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We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by

introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the

first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the

Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics

favors the standard normalization and does not favor the Bousso-Hawking normalization.
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I. INTRODUCTION

The Schwarzschild black hole with negative specific
heat is in an unstable equilibrium with the heat reservoir
of the temperature T [1]. Its fate under small fluctuations
will be either to decay to hot flat space by Hawking
radiation or to grow without limit by absorbing thermal
radiation in the heat reservoir [2]. This means that an
isolated black hole is never in thermal equilibrium. There
exists a way to achieve a stable black hole in an equilib-
rium with the heat reservoir. A black hole could be ren-
dered thermodynamically stable by placing it in AdS
space. An important point to understand is how a black
hole with positive specific heat could emerge from thermal
radiation through a phase transition. To this end, the
Hawking-Page phase transition between thermal AdS
space and the Schwarzschild-AdS black hole was intro-
duced [3–5].

Furthermore, a thermodynamic similarity between the
event horizon of a black hole and the cosmological horizon
of de Sitter space has been established since the work of
Gibbons-Hawking [6]. The key point is that a cosmological
horizon possesses temperature and entropy. Ginsparg and
Perry have studied the thermal properties of the
Schwarzschild-de Sitter black hole (SdS) [7]. However,
an issue of the negative mass to the cosmological horizon
has appeared when using the first law of thermodynamics
to derive thermodynamic quantities [6,8]. This problem
arises because the surface gravity �C of the cosmological
horizon is negative. Using the first law of dMC ¼
½�C=8��dA leads to the mentioned result. Away to resolve
this issue is to calculate the mass of the cosmological
horizon using the Brown-York approach in the asymptotic
future [9].

It is known that the SdS is intriguing, but it is difficult to
analyze its thermodynamic properties because a black hole
is inside the fixed cosmological horizon. The cosmological
horizon may play a role of the heat reservoir for a black

hole like the AdS space. In order to investigate the SdS, one
introduces two kinds of temperatures based on the standard
and Bousso-Hawking normalizations. The standard nor-
malization provides the Hawking temperature TE

H and
Gibbons-Hawking temperature TC

H for event and cosmo-

logical horizons, respectively [10]. They behave differently
but have the zero temperature at the Nariai case which
corresponds to the maximum black hole and minimum de
Sitter space. These temperatures were derived by the anal-
ogy with asymptotically flat and AdS space. In the case of
asymptotically flat spacetimes, a standard method to obtain
the surface gravity is to choose the Killing field that goes to
a unit time-translation at infinity. An observer staying there
does not feel any acceleration. However, there is no asymp-
totic region and thus no preferred observer in de Sitter
spacetimes. Hence one has to introduce another normal-
ization to define appropriate temperatures. This is the
Bousso-Hawking normalization [11]. At the point r ¼ r0
where the metric function satisfies h0ðr0Þ ¼ 0, the black
hole attraction and the cosmological repulsion exactly
cancel out, and thus one may achieve the zero acceleration
inside the cosmological horizon. Including this normaliza-
tion into the expression of the surface gravity, one finds the

Bousso-Hawking temperatures TE=C
BH . These do not vanish

in the Nariai limit but approach a constant value [8,12,13].
However, one has to realize that the temperature TC

BH of

cosmological horizon is just an extension of TE
BH of the

event horizon and thus an important property of the degen-
erate horizon at r ¼ r0 may be lost for the thermodynamic
purpose.
In this work, we investigate the thermal properties and

phase transition of the SdS by introducing two tempera-
tures. Specifically, we reexamine the thermal stability of
the Nariai black hole which was considered in Ref. [10].
Our study is based on the on-shell observations of tem-

perature, heat capacity, and free energy as well as the off-
shell observations of generalized free energy, deficit angle,
and �-function. In general, the on-shell thermodynamics
implies equilibrium thermodynamics and thus the first-law
of thermodynamics holds for this case. Hence it describes*ysmyung@inje.ac.kr
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relationships among thermal equilibria but not the transi-
tions between equilibria. On the other hand, the off-shell
thermodynamics is designed for the description of off-
equilibrium configurations [14,15]. This is suitable for
the description of transitions between thermal equilibria.
We note that the first law of thermodynamics does not hold
for off-shell thermodynamics. We believe that the thermo-
dynamic study on the SdS is very helpful to understand de
Sitter spacetimes [16] because other analyses of perturba-
tions under the SdS background [17] are more restrictive
than thermodynamic analysis in de Sitter spacetimes.

II. THE STANDARD NORMALIZATION

We wish to study the thermal property of a black hole in
de Sitter space. For this purpose, we consider the
Schwarzschild-de Sitter black hole in five-dimensional
spacetime [18]

ds2SdS ¼ �hðrÞdt2 þ 1

hðrÞdr
2 þ r2d�2

3; (1)

where the metric function hðrÞ is given by

hðrÞ ¼ 1� m

r2
� r2

‘2
: (2)

Here m is a reduced mass of the black hole and ‘ is the
curvature radius of de Sitter spacetime. In the case of m ¼
0 (no black hole), we have the pure de Sitter space with the
largest cosmological horizon (rC ¼ ‘). m � 0 generates
the SdS black hole. From the condition of hðrC=EÞ ¼ 0, one
finds that the cosmological and event horizons are located
at

r2C=E ¼ ‘2

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m=m0

q
Þ (3)

withm0 ¼ ‘2=4 ¼ r20=2. We classify three cases with r0 ¼
‘=

ffiffiffi
2

p
:m ¼ m0ðr ¼ r0Þ,m>m0, andm<m0. The case of

m ¼ m0 corresponds to the maximum black hole with the
minimum cosmological horizon, the Nariai black hole.
Here we have the degenerate horizon of r0 ¼ rE ¼ rC. A
large black hole of m>m0 is not allowed in de Sitter
space. The case of m<m0 corresponds to a small black
hole inside the cosmological horizon. In this case a cos-

mological horizon is located at rC ’ ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m=4m0

p
, while

an event horizon is at rE ’ ffiffiffiffi
m

p
. Hence, restrictions on rE

and rC are given by

0< rE � r0; r0 � rC < ‘: (4)

One expects that as a reduced mass m approaches the
maximum value ofm ¼ m0, the small black hole increases
to the Nariai black hole at rE ¼ r0 by absorbing radiation

(EH
!
), whereas the cosmological horizon decreases to the

minimum value of rC ¼ r0 by emitting radiation (CHQ ).
This was the Hawking-Page transition (HP) for obtaining a
large, stable black hole in de Sitter space [10]. Also we

note that the size of black hole is closely related to the size
of the cosmological horizon.
The energy and entropy for two horizons take the forms

EE=C ¼ �
�
3V3mE=C

16�G5

� E0

�
with

mE=C ¼ r2E=C

�
1� r2E=C

‘2

�
;

SE=C ¼ V3r
3
E=C

4G5

;

(5)

where V3 is the volume of a unit three-dimensional sphere

�3 and E0 ¼ 3V3m0

16�G5
is the energy of the Nariai black hole.

We note here that EE � 0, while EC � 0. In this case, there
is no energy gap between two horizons (EE ¼ EC) at rþ ¼
r0. We use these definitions of energy since the fixed-‘
ensemble of de Sitter space is similar to the fixed-chargeQ
ensemble in the Reissner-Norström-AdS black holes [19].
However, the energy was used without E0 in Refs. [10,20–
22]. The thermodynamic quantities of temperature, heat
capacity, and free energy for the two horizons are given by

TE=C
H ¼ �

�2r2E=C � ‘2

2�‘2rE=C

�
; CE=C ¼ 3

2r2E=C � ‘2

2r2E=C þ ‘2
SE=C;

(6)

FE=C ¼ � V3r
2
E=C

16�G5

�r2E=C
‘2

þ 1

�
� E0: (7)

Hereafter we use the normalization of V3=16�G5 ¼ 1 for
simplicity. It is easily checked that the first law of thermo-
dynamics holds for two horizons,

dEE=C ¼ TE=C
H dSE=C: (8)

Imposing the equilibrium condition T ¼ TH, we obtain a
small, unstable black hole of size

ru ¼ �‘2T

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

ð2�‘TÞ2
s �

(9)

and a large, stable cosmological horizon of size

rs ¼ �‘2T

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

ð2�‘TÞ2
s �

: (10)

As is shown in Fig. 1, the temperatures TE=C
H behave

differently. We find two thermal equilibria for the range of
0 � T � TC

max ¼ 1=2�‘. For T > TC
max, there exists one

unstable equilibrium. Four temperatures fTg are introduced
to investigate the phase transition. For these temperatures,
we have unstable equilibria of frug ¼ f5; 5:51; 6:33; 6:91g
and stable equilibria of frsg ¼ f10; 9:07; 7:90; 7:23g. Even
though the temperature graph shows the key property, we
need to introduce other quantities for a complete analysis
of thermodynamic stability and phase transition.
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From the graph of heat capacity, we find that the event
horizon rE is locally unstable because of negative heat
capacity, whereas the cosmological horizon rC is locally
stable because of positive heat capacity. A global stability
of black hole is achieved only when C> 0 and F < 0. The
cosmological horizon of rC > r0 seems to be globally
stable, as is shown in Fig. 2. However, such thermody-
namic arguments describe relationships among thermal
equilibria but not the transitions between equilibria. In
order to describe transitions between thermal equilibria,
we need to introduce the off-shell free energy, deficit angle,
and off-shell �-function as [23]

Foff
E=Cðrþ; TÞ ¼ EE=C � TSE=C;

�E=Cðrþ; TÞ ¼ 2�

�
1� TE=C

H

T

�
;

(11)

�E=Cðrþ; TÞ ¼ �6r2þ�E=Cðrþ; TÞ: (12)

We use the off-shell free energy to study the growth of a
black hole [14]. In order to investigate the off-shell process
explicitly, we consider the deficit angle �E=C. The range of

deficit angle is 0 � �E=C � 2� for the proper transition

between two black holes. �E=C has the maximum value of

2� at the extremal point and it is zero at the equilibrium
point of T ¼ TH. This implies that the Nariai configuration
at rþ ¼ r0 has the narrowest cone of the shape ( � ) near
the horizon, while the geometry at T ¼ TH is a contractible
manifold ( � ) without conical singularity. For any off-
shell process of the growth of the black hole, we have 0<
�E=C < 2� and a conical singularity of the shape (< ) is

allowed near the horizon [14,15,23]. Also, the off-shell
�-function is introduced to measure the mass of a conical
singularity at the event horizon [15]. Hereafter, we do not
consider the �-function because it is proportional to the
deficit angle �E=C.

All equilibria of frug and frsg could be reproduced by
each condition of Foff

E=C ¼ FE=C and �E=C ¼ 0. We know

that the black hole is quite different from the cosmological
horizon because the former is unstable, while the latter is
stable. The HP may occur for T > Tc where Tc ¼ 0:011 is
determined from the equilibrium condition of
Foff
C ðrc; TcÞ ¼ FCðrcÞ ¼ FEð0Þ at rc ¼ 9:07 with FEð0Þ ¼

�75. We note a sequence of free energy of FCð‘Þ<
FEð0Þ< FE=Cðr0Þ, which means that the pure de Sitter

space at rþ ¼ ‘ is globally stable and the Nariai black
hole at rþ ¼ r0 is unstable. As T ! 0, Foffðrþ; TÞ connects
the point of rþ ¼ 0 to the Nariai case. On the other hand,
as T ! TC

max, F
offðrþ; TÞ connects the point of rþ ¼ 0 to

the pure de Sitter space through the unstable black hole at
rþ ¼ ru. For T > Tc, the pure de Sitter space is more
favorable than the Nariai case, while for T < Tc, the pure
de Sitter space is less favorable than the Nariai case. This

implies that the HP of EH
!

CHQ is unlikely to occur by
absorbing radiation, while the evaporating process of

EHQ CH
!

is likely to occur by emitting radiation.
We note that for T < TC, F

off
E ðru; TÞ and Foff

C ðrs; TÞ are
greater than FEð0Þ. On the other hand, for T > TC, FEð0Þ is
between Foff

E ðru; TÞ and Foff
C ðrs; TÞ. There exists an evapo-

rating process from rE ¼ r0 to rE ¼ 0 even for T ’ 0. This
shows that the Nariai black hole is not a globally stable
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FIG. 2. The graphs of free energy and deficit angle �E=C for SdS. Here rþ represents rE for the event horizon and rC for the
cosmological horizon. At the left graph, the solid curve represents the free energy FE=C, while the dashed lines denote off-shell free

energy Foff
E=Cðrþ; TÞ for temperatures of T ¼ 0:001, 0.005, Tcð¼ 0:011Þ, 0.016 from top to bottom. The reverse order of T is for the

deficit angle �E=C.
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FIG. 1. Temperature and heat capacity for SdS with ‘ ¼ 10 and r0 ¼ 7:07. Here rþ ¼ rEðrCÞ are confined to 0< rE � r0ðr0 �
rC < ‘Þ. At the left graph, the solid curve represents the temperature of the event horizon TE=C

H , while the dashed lines denote four

external temperatures of T ¼ TC
maxð¼ 0:016Þ, 0.011, 0.005, 0.001 from top to bottom.

THERMODYNAMICS OF THE SCHWARZSCHILD-DE . . . PHYSICAL REVIEW D 77, 104007 (2008)

104007-3



object, whereas the pure de Sitter space is a globally stable
object. The shapes of free energy and its off-shell free
energy are similar to those for the Schwarzschild-AdS
black hole. All of deficit angles �E=C are positive for proper

transitions between ru and rs. The differences are the
downward shift of free energy and the peak point at rþ ¼
r0 as the extremal point. Hence, the HP of EH

!
CHQ may be

excluded from the candidate for phase transition of the
SdS. This is an opposite conclusion to the previous result
based on the discontinuous free energy [10].

III. THE BOUSSO-HAWKING NORMALIZATION

The new temperatures based on the Bousso-Hawking
normalization take the form [8,11–13]

TE=C
BH ¼ TE=C

Hffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2rþ

ffiffiffiffiffiffiffiffiffiffiffi
‘2�r2þ

p
‘2

r
�
2r2þ � ‘2

2�‘2rþ

�
; (13)

where rþ ¼ rEðrCÞ go with 0 � rE � r0ðr0 � rC � ‘Þ.
Here we check that in the Nariai limit, the Bousso-
Hawking temperatures for event and cosmological hori-
zons approach a constant value as

lim
rþ!r0

TE=C
BH ¼ 1

�‘
: (14)

Here one takes the limit from smaller value for computing
TE
BHðr0Þ, while for TC

BHðr0Þ, one takes the limit from larger
value.

Assuming that the first law of thermodynamics

d ~EE=C ¼ TE=C
BH dSE=C (15)

holds for this normalization, we obtain the corresponding
energy from its integration over rþ as

~E E=C ¼ � 2

‘
ð‘2 þ rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � r2þ

q
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � r2þ

qr
:

(16)

The heat capacity is defined to be

~CE=C ¼ d ~EE=C

dTE=C
BH

¼ rþð2r2þ � ‘2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � r2þ

q
ð‘2 � 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � r2þ

q
Þ

‘2ð2r3þ � 3‘2rþ þ ð2r2þ þ ‘2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � r2þ

q
Þ

:

(17)

The on-shell free energy is defined by

~F E=C ¼ ~EE=C � TE=C
BH SE=C: (18)

On the other hand, the off-shell free energy is

~F off
E=C ¼ ~EE=C � TSE=C (19)

The equilibrium condition of d ~Foff
E=C=drþ ¼ 0 provides

T ¼ TE=C
BH , which shows in turn that ~Foff

E=C ¼ ~FE=C.

Similarly, we could define the deficit angle ~�E=Cðrþ; TÞ
using the temperatures TE=C

BH .
Now we are in a position to discuss the thermal proper-

ties of the SdS, which are based on TE=C
BH . From Fig. 3, it

turns out that the cosmological horizon branch is just an
extension of the event horizon branch. We have the tem-
perature bound of TE

BH � TC
BH, where the equality holds for

the Nariai black hole. Here we have the range of tempera-
ture for the cosmological horizon: TC

BHð‘ ¼ 10Þ � T �
TC
BHðr0 ¼ 7:07Þ. Both horizons are thermodynamically un-

stable because of ~CE=C < 0. We have ~CCð‘Þ ¼ 0 for the

pure de Sitter case and ~CEð0Þ ¼ 0 for no black hole. From
the free energy graph in Fig. 4, it follows that any
Hawking-Page phase transition would not occur between
two branches because thermal equilibria of the cosmologi-
cal horizon are unstable points. We observe that the deficit

angles ~�E=C are positive only for ru < rþ < ‘, where un-

stable equilibria frug ¼ f9:98; 9:68; 8:68; 7:07g are deter-
mined by the condition of T ¼ TC

BH. Actually, this region
is beyond thermal equilibria. We point out that the Nariai
back hole at rþ ¼ r0 is nothing special in the thermody-
namic aspect.
Finally, we mention that the Bousso-Hawking normal-

ization does not provide attractive features for the thermo-
dynamics of SdS because it does not make a significant
distinction between the event and cosmological horizons.
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FIG. 3. Temperature and heat capacity ~CE=C for SdS with ‘ ¼ 10 and r0 ¼ 7:07. Here rþ ¼ rEðrCÞ are confined to 0< rE �
r0ðr0 � rC < ‘Þ. At the left graph, the solid curve represents the temperature of TE=C

BH , while the dashed lines denote the external

temperatures of T ¼ 0:032, 0.025, 0.02, 0.016, from top to bottom.
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IV. DISCUSSION

We start to discuss two limiting cases: a very small black
hole (m 	 m0) and a nearly degenerate Schwarzschild-de
Sitter case (m ’ m0).

For the first case, the effect of the radiation coming from
the cosmological horizon is negligible, and one would
expect the evaporating process to be similar to that of
Schwarzschild black hole. Thus we expect to have the
pure de Sitter space (no black hole) as the stable ending
point.

The second case corresponds to the near-horizon ther-
modynamics of the degenerate horizon [24]. In case of the
Nariai black hole, the two horizons have the same size and
the same temperature. Hence they will be in thermal equi-
librium. If one considers a perturbation of the geometry to
cause the black hole to become hotter than the cosmologi-
cal horizon, the thermal condition of the Nariai black hole
becomes unstable. Actually, the thermal stability will be
determined by the sign of heat capacity.

At this stage, we would like to mention the Nariai phase
transition of the SdS at T ¼ 0. A previous work has shown
that the location rþ ¼ r0 is not only the critical point of
phase transition but also the position of the stable cosmo-
logical horizon. This arises because an inappropriate form
of the discontinuous free energy was used to analyze the
Nariai configuration [10]. In this work, we showed that the
Nariai black hole is not a globally stable object when using
the continuous free energy. Instead, the pure de Sitter space
plays the role of a globally stable object. Consequently, the

HP of EH
!

CHQ is unlikely to occur by absorbing radiation
from the cosmological horizon, while the evaporating pro-

cess of EHQ !Accent is empty! is likely to occur by emit-
ting radiation. This is consistent with intuitive
thermodynamic arguments on the black hole in de Sitter
space.

If one uses the Bousso-Hawking temperatures, the
Nariai black hole is thermodynamically unstable because
of their negative heat capacity. Furthermore, it seems in-
appropriate to describe either the Hawking-Page phase
transition or the evaporation process by using these
temperatures.

At this stage, we would like to comment on another

temperature �T / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�h00ðr0Þ
p

of the SdS [25]. This tempera-

ture is valid for the near-horizon region only be-
cause the condition of h00ðr0Þ � 0 implies the near-
horizon of the degenerate horizon. For the whole
region, it would be better to use the temperature (4.9) in

Ref. [8] for four dimensions or TE=C
BH in Eq. (13) for five

dimensions.
In conclusion, it turns out that the Nariai black hole of

rE ¼ r0 is a thermodynamically unstable object. The
Hawking-Page phase transition from rE ¼ 0 to rE ¼ r0 is
unlikely to occur, while the evaporation process from rE ¼
r0ð¼ rCÞ to rE ¼ 0ðrC ¼ ‘Þ is likely to occur when using
the Hawking and Gibbons-Hawking temperatures based on
the standard normalization.
However, a small group of works [10,16,26] supports the

stable Nariai black hole, while a large group of works
[12,27–29] shows the instability of Nariai black hole.
The former has used the standard normalization to support
the stability of the Nariai black hole, the latter has used
different schemes to show the instability. Here, we focus on
the thermodynamic stability of the Nariai black hole. A
black hole is thermodynamically unstable when its heat
capacity is negative (C< 0). Furthermore, a global stabil-
ity of black hole is achieved only when C> 0 and F < 0.
As is shown Fig. 1, we have the zero heat capacity for the
case of the Nariai black hole in the standard normalization,
which means that the issue of thermal stability remains
unclear, and it should be further resolved by choosing an
appropriate free energy. We used the discontinuous free
energy in Ref. [10], where the Nariai black hole was shown
to be stable. In this work, we used an appropriate free
energy to show the unstable Nariai black hole. On the other
hand, we find from Fig. 3 that the heat capacity of the
Nariai black hole is always negative. This means that the
Nariai black hole is unstable when using the Bousso-
Hawking normalization.
Finally, this work supports the instability of Nariai black

hole.
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FIG. 4. The graph of free energy and deficit angle ~�E=C for SdS with TE=C
BH . Here rþ represents rE for the event horizon and rC for

the cosmological horizon. At the left graph, the solid curve represents the free energy ~FE=C, while the dashed lines denote ~Foff
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for external temperatures of T ¼ 0:016, 0.02, 0.025, 0.032 from top to bottom. The reverse order of T is for the deficit angle ~�E=C.
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