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In the mathematically rigorous analysis of semiclassical Einstein equations, the renormalization of the

stress-energy tensor plays a crucial role. We address such a topic in the case of a scalar field with both

arbitrary mass and coupling with gravity in the hypothesis that the underlying algebraic quantum state is

of the Hadamard type. Particularly, if we focus on highly symmetric solutions of the semiclassical

Einstein equations, the envisaged method displays a de Sitter-type behavior even without an a priori

introduced cosmological constant. As a further novel result, we shall show that these solutions turn out to

be stable.
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I. INTRODUCTION

A landmark in present-day observational cosmology has
been set by means of the measurement of the type IA
supernovae redshift which, as a by-product, proved that
the Universe is undergoing a phase of accelerated expan-
sion. Such a result, also combined with the most recent
data collected in several other experiments, suggests that,
in order to explain the present state of our Universe, we
must take into account the presence of a ‘‘dark energy’’
playing the role of an effective cosmological constant.
From a theoretical point of view, we still lack a full-fledged
satisfactory model for dark energy, and such a problem was
tackled in the past in several ways, the most notable being
by means either of a yet unobserved classical scalar field
coupled to gravity [1,2] or of a modified theory of gravity
itself (see [3] and references therein for a recent review).

In the present paper, our aim is to consider the back-
reaction of a massive quantum scalar field coupled to
gravity in order to discuss the role played by quantum
effects in the framework of cosmological models. The
interest in backreaction effects of quantum fields in cos-
mology is not new since, already in the 1980s, Starobinsky
[4] addressed the same topic taking into account a massless
scalar field conformally coupled to gravity (see also [5]).
The end point of Starobinsky’s seminal paper was the
construction of a graceful exit from a de Sitter phase of
rapid expansion. By using the quantum property of the
source fields, he observed that such a de Sitter spacetime
is an unstable solution of the semiclassical Einstein equa-
tions (see also [6]). More recently, in [7], Shapiro and Sola
also considered the massive case in a similar way. They
obtained as well a smooth exit from an inflationary phase.
Since this is a topic partly far away from our goals, we shall
consider anew such a case, namely, we study the semiclas-
sical Einstein equation

Gab ¼ 8�GhTabi!;
where the left-hand side is the standard Einstein tensor
whereas the right-hand side is the expectation value for the
stress-energy tensor in the state !. It is a well-known
problem that the latter gives origin to divergences.
Hence, it is compulsory to invoke a renormalization pro-
cedure, and, within this perspective, we would like to carry
on our analysis along the lines discussed by Wald, by using
the point-splitting regularization.
In a series of papers [8,9], Wald sets out five axioms that

need to be satisfied to have a renormalized stress-energy
tensor that can be used in order to have possible mean-
ingful semiclassical solutions of the Einstein equation. By
sticking to such a perspective, we shall show that, in some
physically motivated limits, we can find a stable solution to
the semiclassical Einstein equation. This leads to a great
difference from the original Starobinsky model, where, on
the opposite, an unstable behavior is displayed. To this end,
we must bear in mind the following message already
conveyed to us in [10,11]: The renormalization of the
stress-energy tensor suffers of some ambiguities encoded
in a modification of the action by the addition of terms
depending only on the curvature and on the parameters
describing the fields such as, for example, the mass. This
arbitrariness is then encoded in the renormalization pa-
rameters present in front of this arbitrary term. In the
forthcoming discussion, we shall fix the renormalization
parameters by requiring a physically meaningful theory
and invoking the principle of general local covariance
[12]. It will also turn out that the original result due to
Starobinsky in the case of conformal invariant fields cor-
responds to another choice of the renormalization con-
stants; hence, by employing a different criterion, the
system under analysis displays a rather physically different
behavior.
For a more mathematically oriented reader, a few more

comments are in due course. Since we are interested in
solutions of the semiclassical Einstein equation, where
quantum matter acts as a source for the gravitational field,
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we need to employ a quantization scheme independent
from the spacetime itself. Such a conceptual problem
was recently addressed in a work by Brunetti,
Fredenhagen, and Verch [12]. They showed that it is pos-
sible to simultaneously quantize on all spacetimes, and the
quantization scheme in this framework corresponds to
assigning a functor between the category of spacetimes
(Man) and the category of local algebra (Loc) generated
fields. Furthermore, such a functor transforms covariantly
under any local transformation. Unfortunately, while fields
also transform covariantly under isometries, a similar con-
clusion cannot be drawn for states. Therefore, since we are
interested in expectation values of fields, we are forced to
select a class of the mentioned states enjoying some suit-
able physical properties and in the framework of
Friedmann-Robertson-Walker (FRW) spacetimes; this
naturally leads to selection of the class of the so-called
adiabatic states. Starting from these premises, we are now
ready to use, within this abstract scheme of analysis,
quantum matter as a source for the gravity, whereas the
role of Einstein’s equations will select a particular set of
objects inMan, as a sort of consistency check. To rephrase,
even if we can quantize in all of the spacetimes simulta-
neously, once a family of states is chosen, only in a few of
those spacetimes do the semiclassical Einstein equations
hold true.

After fixing some notation, in the next section we shall
recall briefly the renormalization procedure that we shall
employ. In the third section we shall perform a suitable
choice for the quantum state, and then we will discuss the
associated solutions of the semiclassical Einstein equa-
tions. In the fourth section we shall justify this hypothesis
by means of physical motivations. Finally, some conclu-
sions are drawn in the last section.

Einstein’s equation and cosmological backgrounds

To set notations and conventions, let us clarify that our
aim is to consider spacetimes whose metric is used in the
description of the Universe. Hence, we stick to the standard
convention of requiring the cosmological principle to hold
true; this straightforwardly leads to the full class of
Friedmann-Robertson-Walker metrics, and, particularly,
here we shall consider only those with a spatial flat section.
In a Cartesian reference frame, the metric reads

ds2 ¼ �dt2 þ aðtÞ2�ijdx
idxj; i; j ¼ 1; . . . ; 3; (1)

where aðtÞ can be interpreted as usual as the expansion
factor and it is the only function to be determined out of
(the semiclassical) Einstein’s equations. A standard calcu-
lation shows that we can employ only the identity between
traces, i.e.,

� R ¼ 8�hTi!; (2)

together with the conservation law for the stress-energy
tensor, namely,

rahTabi! ¼ 0: (3)

As already remarked in the introduction, hTi! stands for
the expectation value of the trace of the stress-energy
tensor. We stress to a potential reader that the semiclassical
Einstein equations are not fully equivalent to (2) and (3).
As a matter of fact, in these last two equations there is a
residual freedom to add to Tab a conserved traceless stress-
energy tensor T0

ab. Such extra freedom amounts to the

choice of an initial condition for _aðtÞ in (2) at t ¼ t0. In
other words, to fulfill the semiclassical Einstein equations,
we need to ensure that the identity G00 ¼ 8�hT00i! is
satisfied at the initial time t0.

II. MASSIVE SCALAR FIELD

As we already emphasized in the introduction, we shall
employ a real scalar field � as the prototype to discuss the
quantum behavior of classical matter on a FRW back-
ground (1). Therefore, the classical dynamic of our system
is governed by

P� ¼ 0; P :¼ �hþ �Rþm2; (4)

where � 2 R and R is the scalar curvature, whereas m is
the mass of the field. Bearing in mind that, unless stated
otherwise, our convention for the metric signature is

ð�;þ;þ;þÞ, (1) entails the following identity R ¼ 6ð €aa þ
_a2

a2
Þ, where each dot stands for derivation with respect to t.

In what follows, we shall indicate H ¼ _a=a. Setting � ¼ 1
6

corresponds to the so-called conformal coupling.

A. Quantization procedure: States and Hadamard
condition

In this paragraph, we shall start dealing with the quan-
tum behavior of the solutions of (4), and, to this avail, we
shall stick to the realm of the algebraic formulation of
quantum field theory. Since a detailed analysis of the
main ingredients and results would require a review on
its own just for the massive scalar field, we shall point an
interested reader to [13,14]. Therefore, to cut a long story
short, let us state that, for our purposes, it suffices to
remember that, the FRW spacetime being globally hyper-
bolic, there exists a standard procedure to assign a �
algebra, say, W , out of (4) [13,14]. Afterwards, we need
to add a further ingredient, namely, a state !: W ! C,
which is the key tool out of which we can calculate the
relevant objects, i.e., expectation values of the fields on that
state, more commonly referred to as n-point functions,
which we shall denote from now on as !n ¼
h�ðx1Þ . . .�ðxnÞi. From a formal perspective, these objects
must be thought of as distributions in D0ðMnÞ, and the
singular structure, proper in general of distributions, arises
whenever we perform in !n a coincidence limit.
Therefore, in order either to formulate a mathematically

meaningful field theory or to construct a theory which
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allows us to perform calculations going beyond the pure
formal level, the selection of a suitable class of states is one
of the main, if not the most important, tasks. To this avail,
we shall impose some reasonable constraints, and the first
requires us to restrict our attention to the so-called quasi-
free states. These are characterized by the following prop-
erty: All of the odd n-point functions vanish, while all of
the even ones can be reconstructed out of sums of products
of the two-point function. In other words, quasifree states
are fully determined once !2ðx; yÞ is known. In the forth-
coming sections, we shall display how the above require-
ment is relevant to our discussion. In particular, we shall
show that also the stress-energy tensor can be fully deter-
mined only out of !2, and this is the key nongeometrical
ingredient in the semiclassical Einstein equation.

Nonetheless, ‘‘quasifree’’ is not a sufficient requirement
for our ! to satisfy, and, particularly, a second and most
important hypothesis must be imposed, namely, the state
shall be Hadamard. On a practical ground, from such a
condition we can infer that the singular structure for the
two-point function is fixed as

!2ðx; yÞ ¼ 1

8�2

�
uðx; yÞ
�ðx; yÞ þ vðx; yÞ log�ðx; yÞ þ wðx; yÞ

�
;

(5)

where� is half of the square of the geodesic distance in the
FRW background. The functions u, v, and w, also known
as Hadamard coefficients, are smooth, and u and v can be
uniquely determined once the equation of motion and the
metric of the underlying background are fixed. In the above
expression, it turns out that u is the square root of the so-
called van Vleck-Morette determinant, which depends
only on gab; i.e., u can be reconstructed only out of the
geometric properties of the manifold on which our fields
live. On the opposite, w is the contribution to the
Hadamard function which depends upon the state that we
have selected. Therefore, all of the information of the
singular part in (5) is encoded in

Hðx; yÞ ¼ 1

8�2

�
uðx; yÞ
�ðx; yÞ þ vðx; yÞ log�ðx; yÞ

�
;

which has a universal structure in every Hadamard state.
Hence, this is the contribution that we can subtract from the
two-point function in order to get a smooth behavior; in
other words, this amounts to regularizing the state. As a
notational convention, from now on, we shall refer to
vðx; xÞ by means of the symbol ½v�. Furthermore, vðx; yÞ
admits an asymptotic expansion in powers of the geodesic
distance: vðx; yÞ ¼ P1

n¼0 vnðx; yÞ�nðx; yÞ. In the forthcom-

ing discussion, the coefficient v1 will play a distinguished
role.

B. Stress-energy tensor

The stress-energy tensor for a quantum real scalar field
� with mass m and coupling to curvature � can be written

as

Tab :¼ @a�@b�� 1

6
gabð@c�@c�þm2�2Þ � �ra@b�

2

þ �

�
Rab � R

6
gab

�
�2 þ

�
�� 1

6

�
gabh�2:

Since the key ingredient to our analysis is the trace and the
conservation equation for Tab, let us switch from the
previous formula to

T ¼ �3ð16 � �Þh�2 �m2�2; raT
a
b ¼ 0:

We stress to the reader that here we employ a nonstandard
form for Tab; i.e., it differs from the more familiar one by a
term proportional to 1

3 ððP�Þ�þ�ðP�ÞÞgab [15]. At a

classical level, this contribution vanishes since, on shell,
P� ¼ 0, but nonetheless it represents an important feature
in a full-fledged analysis of the underlying quantum theory,
since, in this case, it is different from zero. Furthermore,
encompassing such a term in the stress-energy tensor
automatically accounts for the trace anomaly, which, on
the opposite, was usually added by hand. As shown in [9–
11,15,16], this automatically arises in the quantum theory
once the point-splitting regularization is performed. We
also exploit the latter to regularize the operator Tab in
order, subsequently, to calculate its expectation value on
a quasifree Hadamard state. Such an expression would be
quite cumbersome in the text and also of little avail; there-
fore, an interested reader can refer to the Appendix for
more details.
Notice that the envisaged conservation equation for the

quantum stress-energy tensor, namely, rahTabi! ¼ 0,
holds true due to the following identities:

8�2h�P�i! ¼ 6½v1�; 8�2hðra�ÞðP�Þi! ¼ 2ra½v1�;
where ½v1� is here explicitly given in the Appendix in
Eq. (A1). The heritage of such a conservation law is the
change of the expectation value for the trace of Tab by
means of a purely quantum term:

hTi! :¼
�
�3

�
1

6
� �

�
h�m2

� ½w�
8�2

þ 2½v1�
8�2

;

where the dependence upon the state is encoded in the term
½w�.
To conclude, we point out to a potential reader that, due

to ½v1�, the above trace is nonvanishing also in a conformal
field theory [9].

C. Remaining freedom in the definition of Tab

By means of point-splitting regularization, we have
fixed the expectation value of hTi! in the so-called minimal
regularization prescription, namely, we have subtracted
only the singular part from the two-point function.
Nonetheless, as discussed by Wald [9], in the renormaliza-
tion prescription, there is still a freedom of geometric
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nature. In detail, we can add a tensor tab written only in
terms of the local metric and such that it satisfies ratab ¼
0 without either affecting the equations of motion for the
matter or violating the first four axioms introduced and
discussed in Wald’s paper. The conservation equation for
tab is not the unique constraint we may wish to impose on
such a tensor, and, in particular, a further natural require-
ment would be that tab behaves as Tab under scale trans-
formations. In other words, this implies that tab arises out
of the following variation:

tab ¼ �

�gab

Z
A

ffiffiffi
g

p
R2 þ B

ffiffiffi
g

p
RabR

ab;

A and B being just arbitrary real numbers. Leaving the
details of the above construction and analysis to [9–11,17],
we shall stress only that the trace of tab turns out to be
proportional tohR independently from the choice of A and
B. This is an unavoidable arbitrariness in the employed
scheme, and, as a by-product, it leads us to think of A and B
as renormalization constants on their own. We are now able
to compute the trace of the whole quantum modified stress-
energy tensor:

hTi! :¼
�
�3

�
1

6
� �

�
h�m2

� h�2i!
8�2

þ 2½v1�
8�2

þ chR;

where c is a linear combination of A and B and it represents
the freedom in the renormalization procedure that we
exploited. In order to carry on our analysis, we shall now
require Wald’s fifth axiom to hold true. We stress to a
potential reader that, while performing such a step, we
are referring, in particular, to the analysis in [9], where it
was shown that such an axiom can be implemented only in
a sense weaker than first envisaged in [8]. To wit, there
must be no derivative of the metric of degree higher than 2
in the expectation value of the trace of the stress-energy
tensor. On a practical ground, such a concept can be
implemented by choosing in the preceding formula the
constant c in such a way to exactly cancel all of the terms
proportional tohR arising in hTi!. It is always possible to
perform such a choice, and, particularly, when � ¼ 1

6 , i.e.,

the scalar field is conformally coupled to scalar curvature,
then c ¼ � 1

2880�2 . Such a procedure fixes only Aþ B=3,

whereas, in our specific model, the remaining freedom for
A and B could eventually be fixed by requiring the validity
of the constraint G00 ¼ 8�hT00i! at the initial time t0.
Further renormalization ambiguities are encoded in the
expectation value of the field h�2i!; we shall come back
later to this point by fixing the ambiguity by physical
motivation.

We stress that a similar observation brought interest in
the so-called modified theory of gravity also known as fðRÞ
gravity. Nonetheless, the view we wish to push home is the
following: Adding tab does not come from a modified
gravitational action, but it originates only from the em-
ployed renormalization scheme; i.e., it must be an effect

coming from quantum matter. Naturally, this does not
exclude that such a perspective cannot provide hints on
how a candidate theory of quantum gravity interacts with
quantum matter. As a final comment, we stress that the
above is the subtlest point in the whole construction. We
used an expression for the stress-energy tensor which is
suitable in order to deal with the semiclassical Einstein
equation. Nonetheless, such a modification is not artificial,
corresponding as a matter of fact just to a specific choice of
the renormalization constants arising out of the employed
scheme.

III. EVOLUTION EQUATION OF THE MODEL

In the case of conformal coupling � ¼ 1=6, Eq. (2),
written in terms of H ¼ _a=a, becomes

�6ð _Hþ 2H2Þ ¼ �8�Gm2h�2i!
þG

�

�
� 1

30
ð _HH2 þH4Þ þm4

4

�
: (6)

The aim of this section is to analyze in detail the possible
solutions of (6) under some specific hypotheses on the
expectation value for h�2i!. Particularly, we shall show
that a de Sitter space with a specific curvature will appear
as a stable solution.

A. Conformal invariant case: Stability of de Sitter
phase

As a starting point, we shall discuss the m ¼ 0 scenario,
already considered in Starobinsky’s paper [4] (see also
[5]). We also stress to a potential reader that most of the
results of Sec. III A have been already derived in an earlier
paper of Wald [18]. As remarked above, this case is rather
special, since there is no need to select a specific state and
an ordinary differential equation rules the evolution of H.
Hence, by setting m ¼ 0 in (6), we end up with

_HðH2 �H2
0Þ ¼ �H4 þ 2H2

0H
2: (7)

HereH2
0 ¼ 180�

G depends on the Newton constant, and it has

an order of magnitude of 24 times the inverse Planck time.
Let us notice that, out of the right-hand side of (7), we can
extract two critical points; therefore, (7) admits two con-

stant solutions, namely, HðtÞ ¼ 0 and HðtÞ¼Hþ¼ ffiffiffi
2

p
H0,

corresponding, respectively, to a Minkowski spacetime and
to a de Sitter one. Suppose now that we assign an initial
condition at a fixed time t0 such that Hðt0Þ � 0 and
Hðt0Þ � Hþ; we are interested to realize if the solution
interpolating such an initial condition flows at large times
either to 0 or to Hþ, i.e., in order words, whether these two
critical points are stable or not. To bring such a task to a
good end, we simply need to notice that (7) is integrable as

Ke4t ¼ e2=H
��������
H þHþ
H �Hþ

��������
1=Hþ

; (8)

where K stands for the integration constant to be fixed out
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of the initial condition H0. Depending on such a last value,
all of the solutions HðtÞ flow either to 0 or to Hþ. Hence,
both critical points turn out to be stable. This result is
different from the classical outcome of the analysis due
to Starobinsky [4] (see also Vilenkin and Ford [5,6]). The
price to pay, in order to achieve such a result, is a choice by
hand of a renormalization constant. It turns out to be an
addition of a tensor written only in terms of the metric, and
such an operation introduces in the theory a scale length, as
already discussed byWald in [9]. We have to stress that, on
the dark side, the above de Sitter solution cannot describe
the present-day form of the Universe being Hþ ’ 6:4�
1044 s�1, i.e., many orders of magnitude bigger then the
present measured Hubble constant ð2:6� 0:2Þ �
10�18 s�1. On the bright side, instead, we have shown
that, by encompassing the full quantum effects, we are
led to find a stable de Sitter solution even if no cosmologi-
cal constant is present in the equations.

B. Massive case with � ¼ 1=6: Stability of the de Sitter
phase, effective cosmological constant

In this section we switch from the massless to the
massive case. The most important difference is the follow-
ing: The right-hand side of (6) depends explicitly upon the
state via the expectation value of�2. The expectation value

of h�2i! on a general Hadamard state ! is ½w�
8�2 þ �m2 þ

�R, where � and � are renormalization constants encod-
ing the ambiguities still present in the procedure. We
assume for the moment the existence of a set of
Hadamard states ~!, one for each spacetime whose metric
is of the form (1) beingH ¼ _a=a and h�2i ~! ¼ �m2 þ �R.
We shall see later that this assumption turns out to be an
approximation of the expectation values of the fields com-
puted on the adiabatic states of FRW in the limit where
m2 � R and m � H. Moreover, by the principle of gen-
eral local covariance [10–12], we are entitled to fix the
renormalization constants once and in the same way for
every spacetime that we are considering. Then the expec-
tation value of h�2i ~! on the states we are considering takes
the following values:

h�2i ~! ¼ �m2 þ �R (9)

on all of the considered FRW spacetimes. Therefore, by
taking into account these remarks, (6) takes the following
form:

_HðH2 �H2
0Þ ¼ �H4 þ 2H2

0H
2 þM; (10)

where H0 and M are the following two constants with the
following values:

H2
0 ¼

180�

G
� 8�2180m2�;

M ¼ 15

2
m4 � 240�2m4�:

As in the previous section, the right-hand side of (10)
displays at most two critical points amounting to

H2� ¼ H2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H4

0 þM
q

; (11)

both corresponding either to a de Sitter phase or to a
Minkowski phase, under the assumption that � and �
have been chosen in such a way that both H2� and H2þ
are greater than or equal than 0.
A straightforward analysis shows that both HðtÞ ¼ H�

appear to be stable since all of the solutions flow to either
one of the two fixed points. It is remarkable that the
existence and the stability behavior of the latter are left
unchanged whether the right-hand side of (9) is modified
by adding a term such as Aa�	ðtÞ, 	 2 R and A a constant
of suitable dimension. It is also interesting to notice that a
formula similar to (11) already appeared in [19], although,
in the cited paper, a classical cosmological constant has
been introduced from the beginning. At this stage, our
simple model depends on three parameters �, �, and m.
A minimal and, to a certain extent, compulsory choice is to
require Minkowski as a solution of our system. This
amounts to fixing � ¼ ð32�2Þ�1, which, on the other
hand, entailsM ¼ 0. The form of the solution is then equal
to that of the massless case (8), where one of the fixed
points corresponds to a Minkowski space—
HðtÞ ¼ 0—while the other fixed point HðtÞ ¼ Hþ corre-
sponds to de Sitter. With respect to the massless conformal
factor, here we can fine-tune the parameters � and m in
such a way for Hþ to be small enough in order to account
for the present measured value of the Hubble constant.
Hence, heuristically speaking, our system behaves as if
an effective cosmological constant enters the fray without
even being present at the beginning, and this is a strict
consequence of encompassing the full quantum properties
of the field. As a further remark, we notice that (8) displays,
for a large class of initial conditions, an early time phase of
rapid expansion which is a prerequisite feature of modern
models for studying the early stages of evolution of the
Universe. This is in sharp contrast with the canonical
paradigm according to which quantum effects should ac-
count only for small fluctuations with respect to the clas-
sical behavior. On the opposite, even in the most simple
example of a massive scalar field and with the most simple
assumptions, our system displays a behavior which drasti-
cally differs from the one we could a priori expect only
from a classical analysis. Hence this suggests that, when
dealing with scalar fields on a FRW background, one
should always perform a full-fledged analysis of the semi-
classical behavior of the system since the quantum contri-
butions appear to be hardly negligible as one can also infer
from Fig. 1.
As a final comment, we stress that, in a neighborhood of

H ¼ Hþ, the found solution (8) looks rather similar to the
one of a classical flat universe with the cosmological
constant filled with radiation. As a matter of fact, in that
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case Hrad;�ðtÞ ¼ A tanhð2ðt� t0ÞAÞ, where A is a constant

related to the cosmological constant, and it can be inverted
as

Ke4t ¼
��������
Hþ A

H� A

��������
1=A

;

which looks very similar to (8) when H � A and Hþ ¼ A;
this corresponds to the dashed line in Fig. 1. The quantum
effects are not important only around H ¼ 0 where (8)
looks like HradðtÞ in a flat universe filled only with radia-
tion, namely, the dotted line in Fig. 1. Eventually, we
would like to stress that, considering the upper branch of
the solution, in the past, it displays the behavior of a
classical flat universe with a kind of matter such that 
 ¼
AaðtÞ�2. Even in this regime, quantum effects are not
negligible. As a further remarkable consequence of the
analytic form ofHðtÞ, it turns out that the singularity at t ¼
t0 coincides with null past infinity in the flat spacetime
conformally related to (1); hence, it descends that the
particle horizon is not present. Therefore, any pair of points
in the underlying background was casually related in the
past, and, thus, as a by-product, such a property of our
model could provide a solution to the problem of
homogeneity.

IV. EXPECTATION VALUE OF �2 ON THE
ADIABATIC VACUUM

In the preceding section, we have seen that, by assuming
a suitable form of h�2i, two stable de Sitter phases can
arise as solutions of the semiclassical Einstein equation.
We would like to give a justification for our assumption,

namely, we shall show that there is a regime in which it is
valid. Here we restrict our attention to the case of a massive
scalar field with a conformal coupling to the metric. The
first observation is that, if we select the Bunch-Davies state
!B [20] on a de Sitter spacetime and if we compute the
renormalized version of the expectation value of �2, we
obtain a constant that depends only on the mass m and on
H. With this observation, we can immediately conclude
that the two fixed points HðtÞ ¼ Hþ and HðtÞ ¼ H� dis-
cussed above are really exact solutions of the semiclassical
Einstein equation. In the next we shall select a class of
states that, in the limit of a large mass, shows an expecta-
tion value for h�2i! that is of the type �m2 þ �R.

Adiabatic states and large mass expansion

Wewould like to select here the class of adiabatic states,
i.e., those introduced by Parker [21] to minimize particle
creation (see also [22] for a derivation of the expectation
values of the stress tensor). Much work has been done also
recently in order to make the definition of these states
precise [23–25]. In order to write the two-point function
of these states, we follow the construction as in Parker [21].
In the case of conformal coupling, it is convenient to use

the conformal time � defined as �� �0 ¼
R
t
t0

dt0
aðtÞ .

Therefore, the two-point function of such a kind of states is

!ðx1; x2Þ ¼ 1

8�3

1

að�1Það�2Þ
�

Z
d3k�kð�1Þ�kð�2Þeik�ðx1�x2Þ;

xi ki are four vectors and xi are three vectors, whereas k
stands for the length of the spatial vector k. The functions
�kð�Þ are solutions of a differential equation with a suit-
able normalization condition:

�
d2

d�2
þ k2 þm2að�Þ2

�
�kð�Þ ¼ 0;

�kð�Þ d

d�
�kð�Þ ��kð�Þ d

d�
�kð�Þ ¼ i:

Each �kð�Þ can alternatively be written in the following
way:

�kð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�kð�Þ

p e
i
R

�

�0
�kð�Þ:

In the adiabatic approximation �kð�Þ is a function con-
structed recursively in the following way:

�ð0Þ2
k ð�Þ ¼ k2 þm2að�Þ2;

 0

 1

 2

 0  1  2

H
/H

+

t H+

FIG. 1. Here the dashed line corresponds to the behavior of H
Hþ

as a function of time t (normalized with respect to 1=Hþ) in a
FRW universe with a nonvanishing cosmological constant and
filled with radiation, while the dotted line stands for the lone
classical contribution coming from radiation. Conversely, the
continuous line depicts the outcome of our model where quan-
tum effects are also taken into account.
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and

�ðnþ1Þ2
k ð�Þ ¼ k2 þm2að�Þ2 þ 3

4

�
�ðnÞ0

k ð�Þ
�ðnÞ

k ð�Þ
�
2 � 1

2

�ðnÞ00
k ð�Þ

�ðnÞ
k ð�Þ ;

(12)

where the prime stands for the derivation with respect to �.
The nth order approximation consists then in the substitu-

tion of �k with �ðnÞ
k in �kð�Þ, and we shall indicate with

!ðnÞ
2 the counterpart for the two-point function of the state.

Nonetheless, one should bear in mind that this recursive
procedure does not have nice convergence properties,
though, thanks to the work of Junker and Schrohe [24],
we know that the state constructed in this way is an

adiabatic state in the sense that !ðnÞ
2 have a certain

Sobolev wave-front set. Hence, if n is large enough, we
can use the approximated state in order to build the stress-
energy tensor or the expectation value of �2. In particular,
we can compute the approximated expectation value

h�2iðnÞ ¼ limx!yð!ðnÞ
2 ðx; yÞ �Hðx; yÞÞ, which, more ex-

plicitly, becomes

h�2iðnÞ ¼ 1

4�2að�Þ2
Z 1

0
dkk2

�
1

�ðnÞ
k ð�Þ �

1

�ð0Þ
k ð�Þ

�
þ �0R

þ �0m2:

Above, �0 and �0 need to be interpreted as renormalization
constants. An exact computation of this integral can be
very difficult to perform; hence, we will show only how to
compute an expectation value in the limit of a large mass,
namely, by assuming that HðtÞ is a smooth function and
m2 � R. In this case, if furthermore n 	 2, it is possible to
expand the integral in powers of 1=m2 as

h�2iðnÞ ¼ �m2 þ �RþO

�
1

m2

�
;

where � and � are slightly different from the ones written
before. In the large mass limit we shall simply consider
h�2iðnÞ ¼ �m2 þ �R. The result should be read as a con-

firmation for the approximation that we have done in the
preceding section.

V. INTERPRETATION OF THE RESULTS AND
FINAL COMMENTS

In the present paper, we have shown that, when dealing
with cosmological models, quantum effects are not negli-
gible even when we consider basic models. As a matter of
fact, our analysis displays that, from a careful analysis of
the expectation values of the renormalized stress-energy
tensor, there arises an effective cosmological constant
which can be interpreted as dark energy.

Such a feature is manifest if we take into account a
massive scalar field propagating in a curved background,
although we envisage that similar effects would be present
if we consider other kinds of fields. Furthermore, we have
seen that a de Sitter solution appears as a stable fixed point
of the semiclassical Einstein equation, and, to a certain
extent, also a phase of rapid expansion can be foreseen in
the model. We also believe that, since the found results,
and particularly the stability of the de Sitter solution, are
based upon a modification of the point-splitting procedure
by a pure gravitational term, this could be read as a hint for
future study of quantum gravitational models interacting
with matter. To this avail, it also seems interesting to
pinpoint that, even considering the one-loop corrections
to the action of an fðRÞ theory, one is led to a stable
de Sitter solution [26,27]. Furthermore, also in this last
case, stability is a joint effect of quantum theory and
classical gravity, and this is a behavior which a lone
fðRÞ ¼ R2 term does not display.
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APPENDIX A: POINT-SPLITTING
REGULARIZATION OF THE STRESS-ENERGY

TENSOR

Let !2 be the two-point function of a quasifree
Hadamard state. The expectation value of the stress-energy
tensor regularized by means of the point-splitting proce-
dure is

hTabi!ðzÞ :¼ lim
ðy;xÞ!ðz;zÞ

�
@a@

0
b �

1

6
gabðgcd@d@0c þm2Þ

� 2�ðra@b þ @a@
0
bÞ þ �

�
RabðzÞ � RðzÞ

6
gab

�

þ
�
�� 1

6

�
gabð2rc@c þ 2gdcðzÞ@d@0cÞ

�
1

2

� ð!2ðy; xÞ �Hðy; xÞ þ!2ðx; yÞ �Hðx; yÞÞ;
where the prime stands for a derivative in y whereas the
one without a prime is a derivative with respect to x. A
reader should notice that, in the last part of the equation,
there is a symmetrization done at the level of the two-point
function and that Hðx; yÞ is the singular part of the
Hadamard series.

½v1� coefficient in the cosmological case

Since it is a relevant datum in our procedure, we provide
the explicit expression for 2½v1� ¼ ½a2�=2, a2 being the
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Schwinger-de Witt coefficient as derived at page 194 in
[16] with the choice of V ¼ �Rþm2 (see also [28])

2½v1� ¼ 1

360

�
CijklC

ijkl þ RijR
ij � R2

3
þhR

�

þ 1

4

�
1

6
� �

�
2
R2 þm4

4
� 1

2

�
1

6
� �

�
m2R

þ 1

12

�
1

6
� �

�
hR: (A1)

Furthermore, by assuming that the metric has the form of a

flat FRW universe (1) and writing H ¼ _a=a, ½v1� takes the
following form:

2½v1� ¼ � 1

30
ð _HH2 þH4Þ þ 1

12

�
1

5
� �

�
hR

þ 9

�
1

6
� �

�
2ð _H2 þ 4H2 _H þ 4H4Þ þm4

4

� 3

�
1

6
� �

�
m2ð _H þ 2H2Þ:
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