE.

In the wave-zone, sufficiently far away from the source,
the spacetime metric can be accurately described as a
perturbation of a flat background metric. Let hab denote
the metric perturbation where a, b denote spacetime in-
dices, and t be the time coordinate used in the numerical
simulation to foliate the spacetime by spatial slices.
Working in the transverse-traceless gauge, all the informa-
tion about the radiative degrees of freedom is contained in
the spatial part hij of hab, where i, j denote spatial indices.

Let us use a coordinate system ðx; y; zÞ on a spatial slice so
that the z-axis is parallel to the total angular momentum of
the binary system at the starting time. Let � be the incli-
nation angle from the z-axis, and let � be the phase angle
and r the radial distance coordinates so that ðr; �; �Þ are
standard spherical coordinates in the wave zone.

The radiative degrees of freedom in hab can be written in
terms of two polarizations hþ and h�:

hij ¼ hþðeþÞij þ h�ðe�Þij; (2.2)

where eþ;� are the basis tensors for transverse-traceless

tensors in the wave frame

ðeþÞij ¼ �̂i�̂j � �̂i�̂j; and ðe�Þij ¼ �̂i�̂j þ �̂j�̂i:

(2.3)

Here �̂ and �̂ are the unit vectors in the � and � directions,
respectively, and the wave propagates in the radial
direction.
In our numerical simulations, the gravitational waves are

extracted by two distinct methods. The first one uses the
Newman-Penrose-Weyl tensor component �4 [69,70],
which is a measure of the outgoing transverse gravitational
radiation in an asymptotically flat spacetime. In the wave
zone it can be written in terms of the complex strain h ¼
hþ � ih� as [71]

h ¼ lim
r!1

Z t

0
dt0

Z t0

0
dt00�4: (2.4)

An alternative method for wave extraction determines the
waveform via gauge-invariant perturbations of a back-
ground Schwarzschild spacetime, via the Zerilli-Moncrief
formalism (see [72] for a review). In terms of the even
(Qþ

‘m) and odd (Q�
‘m) parity master functions, the

gravitational-wave strain amplitude is then given by

h ¼ 1ffiffiffi
2

p
r

X
‘;m

�
Qþ
‘m � i

Z t

�1
Q�
‘mðt0Þdt0

�
Y�2
‘m þO

�
1

r2

�
:

(2.5)

Results from the BAM code have used the Weyl tensor
component �4 and Eq. (2.4), with the implementation
described in [11]. While the CCATIE code computes wave-
forms with both methods, the AEI-CCT waveforms used
here were computed using the perturbative extraction and
Eq. (2.5). Beyond an appropriate extraction radius (that is,
in the wave zone), the two methods for determining h are
found to agree very well for moving-puncture black-hole
evolutions of the type considered here [19].
It is useful to discuss gravitational radiation fields in

terms of spin-weighted s ¼ �2 spherical harmonics Ys‘m,
which represent symmetric tracefree 2-tensors on a sphere,
and in this paper wewill only consider the dominant ‘ ¼ 2,
m ¼ �2 modes (see [28] for the higher ‘ contribution in
the unequal-mass case), with basis functions

Y�2
2�2 �

ffiffiffiffiffiffiffiffiffi
5

64�

s
ð1� cos�Þ2e�2i�;

Y�2
22 �

ffiffiffiffiffiffiffiffiffi
5

64�

s
ð1þ cos�Þ2e2i�:

(2.6)

Our ‘‘input’’ numerical-relativity waveforms thus corre-
spond to the projections

h ‘m � hY�2
‘m ; hi ¼

Z 2�

0
d�

Z �

0
h �Y�2

‘m sin�d�; (2.7)

of the complex strain h, where the bar denotes complex
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conjugation. In the cases considered here, we have equa-

torial symmetry so that h22 ¼ �h2�2, and

h ðtÞ ¼
ffiffiffiffiffiffiffiffiffi
5

64�

s
e2i�ðð1þ cos�Þ2h22ðtÞ þ ð1� cos�Þ2 �h22ðtÞÞ:

(2.8)

In this paper, we assume that the binary is optimally
oriented, so that � ¼ 0. Thus

h ðtÞ ¼ 4

ffiffiffiffiffiffiffiffiffi
5

64�

s
h22ðtÞ � 0:6308h22ðtÞ: (2.9)

III. POST-NEWTONIAN WAVEFORMS AND
INTRODUCTION TO DATA-ANALYSIS CONCEPTS

In this Section we will introduce notation that will be
used later in the paper and describe briefly the main data-
analysis techniques currently used in gravitational-wave
astronomy.

A. Restricted post-Newtonian waveforms

We use the restricted PN waveform at mass-quadrupole
order, which has a phase equal to twice the orbital phase up
to highest available order in the adiabatic approximation,
and amplitude accurate up to leading order. The corre-
sponding h is given by

h ¼ �M

r
v2ðtÞe2i�½ð1þ cos�Þ2e�i’ðtÞ þ ð1� cos�Þ2ei’ðtÞ�;

(3.1)

whereM � M1 þM2 is the total mass, � � M1M2=M
2 is

the symmetric mass ratio, r is the observation radius, � is
the inclination angle; the quantity vðtÞ is an expansion

parameter, defined by v ¼ ðM _’=2Þ1=3 with ’ðtÞ equal to
twice the adiabatic orbital phase. The waveform seen by
the detector is given by

sðtÞ ¼ 4�
M

r
Av2ðtÞ cos½’ðtÞ þ ’0�; (3.2)

where, for short-lived signals (i.e., with duration much
shorter than the earth rotation time, as well as dephasing
time scale due to Doppler shifts induced by earth motion
and rotation), A and ’0 are numerical constants depending
on the relative position and orientation of the source rela-
tive to the detector, as well as the antenna pattern functions
of the detector. In PN theory, the adiabatic phase ’ðtÞ is
determined by the following ordinary differential equa-
tions (also called the phasing formula):

d’

dt
¼ 2v3

M
;

dv

dt
¼ � F ðvÞ

ME0ðvÞ : (3.3)

In these expressions, E0ðvÞ ¼ dEðvÞ=dv where EðvÞ is the
binding energy (per unit mass) of the system, and F ðvÞ is
the GW luminosity. EðvÞ and F ðvÞ are computed as post-

Newtonian expansions in terms of v [73]. Currently, the
binding energy function EðvÞ has been calculated to v6

(3PN) accuracy by a variety of methods [74–81]. The flux
functionF ðvÞ, on the other hand, has been calculated to v7
(3.5PN) accuracy [53,82] up to now only by the multipolar-
post-Minkowskian method and matching to a post-
Newtonian source [73].
The inspiralling phase is usually pushed up to the point

where the adiabatic evolution of circular orbits breaks
down due to the lack of further stable circular orbits. In
the test-mass limit, the last (or innermost) stable circular
orbit (ISCO) can be computed exactly (at 6M in
Schwarzschild coordinates). For comparable-mass bi-
naries, on the other hand, the ISCO cannot always arise
unambiguously from PN theories. In adiabatic models, the
maximum-binding-energy condition (referred to as
MECO, or the maximum-binding-energy circular orbit
[83]) can be used in place of the ISCO. This condition is
reached when the derivative of the orbital binding energy
with respect to orbital frequency vanishes. As a conse-
quence, in this paper, the waveforms are evolved in time
up to MECO: E0ðvÞ ¼ 0. It may be noted that the ISCO and
MECO may not be physically meaningful beyond the test-
mass limit, but they make convenient cutoff criteria. The
appropriate region of validity of PNwaveforms can only be
determined by comparison with fully general relativistic
results, such as the numerical simulations that we dis-
cussed earlier.
Given EðvÞ and F ðvÞ, one can construct different, but

equivalent in terms of accuracy, approximations to the
phasing by choosing to retain the involved functions or to
reexpand them. Indeed, the different PN models which
describe the GW signal from inspiralling binaries agree
with each other in the early stages of inspiral, but start to
deviate in the late inspiral. The classification and explicit
form of various models is nicely summarized in [46]. In
this paper we use PN waveforms obtained by numerically
solving Eqs. (3.3), called the TaylorT1 approximant, to
construct the ‘‘hybrid waveforms’’ (see Sec. IVB).

B. Introduction to matched filtering

Since we can model the signal reasonably well, it is
natural to employ matched filtering (which is the optimal
detection strategy for a signal of known shape in the sta-
tionary Gaussian noise) to search for the gravitational-
wave signal. Suppose the detector’s data xðtÞ contains noise
nðtÞ, and possible signal sðtÞ, i.e., xðtÞ ¼ nðtÞ þ sðtÞ.
Assuming n to be stationary Gaussian noise, it is conve-
nient to work in the Fourier domain, because the statistical
property of the noise is completely characterized by its
power spectral density SnðfÞ, which is given by (here we
use a single-sided spectrum)

h~nðfÞ~n�ðf0Þi ¼ 1
2SnðfÞ�ðf� f0Þ; (3.4)

where ~nðfÞ is the Fourier transform of nðtÞ
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~nðfÞ �
Z 1

�1
nðtÞe�2�iftdt; (3.5)

and h. . .i denotes taking the expectation value. Based on the
detector noise spectrum, we introduce a Hermitian inner
product:

ðgjhÞ � 2
Z 1

0

~g�ðfÞ~hðfÞ þ ~gðfÞ~h�ðfÞ
SnðfÞ df: (3.6)

For the data x with known signal s, the optimal detection
statistic is given by applying a template h with the same
shape as s, or h ¼ �s:

�opt � ðxjhÞ: (3.7)

The detectability of the signal is then determined by the
SNR of �opt,

S

N
¼ ðsjhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðhjnÞðnjhÞip

��������h¼�s
¼ ðsjsÞ1=2: (3.8)

(Note that the SNR does not depend on the overall nor-
malization of h.) In case the template h is not exactly of the
same shape as s, the SNR will be reduced to

S

N
¼ ðsjsÞ1=2M; (3.9)

where M 	 1 is the match of the template to the signal,
given by

M ½s; h� � ðsjhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsjsÞðhjhÞp � ðŝjĥÞ; (3.10)

and where a hat denotes a normalized waveform. For more
details, we refer the reader to Ref. [84].

C. Template banks, effectualness and faithfulness

We now consider the more realistic problem of attempt-
ing to detect a family of waveforms sð�Þ, parametrized by a
vector of physical parameters � 2 �, using a family of
templates hð�Þ parametrized by a vector of parameters
� 2 �. We first introduce the concepts of physical tem-
plate bank and phenomenological template bank. Roughly
speaking, physical template banks are constructed from
well-motivated physical models (e.g., approximation up
to a certain order) [85], while phenomenological banks
are constructed in an ad hoc manner to mimic the desired
physical signals with high accuracy. For physical banks,
the vectors � and � consist of the same set of physical
parameters, while for phenomenological banks, the vector
� usually contains phenomenological parameters, which
can be larger or smaller in number than the physical
parameters. Two phenomenological template families
[86,87] are used currently in the search for BH binaries
in LIGO data [88,89]. They each represent a different
motivation for introducing phenomenological banks:
(i) when we have uncertainty in the signal model, we can

produce a template bank with larger detection efficiency by
introducing extra (phenomenological) parameters (BCV1
[86]) so that dimð�Þ> dimð�Þ; (ii) when the true signal
depends on too many parameters and is too difficult to
search over, it is sometimes possible to come up with a
model with fewer (phenomenological) parameters
( dimð�Þ< dimð�Þ) and still high-fitting factors (BCV2
[87]).
The detection efficiency of a template bank towards a

specific signal sð�Þ can be measured by the threshold SNR
above which the detection probability exceeds a certain
minimum (usually 50%), while the false-alarm probability
is kept below a certain maximum (usually 1% for one-year
data). The threshold value depends (logarithmically, in the
case of Gaussian noise) on the number of statistically
independent templates, and (inverse proportionally) on
the fitting factor (FF) [90]:

FF ½h;�� � max
�

M½sð�Þ; hð�Þ� � M½sð�Þ; hð�maxÞ�:
(3.11)

A bank with high FF is said to be effectual [4,91].
Typically, we require that the total mismatch between the
template and true signal (including the effects of both the
fitting factor and the discreteness of the template bank) to
not exceed 3%. We shall see that this requirement is easily
met by our template bank.
It is natural to associate every point � in the physical

space�with the best-matched point �max 2 �. This leads
to a mapping P: � � � defined by

Pð�Þ ¼ �max: (3.12)

This mapping will play a key role in the construction of our
template bank. We will assume the mapping P to be single
valued, i.e., given a target signal, the best-matched tem-
plate is unique. We depict this mapping schematically in
the left panel of Fig. 1.
For a physical template bank with � and �, the same set

of parameters (which we use � to denote), it is most
convenient to identify the best-match parameter �max as
the estimation of the original parameter �. In general this
will lead to a systematic bias

�� ¼ �max � � ¼ Pð�Þ � �: (3.13)

A bank with a small bias (as defined above) is said to be
faithful [4,91].
However, if we assume no uncertainty in the true wave-

forms (thereby excluding the case of BCV1), then as long
as P is invertible, a nonfaithful physical or phenomeno-
logical bank can always be converted into a faithful bank
by the reparametrization

hfaithfulð�Þ � h 
 Pð�Þ; (3.14)

where we have used the standard notation h 
 Pð�Þ :¼
hðPð�ÞÞ. In other words, each template � in the image
set of physical signals Pð�Þ is labeled by physical parame-
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ters � ¼ P�1ð�Þ. For this reason, we require P to be
invertible. It is quite conceivable that for physical banks,
P should be invertible, if the physical bank does not fail to
describe the true waveforms too dramatically (and of
course assuming the true waveform does contain indepen-
dent information about the physical parameters �). In this
way, all reasonable physical banks can be made faithful.

By contrast, if for some phenomenological bank (e.g.,
BCV2 if we only take into account the intrinsic parameters
of the bank), P is a many-to-one map, with Pð�1Þ ¼ Pð�2Þ
for some �1 � �2. Then for a physical signal with parame-
ter �1, the template bank hfaithful would achieve the same
best match at both �1 and �2, making physical parameter
determination nonunique. In this case, we can simply keep
using the phenomenological bank hð�Þ; once a detection is
made with �max, the a set of parameters P�1ð�maxÞ would
be the best knowledge we have about the physical parame-
ters of the source. (In practice, statistical uncertainty also
applies to �max.)

IV. A PHENOMENOLOGICALTEMPLATE FAMILY
FOR BLACK-HOLE COALESCENCE

WAVEFORMS

A. Strategy for constructing the phenomenological
bank

In our situation, since it is expensive to generate the
entire physical bank of templates using numerical simula-
tions, we first construct a highly effectual 10-dimensional
phenomenological bank (motivated by the format of PN
waveforms), with effectualness confirmed by computing
its FF with a relatively small number of ‘‘target signals.’’
Since we are considering only nonspinning black holes, the
physical parameter space � is the set of all masses and
symmetric mass ratios ðM;�Þ that we wish to consider. As
we shall see shortly, for our case the phenomenological
parameter space � is a 10-dimensional space. Our tem-

plates will be denoted by

hð�Þ ¼ h10Dð�Þ: (4.1)

According to the discussion above [Eqs. (3.12), (3.13), and
(3.14)], if the mapping P: � � � can indeed be obtained
and inverted, then a faithful two-dimensional (2D) phe-
nomenological bank can be constructed as

hfaithful2D ð�Þ ¼ h10D 
 Pð�Þ: (4.2)

However, if our aim was to know P exactly, then in
principle we would have to calculate accurate numerical
waveforms for every ðM;�Þ and to calculate the corre-
sponding � in each case. This is obviously not practical,
and we shall instead compute P at a few chosen points in�
and interpolate to obtain an approximation to P. The de-
tailed steps are as follows:
(i) While confirming effectualness of the ten-

dimensional (10D) bank, we simultaneously obtain
N (a number manageable in terms of computational
costs) data points for the mapping P,

� ðnÞ
max ¼ Pð�ðnÞÞ; n ¼ 1; 2; . . . ; N; (4.3)

which gives discrete points on the 2D manifold
Pð�Þ. This is depicted by the left panel of Fig. 1.

(ii) Using these discrete points, we perform a smooth
interpolation of P denoted by Pint. The form of Pint is
motivated by PN waveforms, but with expansion
coefficients determined by interpolation:

Pintð�Þ ¼ �int: (4.4)

This gives us a 2D phenomenological bank,

h2Dð�Þ ¼ h10D 
 Pintð�Þ: (4.5)

This is depicted by the middle panel of Fig. 1.
Because of the discrete choice of target waveforms,
the constrained form of Pint, and numerical errors (in

(a) (b) (c)

FIG. 1 (color online). Construction of the phenomenological template bank: (a) mapping physical signals (solid curve) into a
submanifold (dashed curve, with example templates marked by dots) of a larger-dimensional template bank (curved surface),
(b) obtaining a lower-dimensional phenomenological bank with the same number of parameters as physical parameters, through
interpolation (solid curve on the curved surface, with example templates marked by triangles), and c) Estimating the bias of the lower-
dimensional interpolated bank by mapping physical signals into the bank (with images of example signals marked by dots).
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the target waveforms as well as in searching for best-
fit parameters), the interpolation will have errors,
even at the sample points. This means the 2D bank
will have slightly lower effectualness than the 10D
bank.

(iii) We retest the effectualness of this 2D bank. Note that
there will be a new mapping P2D which maps the
physical parameters to the best-fit parameters of this
2D bank. We therefore find the best-matched pa-

rameters �ðnÞ
max0 , therefore obtaining discrete samples

of the mapping P2D:

� ðnÞ
max0 ¼ P2Dð�ðnÞÞ; (4.6)

yielding a systematic bias of

��ðnÞ ¼ P�1
int ð�ðnÞ

max0 Þ � �ðnÞ: (4.7)

This is depicted in the right panel of Fig. 1.
In this paper, we construct the 2D template bank h2Dð�Þ

and estimate the systematic bias ��ðnÞ in the estimation of
parameters �, as described above. But, it is also possible to
construct an interpolation P2Dint from the data points of
P2D so that we can construct a fully faithful (no systematic
bias) bank (up to interpolation error)

hfaithful2D ð�Þ ¼ h10D 
 Pint 
 P2Dintð�Þ: (4.8)

B. Constructing the ‘‘target signals’’

The ultimate aim of this work is to create a family of
analytical waveforms that are very close to the gravita-
tional waveforms produced by coalescing binary black
holes. As a first step, we need to construct a set of ‘‘target
signals’’ containing all the three (inspiral, merger, and ring
down) stages of the binary black-hole coalescence.
Although numerical relativity, in principle, is able to pro-
duce gravitational waveforms containing all these stages,
the numerical simulations are heavily constrained by their
high computational cost. It is therefore necessary, at the
present time, to use results from post-Newtonian theory to
extend the waveforms obtained from numerical relativity.

We produce a set of ‘‘hybrid waveforms’’ by matching
the PN and NR waveforms in an overlapping time interval
t1 	 t < t2. The obvious assumption involved in this pro-
cedure is that such an overlapping region exists and that in
it both approaches yield the correct waveforms. These
hybrid waveforms are assumed to be the target signals
that we want to detect in the data of GW detectors.

The NR and PN waveforms are given by Eq. (2.8) and
(3.1), respectively (with � ¼ 0). The (complex) time-
domain waveform hðt;�Þ from a particular system is pa-
rametrized by a set of ‘‘extrinsic parameters’’ � ¼
f’0; t0g, where ’0 is the initial phase and t0 is the start
time of the waveform. We match the PN waveforms
hPNðt;�Þ and the NR waveforms hNRðt;�Þ by minimizing
the integrated squared absolute difference, �, between the

two waveforms, i.e.,

� �
Z t2

t1

jhPNðt;�Þ � ahNRðt;�Þj2dt: (4.9)

The minimization is carried out over the extrinsic parame-
ters� of the PN waveform and an amplitude scaling factor
a, while keeping the ‘‘intrinsic parameters’’ (M and �) of
both the PN and NR waveforms the same.2 The hybrid
waveforms are then produced by combining the ‘‘best-
matched’’ PN waveforms and the NR waveforms in the
following way:

h hybðt;�Þ � a0	ðtÞhNRðt;�Þ þ ð1� 	ðtÞÞhPNðt;�0Þ;
(4.10)

where�0 and a0 denote the values of� and a for which �
is minimized, and 	 is a weighting function, defined as

	ðtÞ �
8><
>:
0 if t < t1
t�t1
t2�t1 if t1 	 t < t2
1 if t2 	 t:

(4.11)

In this paper we use two families of hybrid waveforms.
Both are produced by matching 3.5 PN TaylorT1 wave-
forms with NR waveforms. The first set is constructed by
using long (> 10 inspiral cycles) NR waveforms. This
includes equal-mass (� ¼ 0:25) NR waveforms produced
by the AEI-CCT group using their CCATIE code employing
fourth-order finite differencing to compute spatial deriva-
tives, and equal and unequal-mass (� ¼ 0:19, 0.22, 0.25, or
M1=M2 ¼ 1, 2, 3) waveforms produced by the Jena group
using their BAM code employing sixth-order finite differ-
encing and PN-motivated initial-data parameters. The sec-
ond set of hybrid waveforms is constructed by using NR
waveforms produced by the Jena group using their BAM

code employing fourth-order finite differencing. These are
short waveforms (� 4 inspiral cycles) densely covering a
wide parameter range (0:16 	 � 	 0:25). We use the sec-
ond set of hybrid waveforms to construct the phenomeno-
logical family and to test its efficiency in detecting signals
from black-hole coalescences, and use the first set of

2Here the amplitude scaling factor a is introduced because of
two reasons. (i) The short NR waveforms used to construct the
phenomenological template family (see the following discussion
in this Section) were extracted at a finite extraction radius. This
introduces some error in the amplitude of the NR waveforms.
(ii) Since the ‘‘long and accurate’’ NR waveforms (see the
following discussion) are extrapolated to an infinite extraction
radius, we expect the amplitude of these waveforms to be correct
within numerical accuracy of the simulations. But, it turns out
that the restricted PN waveform has an amplitude which is
inconsistent with the NR waveform by roughly constant factor
6� 2% in the frequency range we consider here [31]. For
simplicity, we take the amplitude of the restricted PN waveform
as the amplitude scale for the hybrid waveforms. It should be
noted that, since we use normalized templates, the errors that we
introduce by this (< 10%) do not affect the fitting factors or the
detection statistic. But the horizon distance that we estimate in
Sec. IV F can have an error up to 10% due to this choice.
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hybrid waveforms (which are closer to the actual signals)
to verify our results.

The former family of hybrid waveforms is shown in
Fig. 2. The NR waveforms from three different simulations
(� ¼ 0:25, 0.22, 0.19) done by AEI and Jena groups are
matched with 3.5PN inspiral waveforms over the matching
region �750 	 t=M 	 �550. The hybrid waveforms are
constructed by combining the above as per Eq. (4.10) and
(4.11).

The robustness of the matching procedure can be tested
by computing the overlaps between hybrid waveforms
constructed with different matching regions. If the overlaps
are very high, this can be taken as an indication of the
robustness of the matching procedure. A preliminary illus-
tration of this can be found in Ref. [92], and a more
detailed discussion will be presented in [93].

Figure 3 shows the hybrid waveforms of different mass-
ratios in the Fourier domain. In particular, the panel on the
left shows the amplitude of the waveforms in the Fourier
domain, while the panel on the right shows the phase.
These waveforms are constructed by matching 3.5PN
waveforms with the long NR waveforms produced by the
Jena group. In the next section, we will try to parametrize
these Fourier domain waveforms in terms of a set of
phenomenological parameters.

C. Parametrizing the hybrid waveforms

We propose a phenomenological parametrization to
the hybrid waveforms in the Fourier domain. Template
waveforms in the Fourier domain are of particular
preference because (i) a search employing Fourier do-
main templates is computationally inexpensive compared

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−0.2

−0.1

0

0.1

0.2

0.3

h
+

 AEI (η = 0.25) 

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−0.2

−0.1

0

0.1

0.2

0.3

h
+

 Jena (η = 0.25) 

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−0.2

−0.1

0

0.1

0.2

h
+

 Jena (η = 0.22) 

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0
−0.2

−0.1

0

0.1

0.2

h
+

t/M

 Jena (η = 0.19) 

FIG. 2 (color online). NR waveforms (thick lines), the best-matched 3.5PN waveforms (dashed lines), and the hybrid waveforms
(thin lines) from three binary systems. The top panel corresponds to � ¼ 0:25 NR waveform produced by the AEI-CCT group. The
second, third, and fourth panels, respectively, correspond to � ¼ 0:25, 0.22, and 0.19 NR waveforms produced by the Jena group. In
each case, the matching region is �750 	 t=M 	 �550 and we plot the real part of the complex strain (the ‘‘ þ’’ polarization).
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to one using time-domain templates, and (ii) param-
etrization of the hybrid waveforms is easier in the
Fourier domain.

We take our motivation from the restricted post-
Newtonian approximation to model the amplitude of the
inspiral stage of the hybrid waveform, i.e., the amplitude is

approximated to leading order as a power law f�7=6 in
terms of the Fourier frequency f (as follows straight from
adding leading order radiation reaction to Newtonian dy-
namics). The amplitude of the merger stage is empirically

approximated as a power law f�2=3 (consistent with the
observation of [27]), while the amplitude of the ring-down
stage is known to be a Lorentzian function around the
quasinormal mode ring-down frequency. Similarly, we
take our motivation from the stationary-phase approxima-
tion (see, for example, [94]) of the inspiral waveform to
write the Fourier domain phase of the hybrid waveform as

a series expansion in powers of f. As we shall see later, this
provides an excellent approximation of the phase of the
hybrid waveform.

1. Phenomenological waveforms

We write our phenomenological waveform in the
Fourier domain as

uðfÞ � AeffðfÞei�eff ðfÞ; (4.12)

where AeffðfÞ is the amplitude of the waveform in the
frequency domain, which we choose to write in terms of
a set of ‘‘amplitude parameters’’ � ¼ ffmerg; fring; 
; fcutg
as

AeffðfÞ � C

8><
>:
ðf=fmergÞ�7=6 if f<fmerg

ðf=fmergÞ�2=3 if fmerg 	 f<fring
wLðf;fring;
Þ if fring 	 f<fcut;

(4.13)

where fcut is the cutoff frequency of the template and fmerg

is the frequency at which the power-law changes from

f�7=6 to f�2=3 (as noted previously in [27] for the equal-
mass case). C is a numerical constant whose value depends
on the relative orientations of the interferometer and the
binary orbit as well as the physical parameters of the binary
(see below). Also, in the above expression,

L ðf; fring; 
Þ �
�
1

2�

�



ðf� fringÞ2 þ 
2=4
; (4.14)

represents a Lorentzian function of width 
 centered
around fring. The normalization constant w is chosen in

such a way that AeffðfÞ is continuous across the ‘‘transi-
tion’’ frequency fring, i.e.,

w � �


2

�
fring
fmerg

��2=3
: (4.15)

Taking our motivation from the stationary-phase ap-
proximation of the gravitational-wave phase, we write
the effective phase�effðfÞ as an expansion in powers of f,

�effðfÞ ¼ 2�ft0 þ ’0 þ
X7
k¼0

 kf
ðk�5Þ=3; (4.16)

where t0 is the time of arrival, ’0 is the frequency-domain
phase offset, and  ¼ f 0;  2;  3;  4;  6;  7g are the
‘‘phase parameters,’’ that is the set of phenomenological
parameters describing the phase of the waveform.
The numerical constant C in Eq. (4.13) can be deter-

mined by comparing the amplitude of the phenomenologi-
cal waveforms with that of the restricted post-Newtonian
waveforms in the frequency domain.
In the restricted post-Newtonian approximation, the

Fourier transform of the gravitational signal from an opti-
mally oriented binary located at an effective distance d can
be written as in Eq. (B1). We expect that in the inspiral
stage (f < fmerg) of our phenomenological waveforms the

amplitude will be equal to that of the post-Newtonian
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FIG. 3 (color online). Fourier domain magnitude (top) and
phase (bottom) of the (normalized) hybrid waveforms. The
constant phase term and the term linear in time (and frequency)
have already been subtracted from the phase. Symmetric mass
ratio � of each waveform is shown in the legends. These
waveforms are constructed by matching 3.5PN waveforms
with the long NR waveforms produced by the Jena group.
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waveforms as given in Eq. (B1). Thus, in the case of an
optimally oriented binary, the numerical constant C can be
computed as

C ¼ M5=6f�7=6
merg

d�2=3

�
5�

24

�
1=2
: (4.17)

This ‘‘physical’’ scaling will be useful when we estimate
the sensitivity of a search using this template family (see
Sec. IV F and Appendix B).

We now compute the fitting factors of the hybrid wave-
forms with the family of phenomenological waveforms by
maximizing the overlaps over all the parameters, i.e.,
f�; ; ’0; t0g of the phenomenological waveforms. While
doing this, we also find the parameters, �max and  max, of
the best-matched phenomenological waveforms. This cal-
culation is described in detail in Appendix A.
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FIG. 4 (color online). Fitting factors of the hybrid waveforms
with the phenomenological waveform family. Horizontal axis
shows the symmetric mass ratio of the binary. Fitting factors are
calculated assuming a white noise spectrum, and hence are
independent of the mass of the binary.
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FIG. 6 (color online). Best-matched amplitude parameters
�max in terms of the physical parameters of the binary (assuming
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mass-ratio of the binary. Quadratic polynomial fits �int to the
data points are also shown.
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We first take a few (seven) hybrid waveforms coarsely
spaced in the parameter range 0:16 	 � 	 0:25, and com-
pute the fitting factors and the best-matched phenomeno-
logical parameters, assuming a white-noise spectrum for
the detector noise. We use these samples in the parameter
space to construct the interpolated template bank (see next
subsection). We then test the effectualness and faithfulness
of the template bank using all (� 30) hybrid waveforms
finely spaced in the parameter space.

The fitting factors are shown in Fig. 4. It is quite appar-
ent that the fitting factors are always greater than 0.99, thus
underlining the effectiveness of the phenomenological
waveforms in reproducing the hybrid ones. Also, as an
example, in Fig. 5, we plot the hybrid waveforms from
� ¼ 0:25 binary in Fourier domain along with the best-
matched phenomenological waveform.

2. From phenomenological to physical parameters

It is possible to parametrize the phenomenological
waveforms having the largest overlaps with the hybrid
waveforms in terms of the physical parameters of the
hybrid waveforms. In Fig. 6, we plot the amplitude pa-
rameters �max of the best-matched phenomenological

waveforms against the physical parameters of the binary.
Similarly, the phase parameters  max of the best-matched
phenomenological waveforms are plotted against the
physical parameters of the binary in Fig. 7.
It can be seen that �max and  max can be written as

quadratic polynomials in terms of the physical parameters
(M and �) of the hybrid waveforms as

�j int ¼
aj�

2 þ bj�þ cj
�M

;

 k int ¼ xk�
2 þ yk�þ zk

�ð�MÞð5�kÞ=3 ;

(4.18)

where aj, bj, cj, j ¼ 0 . . . 3 and xk, yk, zk, k ¼ 0, 2, 3, 4, 6,

7 are the coefficients of the quadratic polynomials used to
fit the data given in Figs. 6 and 7. These coefficients are
listed in Tables I and II. It may be noted at this point that

Figs. 6 and 7 correspond to the mapping P: �ðnÞ ! �ðnÞ
max

that we have introduced in Sec. IVA, and Eq. (4.18) to the
interpolation Pint of P.
Using the empirical relations given in Eq. (4.18), we can

rewrite the effective amplitude and phase of the waveforms
in terms of M and � as

AeffðfÞ � C

8>>><
>>>:
ð �Mf
a0�

2þb0�þc0Þ�7=6 if f < a0�
2þb0�þc0
�M

ð �Mf
a0�

2þb0�þc0Þ�2=3 if a0�
2þb0�þc0
�M 	 f < a1�

2þb1�þc1
�M

wLðf; a1�2þb1�þc1
�M ; a2�

2þb2�þc2
�M Þ if a1�

2þb1�þc1
�M 	 f < a3�

2þb3�þc3
�M ;

;

�effðfÞ ¼ 2�ft0 þ ’0 þ 1

�

X7
k¼0

ðxk�2 þ yk�þ zkÞð�MfÞðk�5Þ=3;

(4.19)
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FIG. 7 (color online). Best-matched phase parameters  max in terms of the physical parameters of the binary (assuming white noise
spectrum). The horizontal axis shows the symmetric mass-ratio of the binary. Quadratic polynomial fits  int to the data points are also
shown.
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where the constant C is given by Eq. (4.17). We use this
family of parametrized waveforms to create a two-
dimensional template bank of nonspinning waveforms.
This template family can be seen as a two-dimensional
submanifold (parametrized by M and �) embedded in a
higher dimensional manifold (of the phenomenological
waveforms).

The polynomial coefficients in the Table II are indeed
significantly different from those predicted by stationary-
phase approximation of the PN inspiral phase in the fre-
quency domain. There are two reasons for that: The first
one is that our reparametrization is optimized for the mass
range where all three phases (inspiral, merger, and ring
down) are contributing significantly. The second reason is
the residual eccentricity present in the numerical wave-
forms. Change in the relative significance of different PN
terms reflects attempt to match the slightly eccentric wave-
form with circular. When more accurate (less eccentric)
numerical waveforms become available in future, the rep-
arametrization given in Eq. (4.18) can be optimized for a
wider mass range. An example of this can be seen in
Ref. [92].

D. Effectualness and faithfulness

In order to measure the accuracy of our parametrized
templates we compute their overlap with the target signals
(the hybrid waveform). To check the faithfulness of our
phenomenological templates, we compute their overlap
with the target signal maximizing it over the extrinsic
parameters (time-of-arrival and the initial phase). We as-
sess the effectualness of the parametrized waveforms by
computing fitting factors with the target signals (comput-

ing the overlap maximized over both extrinsic and intrinsic
parameters). Faithfulness is a measure of how good the
template waveform is in both detecting a signal and esti-
mating its parameters. However, effectualness is aimed at
finding whether or not an approximate template model is
good enough in detecting a signal without reference to its
use in estimating the parameters.
We compute the effectualness and the faithfulness of the

template family for three different noise spectra. The one-
sided noise power spectral density (PSD) of the Initial
LIGO detector is given in terms of a dimensionless fre-
quency x ¼ f=f0 by [95]

ShðfÞ ¼ 9� 10�46½ð4:49xÞ�56 þ 0:16x�4:52 þ 0:52

þ 0:32x2�; (4.20)

where f0 ¼ 150 Hz; while the same for Virgo reads [95]

ShðfÞ ¼ 10:2� 10�46½ð7:87xÞ�4:8 þ 6=17x�1 þ 1þ x2�;
(4.21)

where f0 ¼ 500 Hz. For Advanced LIGO [95],

ShðfÞ ¼ 10�49

�
x�4:14 � 5x�2 þ 111

�
1� x2 þ x4=2

1þ x2=2

��
;

(4.22)

where f0 ¼ 215 Hz.
Faithfulness is computed by maximizing the overlaps

over the extrinsic parameters t0 and ’0 only, which can be
done trivially [96]. Effectualness is computed by maximiz-
ing both intrinsic and extrinsic parameters of the binary.
The maximization over the intrinsic parameters is per-

TABLE II. Polynomial coefficients of the best-matched phase parameters. The first column
lists the phase parameters  int. Equation (4.18) shows how these parameters are related to the
coefficients xk, yk, zk.

Parameter xk yk zk

 0 1:7516� 10�1 7:9483� 10�2 �7:2390� 10�2

 2 �5:1571� 101 �1:7595� 101 1:3253� 101

 3 6:5866� 102 1:7803� 102 �1:5972� 102

 4 �3:9031� 103 �7:7493� 102 8:8195� 102

 6 �2:4874� 104 �1:4892� 103 4:4588� 103

 7 2:5196� 104 3:3970� 102 �3:9573� 103

TABLE I. Polynomial coefficients of the best-matched amplitude parameters. The first column
lists the amplitude parameters �int. Equation (4.18) shows how these parameters are related to
the coefficients ak, bk, ck.

Parameter ak bk ck

fmerg 2:9740� 10�1 4:4810� 10�2 9:5560� 10�2

fring 5:9411� 10�1 8:9794� 10�2 1:9111� 10�1


 5:0801� 10�1 7:7515� 10�2 2:2369� 10�2

fcut 8:4845� 10�1 1:2848� 10�1 2:7299� 10�1
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formed with the aid of the Nelder-Mead downhill simplex
algorithm [97].

The effectualness of the template waveforms with the
hybrid waveforms is plotted in Fig. 8 for three different
noise spectral densities. The corresponding faithfulness is
plotted in Fig. 9. It is evident that, having both values
always greater than 0.99, the proposed template family is
both effectual and faithful.

We also calculate the systematic bias in the estimation of
parameters while maximizing the overlaps over the intrin-
sic parameters of the binary. The bias in the estimation of
the parameters � is defined in Eq. (4.7).

The percentage biases in estimating the total mass M,

mass ratio�, and chirp massMc ¼ M�3=5 of the binary are
plotted in Figs. 10–12, respectively. This preliminary in-
vestigation suggests that the bias in the estimation of M
and � using the proposed template family is <3%, while
the same in estimating Mc is <6%.

E. Verification of the results using more accurate
hybrid waveforms

As we have discussed in Sec. IVB, the hybrid wave-
forms used for constructing the template waveforms are
produced by matching rather short (� 4 inspiral cycles)
NR waveforms with PN waveforms. We have also pro-
duced a few hybrid waveforms by matching PN waveforms
with long (> 10 inspiral cycles) and highly accurate
(sixth-order finite differencing and low eccentricity) NR
waveforms. This set of hybrid waveforms (which are closer
to the ‘‘actual signals’’) can be used to verify the efficacy of
the template waveforms in reproducing these more accu-
rate signals.
Figure 13 shows the fitting factors of the two-

dimensional template family with the ‘‘more accurate’’
hybrid waveforms. The fitting factors are computed, as
before, using the Initial LIGO (left), Virgo (middle), and
Advanced LIGO (right) noise spectra. The high fitting
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factors (although smaller than the same obtained in the
previous Section) with the hybrid waveforms once again
underline the efficacy of the template waveforms in repro-
ducing the hybrid ones. It is indeed expected that the
template family will have better overlaps with the hybrid
waveforms described in the previous Section (those con-
structed from ‘‘short’’ NR waveforms), because the poly-
nomial coefficients given in Tables I and II are optimized
for these hybrid waveforms. When more ‘‘long and accu-
rate’’ NR waveforms are available in the future, the poly-
nomial coefficients given in the Tables can be optimized
for the corresponding family of more accurate hybrid
waveforms. In any case, since the fitting factors are already
very high, we do not expect any significant improvements.

F. The astrophysical range and comparison with other
searches

The template family proposed in this paper can be used
for coherently searching for all the three stages (inspiral,

merger, and ring down) of the binary black-hole coales-
cence, thus making this potentially more sensitive than
searches which look at the three stages separately.
Figure 14 compares the sensitivity of the searches using
different template families. What is plotted here are the
distances at which an optimally-oriented, equal-mass bi-
nary would produce an optimal SNR of 8 at the Initial
LIGO (left plot), Virgo (middle plot), and Advanced LIGO
(right plot) noise spectra. In each plot, the thin solid (blue)
line corresponds to a search using PN templates truncated
at the innermost stable circular orbit (ISCO) of the
Schwarzschild geometry having the same mass as the
total-mass M of the binary; the dashed (purple) line to a
search using ring-down templates [98]; the dot-dashed
(black) line to a search using effective-one-body [5] wave-
form templates truncated at the light ring of the corre-
sponding Schwarzschild geometry, and the solid line to a
search using all three stages of the binary coalescence
using the template bank proposed here. The computation
is described in detail in Appendix B. The horizontal axis
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reports the total mass of the binary, while the vertical axis
the distance inMpc. It is quite evident that, for a substantial
range of total-mass (100 & M=M� & 300 for Initial
LIGO, 200 & M=M� & 500 for Virgo, 150 & M=M� &
400 for Advanced LIGO), the ‘‘coherent search’’ using the
new template family is significantly more sensitive than
any other search considered here.

However, while this looks promising, we repeat here the
caveats emphasized in [30]: It is important to treat Fig. 14
as only a preliminary assessment; fitting factors are not the
only consideration for a practical search strategy. It is also
very important to consider issues which arise when dealing
with real data. For example, false alarms produced by noise
artifacts might well determine the true sensitivity of the
search, and these artifacts will inevitably be present in real
data. This is, however, beyond the scope of the present
work, and further investigation is required before we can
properly assess the efficacy of our phenomenological tem-
plate bank in real-life searches.

V. SUMMARYAND OUTLOOK

Making use of the recent results from numerical relativ-
ity we have proposed a phenomenological waveform fam-
ily which can model the inspiral, merger, and ring-down
stages of the coalescence of nonspinning binary black
holes in quasicircular orbits. We first constructed a set of
hybrid waveforms by matching the NR waveforms with
analytical PN waveforms. Then, we constructed analytical
phenomenological waveforms which approximated the
hybrid waveforms. The family of phenomenological wave-
forms that we propose was found to have fitting factors
larger than 0.99 with the hybrid waveforms. We have also
shown how this phenomenological waveform family can
be parametrized solely in terms of the physical parameters
(M and �) of the binary, so that the template bank is, in the
end, two dimensional.3 This two-dimensional template
family can be explicitly expressed in terms of the physical
parameters of the binary. We have estimated the ‘‘close-
ness’’ of this two-dimensional template family with the
family of hybrid waveforms in the detection band of three
ground-based GW detectors, namely, Initial LIGO, Virgo,
and Advanced LIGO. We have estimated the effectualness
(larger overlaps with the target signals for the purpose of
detection) and faithfulness (smaller biases in the estimation
of the parameters of the target signals) of the template
family. Having both types of overlap always greater than
0.99, the two-dimensional template family is found to be
both effectual and faithful in the detection band of these
ground-based detectors.

This phenomenological waveform family can be used to
densely cover the parameter space, avoiding the computa-
tional cost of generating numerical waveforms at every
grid point in the parameter space. We have compared the
sensitivity of a search using this template family with other
searches. For a substantial mass range, the search using all
three stages of the binary black-hole coalescence was
found to be significantly more sensitive than any other
template-based searches considered in this paper. This
might enable us to do a more sensitive search for
intermediate-mass black holes using ground-based GW
detectors.
A number of practical issues need to be addressed before

we can employ this template family in an actual search for
GW signatures. The first issue will be how to construct a
bank of templates sufficiently densely spaced in the pa-
rameter space so that the loss in the event rate because of
the mismatch between the signal and template is restricted
to an acceptable amount (say, 10%). The explicit
frequency-domain parametrization of the proposed tem-
plate family makes it easier to adopt the formalism pro-
posed by Owen [99] in laying down the templates using a
metric in the parameter space. Work is ongoing to compare
the metric formalism adopted to the proposed template
family and other ways of laying out the templates, for
example, a ‘‘stochastic’’ template bank [100]. Also, this
explicit parametrization makes it easier to employ addi-
tional signal-based vetoes, such as the ‘‘chi-square test’’
[101]. This will also be explored in a forthcoming work.
Since this template bank is also a faithful representation

of the target signals considered, we expect that, for a
certain mass-range, a search which coherently includes
all three stages of the binary coalescence will bring about
remarkable improvement in the estimation of parameters
of the binary. This may be especially important for LISA
data analysis in estimating the parameters of supermassive
black-hole binaries. This is also being explored in an on-
going work [47].
It is worth pointing out that the family of target signals

(the hybrid waveforms) that we have considered in this
paper is not unique. One can construct alternate families of
hybrid waveforms by matching PN waveforms computed
using different approximations with NR waveforms. Also,
owing to the differences in initial data and accuracy of
numerical techniques, the NR waveforms from different
simulations can also be slightly different. Thus, the coef-
ficients listed in Tables I and II have a unique meaning only
related to this particular family of target waveforms. But
we expect that the general parametrization that we propose
in this paper will hold for the whole family of nonspinning
black-hole coalescence waveforms from quasicircular in-
spiral. As we have mentioned in the Introduction, the
purpose of this paper is to explicitly prescribe a general
procedure to construct interpolated template banks using
parametrized waveforms which mimic actual signals from

3It may be noted that the mapping from the phenomenological
to physical parameters might not be unique in the case of
spinning binaries, because of the degeneracies of different spin
configurations.
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binary black-hole coalescence (as predicted by numerical
relativity and analytical methods).

Nevertheless, it may be noted that most of the PN wave-
forms constructed using different approximations are
known to be very close to each other (see, for example,
[46]). Also, we expect that NR waveforms from different
simulations will converge as the accuracy of numerical
simulations improves (see, for example, [102]). Thus, since
different families of PN and NR waveforms, which are the
‘‘ingredients’’ for constructing our target signals, are very
close to each other, we expect that the phenomenological
waveform family proposed in this paper, in its present
form, will be sufficiently close to other families of target
signals for the purpose of detecting these signals. As a
preliminary illustration of this, we have computed the
fitting factors of the template waveforms with a different
family of hybrid waveforms (constructed from longer and
more accurate NR waveforms), and have shown that the
overlaps are indeed very high. This will be explored in
detail in a forthcoming work.

Also, we remind the reader that this paper considers only
the leading harmonic of the GW signal (‘ ¼ 2, m ¼ �2).
We expect that the contribution from the higher harmonics
becomes important for high mass ratios, which will be
investigated in a forthcoming work.
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APPENDIX A: CALCULATION OF THE FITTING
FACTORS

In order to find the fitting factor of our phenomenologi-
cal bank to a hybrid waveform, as well as the best-matched
parameters ð�max; maxÞ, we need to perform a maximiza-
tion of the overlap Mð�; Þ in a 12-dimensional space,
which seems a challenging task at first sight, especially due
to the oscillatory nature of the dependence ofMð�; Þ on
the components of . However, due to the very high fitting
factor, as well as the linear dependence of�effð ; fÞ on ,
we have been able to design an analytic approximation to
Mð�; Þ that is highly accurate and can be maximized
over  analytically. In describing this approximation, we
also include ’0 and t0 in  , forming an 8-dimensional
vector.
For a target hybrid waveform

~hðfÞ ¼ AðfÞei�ðfÞ; (A1)

and a phenomenological template

uðfÞ ¼ Aeffð�; fÞei�eff ð ;fÞ; (A2)

the overlap Mð�; Þ can be broken into a product of two
terms,

M ð�; Þ ¼ MAð�ÞMPð�; Þ; (A3)

with

M Að�Þ � 1

a

Z 1

0

Aeffð�; fÞAðfÞ
ShðfÞ df; (A4)

and

M Pð�; Þ � 1

b

Z 1

0

Aeffð�; fÞAðfÞ cos½��ðfÞ�
ShðfÞ df;

(A5)

where

��ðfÞ � �ðfÞ ��effð ; fÞ: (A.6)

In the above expressions, the normalization constants a and
b are defined by

a2 �
Z 1

0

A2ðfÞ
ShðfÞ df

Z 1

0

A2
effð�; fÞ
ShðfÞ df; (A7)

and

b �
Z 1

0

Aeffð�; fÞAðfÞ
ShðfÞ df: (A8)

If the phase difference ��ðfÞ is small, we can approxi-
mate cos�� � 1� ��2=2, and rewrite MP as

M P � M0
P � 1� 1

2b

Z 1

0

Aeffð�; fÞAðfÞ½��ðfÞ�2
ShðfÞ df:

(A9)

Since�effð ; fÞ is a linear function in  , minimizingM0
P
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becomes a least-square fit with a weighting function

�ðfÞ � Aeffð�; fÞAðfÞ
ShðfÞ : (A10)

More specifically, writing �effð ; fÞ as in Eq. (4.16), i.e.,

�effð ; fÞ ¼
X
j

 jf
ð5�jÞ=3; (A11)

we have

1�M0
P ¼ 1

2½ A T � 2B T þD�; (A12)

where we have defined a matrix A, a vector B, and a scalar
constant D, such that

Aij � 1

b

Z 1

0
fð10�i�jÞ=3�ðfÞdf;

Bj � 1

b

Z 1

0
fð5�jÞ=3�ðfÞ�ðfÞdf;

D � 1

b

Z 1

0
�2ðfÞ�ðfÞdf:

(A13)

The maximum of M0
P is then equal to

M 0
Pmax ¼ 1� 1

2½D� BA�1B�; (A14)

reached at

 max ¼ BA�1: (A.15)

As a consequence, for each �, we are able to maximize
MPð�; Þ, and hence Mð�; Þ, over  analytically. The
original 12-dimensional maximization is then converted to
a 4-dimensional maximization, only over the amplitude
parameters, on which the overlap depends in a nonoscilla-
tory way.

APPENDIX B: COMPUTING THE HORIZON
DISTANCE

Here we describe how we compute the horizon distance
of different searches discussed in Sec. IV F. An alternative
way of computing the horizon distance can be found in
Ref. [92].

1. Search using post-Newtonian templates

In the restricted post-Newtonian approximation, the
Fourier transform of the gravitational signal from an opti-
mally oriented binary located at an effective distance d can
be written in the following way:

hðfÞ ¼ M5=6

d�2=3

�
5�

24

�
1=2
f�7=6ei½2�ft0�’0þ ðfÞ��=4�; (B1)

whereM is the total mass, � is the symmetric mass ratio, t0
is the time of arrival, and ’0 is the initial phase. The phase
 ðfÞ is computed using the stationary-phase
approximation.

The optimal SNR in detecting a known signal h buried in
the noise is given by

�opt ¼ 2

�Z 1

0
df
hðfÞ2
ShðfÞ

�
1=2
; (B2)

where ShðfÞ is the one-sided PSD of the noise. The optimal
SNR in detecting the signal given in Eq. (B1) can thus be
computed as

�opt ¼ M5=6

d�2=3

�
5�

6

�
1=2

�Z fupp

flow

df
f�7=3

ShðfÞ
�
1=2
; (B3)

where flow is the low-frequency cutoff of the detector noise
and fupp is upper frequency cutoff of the template wave-

form. The effective distance to a binary which can produce
an optimal SNR �opt can be computed by inverting the

above equation.
The standard post-Newtonian waveforms are truncated

at fupp ¼ fISCO, where fISCO ¼ ð63=2�MÞ�1 is the GW

frequency corresponding to the innermost stable circular
orbit (ISCO) of the Schwarzschild geometry with mass
equal to the total mass M of the binary. The effective-
one-body (EOB) waveforms are truncated at fupp ¼ fLR,

where fLR ¼ ð33=2�MÞ�1 is the GW frequency corre-
sponding to the light ring of the Schwarzschild geometry
with mass M. Both of these quantities are computed as-
suming the test particle limit. It may be noted that, for the
EOB waveforms, an analytical Fourier domain representa-
tion is not available. They cannot be expressed in the form
given in Eq. (B1). But for the purpose of the estimation of
the horizon distance, these formulas give a reasonable
approximation.

2. Search using ring-down templates

The ring-down portion of the GW signal from a coales-
cing binary, considering only the fundamental quasinormal
mode, corresponds to a damped sinusoid. This can be
written as [103]

hringðtÞ ¼ Aring exp

�
��fQNRðt� t0Þ

Q

�

� cosð�2�fQNRðt� t0Þ þ ’0Þ; (B4)

where Aring is the amplitude, t0 is the start time of the ring

down, ’0 the initial phase,M is the mass of the final black
hole, fQNR and Q are the central frequency and the quality

factor of the ringing. For the fundamental mode, a good fit
to the frequency fQNR and quality factor Q, within an

accuracy of 5%, is given by

fQNR � ½1� 0:63ð1� aÞ3=10� 1

2�M
; (B5)

Q � 2ð1� aÞ�9=20; (B6)
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where aM2 is the spin angular momentum, and a is the
Kerr parameter [103].

To compute the optimal SNR in detecting this signal
present in the data, we proceed as in [104], assuming that
for t < t0, hringðtÞ is identical to t > t0 except for the sign in

the exponential, and dividing by a correcting factor of
ffiffiffi
2

p
in amplitude to compensate for the doubling of power:

�h ringðtÞ ¼
Aringffiffiffi

2
p exp

�
��fQNRjt� t0j

Q

�

� cosð�2�fQNRðt� t0Þ þ ’0Þ: (B7)

Its Fourier transform then becomes

~�h ringðfÞ ¼
AringfQNRffiffiffi

2
p
�Q

ei2�ft0
�

ei’0

g2 þ 4ðf� fQNRÞ2

þ e�i’0

g2 þ 4ðfþ fQNRÞ2
�
; (B8)

where g ¼ fQNR=Q.
In general, it is not easy to estimate Aring, or the two

polarization amplitudes; they depend upon the detailed
evolution of the merger epoch, as well as variables such
as the orientation of the final merged remnant. A reason-
able hypothesis [105–107] is that their ratio follows the
ratio of the inspiral polarization amplitudes. With this
hypothesis, the overall amplitude of the signal from an
optimally located and oriented binary, requiring that the
ring down radiate some fraction � of the system’s total
mass, becomes

A
opt
ring ¼

ffiffiffiffiffiffiffi
5�

4�

s
M

d

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MfQNRQFðQÞ

q ; (B9)

where FðQÞ ¼ 1þ 7
24Q2 and d is the distance to the source.

The optimal SNR � can now be computed as

�opt ¼ 2

�Z fupp

flow

df
j~�hringj2
ShðfÞ

�
1=2
; (B10)

where flow and fupp are the lower and upper cutoff fre-

quencies of the detector noise. As in the previous case, the
horizon distance can be computed by inverting this
equation.

3. Search using the template family proposed in this
paper

The phenomenological waveforms in the frequency do-
main are given in Eqs. (4.12), (4.13), (4.14), (4.15), (4.16),
and (4.17). The optimal SNR in detecting this signal can be
computed as

�opt ¼ M5=6f�7=6
merg

d�2=3

�
5�

6

�
1=2

�Z fmerg

flow

df
ðf=fmergÞ�7=3

ShðfÞ

þ
Z fring

fmerg

df
ðf=fmergÞ�4=3

ShðfÞ

þ
Z fcut

fring

df
L2ðf; fring; 
Þ

ShðfÞ
�
1=2
; (B11)

where Lðf; fring; 
Þ is defined in Eq. (4.14), and fmerg,

fring, fcut, and 
 are given by Eq. (4.18).

This equation can be inverted to calculate the effective
distance to the optimally oriented binary which can pro-
duce an optimal SNR �opt.
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[62] M. Alcubierre and B. Brügmann, Phys. Rev. D 63, 104006
(2001).

[63] M. Hannam, S. Husa, D. Pollney, B. Brügmann, and N. Ó
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